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Abstract
A primary mechanism of solute transport in articular cartilage is believed to occur through passive
diffusion across the articular surface, but cyclical loading has been shown experimentally to enhance
the transport of large solutes. The objective of this study was to examine the effect of dynamic loading
within a theoretical context, and to investigate the circumstances under which convective transport
induced by dynamic loading might supplement diffusive transport. The theory of incompressible
mixtures was used to model the tissue (gel) as a mixture of a gel solid matrix (extracellular matrix/
scaffold), and two fluid phases (interstitial fluid solvent and neutral solute), to solve the problem of
solute transport through the lateral surface of a cylindrical sample loaded dynamically in unconfined
compression with frictionless impermeable platens in a bathing solution containing an excess of
solute. The resulting equations are governed by non-dimensional parameters, the most significant of
which are the ratio of the diffusive velocity of the interstitial fluid in the gel to the solute diffusivity
in the gel (Rg), the ratio of actual to ideal solute diffusive velocities inside the gel (Rd), the ratio of
loading frequency to the characteristic frequency of the gel (f̂), and the compressive strain amplitude
(ε0). Results show that when Rg > 1, Rd < 1, and f̂ > 1, dynamic loading can significantly enhance
solute transport into the gel, and that this effect is enhanced as ε0 increases. Based on representative
material properties of cartilage and agarose gels, and diffusivities of various solutes in these gels, it
is found that the ranges Rg > 1, Rd < 1 correspond to large solutes, whereas f̂ > 1 is in the range of
physiological loading frequencies. These theoretical predictions are thus in agreement with the
limited experimental data available in the literature. The results of this study apply to any porous
hydrated tissue or material, and it is therefore plausible to hypothesize that dynamic loading may
serve to enhance solute transport in a variety of physiological processes.

Introduction
Solute transport in biological tissues is a fundamental process of life, providing nutrients to
cells and carrying away waste products. In avascular adult articular cartilage, solute transport
occurs primarily across the articular surface, with synovial fluid mediating exchanges with the
synovium lining the joint capsule [1]. A primary mechanism of solute transport is through
diffusion, which has led many investigators to measure the diffusivity of various small and
large solutes in articular cartilage (e.g., [2–11], see Table 1). The mechanism of passive
diffusion has been shown experimentally to be enhanced by cyclical loading of cartilage, in
the case of a large solute such as serum albumin [12], and by electroosmotic flow [13], both
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of which mechanisms lead to convective flow within the tissue. However, for smaller solutes,
dynamic loading does not enhance transport [12,14,15], and convective flow enhances it less
significantly than with larger solutes [16]. Urban and co-workers have attributed the disparate
outcome under dynamic loading to the magnitude of the ratio of the 'fluid transport
coefficient' [17] to the solute diffusion coefficient in the tissue [12,14], thus defining a non-
dimensional governing parameter for this problem. Garcia et al. [13] determined that
electroosmotic flow was regulated by the Peclet number, which is a different but related non-
dimensional parameter.

Studies of articular cartilage metabolism have demonstrated that static loading as well as
loading below a characteristic frequency of 0.001 Hz leads to biosynthetic inhibition, whereas
dynamic loading stimulates tissue synthesis [18–22]. However, whether this enhanced
biosynthetic response results from an enhanced nutritional supply remains an unresolved
question. Kim et al. have suggested that the stimulation of tissue biosynthetic response under
dynamic loading is most likely the result of enhanced fluid flow or changes in cell shape, rather
than enhanced nutrient transport [19]. Static compression of articular cartilage has been shown
to reduce the diffusivity of various solutes within the tissue, and has been implicated in the
altered biosynthetic response of the tissue to static loading [7,10,23]. Growth factors, which
have been shown to regulate the biosynthetic response of articular cartilage, are generally large
solutes with molecular weights on the order of tens of kilodaltons. A further complication of
growth factor uptake, their binding to specific protein complexes, was analyzed by
Schneiderman et al., who demonstrated that IGF-I binding complexes in normal human
articular cartilage are largely excluded from the tissue [8]. Bonassar et al. have shown that
dynamic compression accelerates the biosynthetic response of cartilage to free IGF-I and
increases the rate of transport of free IGF-I into the matrix, suggesting that cyclic compression
may improve the access of soluble growth factors [24]. In a similar fashion, convective
diffusion likely aids in the removal of metabolic waste products, creating an environment more
suitable for cellular metabolism and matrix biosynthesis [25], as well as influencing the
distribution and rate of loss of matrix products from tissue constructs [12,26].

In studies related to cartilage tissue engineering, it has been suggested that cell growth rates
are diffusionally limited [27]. In studies analogous to those carried out on cartilage explants,
Buschmann et al. examined the response of chondrocyte-seeded agarose gels and suggested
that cell matrix interactions and physicochemical effects may be more important than matrix-
independent cell deformation and transport limitations [28]. They also observed that “for
dynamic compression, fluid flow, streaming potentials, and cell-matrix interactions appeared
to be more significant as stimuli than the small increase in fluid pressure, altered molecular
transport, and matrix-independent cell deformation [28].” In our own studies of cartilage tissue
engineering, we have found that a dynamic loading regimen applied to chondrocyte-seeded
agarose gels over a 28-day period considerably enhances extracellular matrix synthesis as
measured by mechanical properties and biochemical composition [29]. As observed in the
biosynthetic response of cartilage explants in the study by Bonassar et al. [24], we have also
found that the stimulatory effect of dynamic loading is synergistically enhanced by the addition
of TGF-β1 or IGF-1 to the culture media [30]. Whether the enhanced extracellular matrix
synthesis resulted from the increased nutrient transport alone, cell-matrix interactions alone,
or a combination thereof remains unresolved, although the literature findings described above
suggest that it is likely that both effects play a role.

The purpose of the current study is to examine the effect of dynamic loading on solute transport
within a theoretical context, and to investigate the circumstances under which convective
transport induced by dynamic loading might supplement diffusive transport in a porous
hydrated tissue or tissue engineered construct. From a theoretical perspective, there is a need
to identify the non-dimensional parameters governing this problem, and investigate the
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response as these parameters are varied over their physiological ranges. The motivation for
such a study is the need to estimate, a priori, whether the transport of a particular solute (large
or small, such as a growth factor or oxygen) might be enhanced by dynamic loading, and the
time constant for the transport of that solute within the tissue. Such theoretical estimates can
help determine whether or not the results of a particular experiment might be attributed in part
to enhanced nutritional transport. Furthermore, these theoretical results might help to optimize
the loading regimen of engineered tissue constructs.

To formulate the governing equations for this problem, we employ the theory of incompressible
mixtures [31–38] to model the tissue as a mixture of a solid matrix (representing the
extracellular matrix/scaffold), a fluid phase representing the solvent (water), and a fluid phase
representing the solute. Throughout the text, this mixture model is generically referred to as a
'gel', with the understanding that this gel can represent a biological tissue, an engineered tissue
construct, a hydrogel, or any other deformable porous media. The mixture model is useful in
this case because it allows us to model transport of a solute in a dynamically loaded gel, and
subsumes the classical transport relations, such as Fick's laws, and generalizes them to include
the role of gel deformation. For simplicity in this first analysis, the effects of charges in the
mixture (e.g., the fixed charge density contributed by proteoglycans and the ionic charges in
the interstitial fluid) are neglected. The governing equations of mixture theory are used to solve
the problem of solute transport through the lateral surface of a cylindrical gel sample loaded
dynamically in unconfined compression, using frictionless impermeable platens. This
configuration is employed because it has been frequently used in experimental studies of the
biosynthetic response of cartilage explants and chondrocyte-seeded scaffolds [18,19,24,28,
29] as well as in the experimental study of diffusion under cyclical loading [12].

Methods
Only one solute is considered in the analysis of this study, and each of the components of the
mixture are considered to be of neutral valence. In mixture theory, given that the mass, volume,
and number of moles of phase α are represented by mα, Vα, and nα, respectively, and that V =
ΣαVα, the following definitions apply:

(1)

where the superscript ‘w’ indicates the solvent phase. These relations are given in differential
form because the variables are defined locally in this continuum model. The molecular weight
is constant for a given phase α; furthermore, since each phase is assumed to be intrinsically
incompressible, its true density is also constant. From these definitions, it follows that

(2)

thus, concentrations and apparent densities can be interchanged using these relations.
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Governing Equations
For a cylindrical specimen placed in a bathing solution which contains a higher (or lower)
concentration of the solute phase, and loaded between impermeable frictionless platens, the
objective of the analysis is to describe the transient response as the solute transports through
the tissue, in the presence of a dynamic axial load or strain (Figure 1). The governing equations
for this problem are based on the theory of mixtures [31–38]; using the notation of Gu et al.
[38], the equations are given by

(3)

(4)

(5)

(6)

(7)

The first equation represents the balance of linear momentum for the mixture, neglecting
inertial effects (which are significant only in wave propagation problems); the second and third
equations represent the balance of linear momentum for the solvent phase (α = w) and the solute
phase (α = f), respectively (also neglecting inertial effects, along with fluid viscosity). The
fourth equation is the balance of mass for the mixture, taking into account that each phase is
intrinsically incompressible; and the fifth equation represents the balance of mass equations
for each of the solvent and solute phases. In these expressions vα represents the velocity of
phase α and fαβ represents the diffusive drag coefficient for the momentum exchanged between
phases α and β as a result of molecular collisions (fαβ = fβα). The constitutive relations for the
mixture stress σI and the solvent and solute electrochemical potentials, μ̃w, μ̃f, are given by

(8)

(9)

(10)
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where we assume that the solute volume fraction is negligible, φf ≪ 1. This assumption is
justified for most circumstances as illustrated by the two following examples: For a small solute
such as glucose  with a typical concentration in media of 1g/
L (cf̃ = 1/180 mole/L), the volume fraction according to Eq.(1) is given by

, and thus negligible compared to unity. With larger solutes such as
growth factors, a representative concentration in supplemented media is on the order of 10µg/
L for TGFβ-1 (Mf = 25,000 g/mole) or 300µg/L for IGF-1 (Mf = 7,600 g/mole). If the true
density of these growth factors is on the order of 1,000g/L, the volume fraction is φf ~ 10−8 −
3 × 10−7, again negligible compared to unity.

The gel solid matrix is assumed to behave as a linearly elastic isotropic material, with Lamé
constants λs,μs, infinitesimal strain tensor E = (gradu + gradT u)/2, and solid displacement u,
similarly to the biphasic analysis of unconfined compression by Armstrong et al. [39]. The
electrochemical potentials for the solvent and solute have the same form as in classical physical
chemistry [40,41]. In these expressions, R is the universal gas constant, θ is the absolute
temperature, p is the fluid pressure (inclusive of osmotic effects),  are the chemical
potentials in a reference configuration (standard state), and af is the activity of the solute. The
model assumes isothermal conditions, which is appropriate for physiological systems. The
reference configuration is achieved when af = 1; since the solute is dissolved in the same type
of solvent inside and outside the tissue, it is necessary for the reference chemical potential of
the solute to be the same in both compartments. When defining the solute reference state, the
solute activity af must be formulated to account for the possibility that not all of the solvent
inside the tissue is accessible to the solute, due to volume exclusion effect [42,43]. Let  be

the solvent volume accessible to the solute, then  represents the volumetric
fraction of accessible solvent, or the solubility of the solute in the gel (0 ≤ κf ≤ 1), and

 is the concentration of solute per volume of accessible solvent. The solute
activity is then defined as af = γfc̄f/c0 = γfcf/κfc0 where γf is the solute activity coefficient, and
the solute standard state [40] is then defined in the usual manner, e.g., with c0 = 1 M. For
simplicity in this study, it will be assumed that the mixture is ideal, i.e., that the osmotic
coefficient Φ and solute activity coefficient γf are equal to unity. Substituting the constitutive
relations into the balance of linear momentum equations, Eqs. (3)–(5) yields

(11)

(12)

(13)

The unconfined compression problem has been shown to be one-dimensional when the loading
platens are assumed frictionless, because the axial normal strain is uniform [39]. Thus, it can
be shown that dependent variables in this problem exhibit the dependencies p = p(r,t), ur =
ur (r,t), ∂uz/∂z = ε(t), vw = vw(r,t), vf = vf(r,t), cf = cf(r,t), where r and z are the radial and axial
coordinates, respectively, and t is time, and that all other dependent variables are equal to zero.
The axial strain ε(t) may be prescribed (displacement-control analysis) or may be unknown,
to be determined subsequently from the analysis given the axial applied load (load-control
analysis). Under these assumptions, the governing equations reduce to
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(14)

(15)

(16)

(17)

(18)

where HA = λs + 2μs. The unknowns in these equations are  and the objective is
to solve these partial differential equations simultaneously for all five unknowns. Integrating
Eq.(17) with respect to r and recognizing that  at r = 0 yields

(19)

Now Eqs.(15), (16) and (19) can be solved for :

(20)

(21)

(22)

where the diffusion coefficients Dwf, Dsf and permeability k are defined by
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(23)

and

(24)

The definition of Dwf, the diffusivity of the solute in the solvent, is consistent with the classical
treatment of diffusion [44] as will be shown below. The definition of permeability k is the same
as that presented by Lai et al. [45] and is consistent with Darcy's law for permeation of the
solvent through a porous gel solid matrix. Dsf is defined in analogy to Dwf; it is inversely related
to the diffusive drag coefficient between the solute and gel solid matrix. D is the gel diffusion
coefficient of the mixture, representing the diffusivity of the solute against both the solvent and
gel solid matrix of the mixture. The result of Eq.(22) can be used in the balance of mass equation
for the solute, Eq.(18),

(25)

where we have substituted  and assumed that φw is constant, to produce a generalized
Fick's equation which only depends on solute concentration and solid displacement. Equation
(22) can also be rearranged to provide the molar flux (per unit solvent area) of the solute relative
to the solid phase,

(26)

To get the relative molar flux per unit mixture area, , multiply this equation by φw.
Using Eq.(20) in Eq.(14) similarly produces a differential equation which only depends on
solute concentration and solid displacement,

(27)

Thus, to obtain a final solution for this problem, the coupled system of differential equations
in Eqs.(25) and (27) for ur(r,t) and cf(r,t) need to be solved, subject to appropriate boundary
conditions. The remaining dependent variables can be obtained by substitution of the solution
first into Eq.(20) to get the pressure gradient, which can be integrated using a suitable boundary
condition as shown below, then into the velocity expressions in Eqs. (21) and (22). It can be
verified that in the absence of a solute, cf = 0, Eq.(27) reduces to the governing equation for
unconfined compression of a biphasic tissue [39].
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Boundary Conditions
The boundary conditions for this problem need to be determined at r = 0 and r = r0. Because
of the axisymmetric conditions at r = 0, all velocities are zero at that location, and according
to Eqs. (20)–(22), it can be noted that

(28)

At r = r0, jump interface (or boundary) conditions must be satisfied to enforce continuity of
mass, momentum and energy at the interface with the external solution [46–48], [[σrr]] = 0,
[[μ̃w]] = 0, and [[μ̃f]] = 0, which lead to the relations

(29)

(30)

(31)

where p* is the ambient pressure and cf* is the external bath solute concentration. Since the
mixture is assumed to be ideal, the solute activity coefficients are the same inside and outside
the tissue, and thus the solubility is equal to the partition factor [2,49]. In this study, it is
assumed that the external bath is well mixed and that cf* remains constant. The initial conditions
can be derived in a similar manner, assuming that the tissue is at equilibrium with its initial

environment, consisting of an external solute concentration of  and ambient pressure p0:

(32)

If , we would expect a net transport of solute into the tissue over time, whereas the

converse would occur when . Finally, the axial normal traction component and the total
axial load also need to be evaluated,

(33)

Fick's Laws of Diffusion
Classically, diffusion problems have been analyzed using Fick's first and second laws of
diffusion. The simplest case of diffusion is represented by a two-phase mixture, consisting of
single neutral solute diffusing in a solvent phase. Under these circumstances, since there is no
gel solid matrix (φs = 0, φw ≈ 1), D reduces to Dwf and  and ε̇(t) drop out of Eq.(26) to yield
Fick's first law of diffusion,

Mauck et al. Page 8

J Biomech Eng. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(34)

whereas Eq.(25) yields Fick's second law of diffusion (in cylindrical coordinates),

(35)

This result confirms that mixture theory is consistent with classical laws.

If we next consider diffusion of a solute in a mixture with rigid porous solid matrix (φs ≠ 0),
then ε(t) = 0 since no solid matrix deformation can take place. In general,  need not be equal
to zero if there is a rigid body motion, however Fick's laws are formulated for problems with
no net convective motion, i.e., with , in which case Eq.(26) reduces to

(36)

while Eq.(25) yields

(37)

In this case, Fick's laws are also recovered, with a diffusivity D instead of Dwf to account for
the presence of the porous solid matrix. From Eq.(24), and given that Dwf,Dsf are positive, it
is evident that D < Dwf.

Finally, if the gel solid matrix is deformable, but in the absence of dynamic loading (ε̇(t) = 0),
the governing equations are found to differ in general from Fick's classical laws, with Eqs.
(25)–(27) reducing to

(38)

(39)

(40)

It is noteworthy that for the special case when D = φw Dwf, Eqs. (38)–(39) become uncoupled
from the solid displacement and velocity, and we recover Fick's first and second laws as in
Eqs. (36)–(37). For this special category of problems (most applicable to small solutes, as
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discussed below), the classical closed-form solution of the diffusion equation can be obtained
for cf(r,t) and substituted into Eqs. (36) and (40) to obtain a solution for ur(r,t).

Dimensionless Parameters
In order to determine the dimensionless parameters governing the general solution of this
problem, it is now necessary to non-dimensionalize the governing equations. If the following
non-dimensional variables are proposed,

(41)

the governing equations in Eqs.(25) and (27) reduce to

(42)

(43)

where the non-dimensional parameters Rg and Rd are defined as

(44)

The non-dimensional parameter Rg = HAk/D represents the ratio of the characteristic diffusive
velocity of the solvent in the gel (HAk/r0) to the characteristic diffusive velocity of the solute
(D/r0) in the gel. The non-dimensional ratio Rd = D/φwDwf represents the ratio of the
characteristic gel diffusive velocity of the solute (D/r0) to its ideal characteristic gel diffusive
velocity (φwDwf/r0). The ratio D/Dwf is commonly reported in experimental studies of
diffusivity (e.g., [43,50], see Table 1).

The pressure gradient, Eq.(20), and molar flux of solute relative to the solvent, Eq.(26),
similarly reduce to

(45)

(46)

The boundary and initial conditions and the axial normal traction and load, when using non-
dimensional variables, remain essentially unchanged,

Mauck et al. Page 10

J Biomech Eng. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(47)

(48)

(49)

(50)

The parameters, Rg and Rd, along with the ratio λs/HA = νs/(1 − νs) (where νs is the equilibrium
Poisson's ratio of the gel solid matrix), are three of the non-dimensional parameters which
govern this solution. The non-dimensionalization of variables proposed in Eq.(41) are valid as
long as HA, D and Dsf are non-zero and finite. If special cases need to be examined where one
or more of these conditions does not hold, it is simpler to use the dimensional form of the
governing equations, or use an alternative non-dimensionalization scheme.

It is evident that the governing equations for this problem, Eqs. (42)–(43), are nonlinear so that
a closed-form analytical solution is not available in the most general case. A numerical scheme
must be employed to achieve a general solution.

Solution
For the general problem considered in this study, a numerical solution can be obtained for the
set of nonlinear partial differential equations described above using a finite difference scheme.
In this section, results are presented for various choices of the parameters governing the
solution. First, a forcing function ε(t) is proposed for the case when dynamic loading is applied
under displacement control,

(51)

where ε0 is the peak-to-peak strain amplitude and f is the loading frequency. When solving in
the non-dimensional domain, this equation reduces to

(52)

where the non-dimensional loading frequency is given by

(53)
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Note that f̂ is the loading frequency normalized by the characteristic frequency (the inverse of
the biphasic theory's gel time constant [51]) for the flow of solvent in the porous matrix (e.g.,
[52,53]). For the case when no dynamic loading is applied, it suffices to let f̂ = 0.

Second-order finite difference schemes were employed for spatial discretization of the
governing equations. The spatial domain 0 ≤ r ̂ ≤ 1 was discretized into 200 equally-sized
increments Δr ̂. In certain challenging cases, such as those with a high Rg and low Rd,
discretization with 2000 points demonstrated that while convergence was not quite attained
with 200 increments, the solution slightly underestimated the actual converged solution. Due
to limitations in computation time, 200 equally sized increments were used for all cases. The
forcing function dε/dt̂ appears in both governing equations of this problem; because the
amplitude ε0πf̂Rg of this function can be several orders of magnitude greater than unity under
certain choices of the governing parameters (see below), the resulting system of nonlinear
differential equations can be very stiff. Consequently, a variety of numerical schemes were
explored to obtain a reliable solution, and for the purpose of verification the current study
settled on two distinct methods. In the first method, a first-order backward difference scheme
was employed for temporal discretization, producing an implicit scheme in the time domain.
The resulting system of nonlinear difference equations were solved using the Newton-Raphson
scheme with analytical Jacobian; band-diagonal solution algorithms were employed to take
advantage of the structure of these equations for increased numerical efficiency. In the second
method, the spatially discretized equations were arranged in the form of a system of first-order
differential equations in time and solved using the Runge-Kutta-Verner fifth order and sixth
order method (subroutine IVPRK of the IMSL library of subroutines, Visual Numerics, San
Ramon, CA). In both methods, the time domain was discretized into uniform increments Δt̂;
in the dynamic loading case, up to 2,000 time increments per loading cycle were necessary in
some cases to achieve numerical convergence. For free diffusion (f̂ = 0), the system of equations
was not stiff and numerical convergence could be achieved with much fewer time iterations.

To achieve a solution in the non-dimensional domain requires the specification of

. To help determine characteristic values for these parameters, we
look at some typical properties reported in the literature for articular cartilage and agarose gels,
as representative examples for the current analysis. According to Table 2, the equilibrium
aggregate modulus of articular cartilage in compression is typically in the range HA = 0.1–1.0
MPa, whereas the permeability is on the order of k = 10−16–10−15 m4/N.s, so that HAk varies
approximately in the range 10−11–10−9 m2/s in articular cartilage. In 2–3% agarose and various
chondrocyte-seeded engineered constructs, these parameters are in the range HA = 10–100 kPa,
and k = 10−13–10−12 m4/N.s, thus HAk is in the range 10−10–10−8 m2/s. The diffusivity of
various charged and neutral solutes in articular cartilage and agarose is provided in Table 1.
In cartilage and agarose gels, the diffusivity D of small solutes, such as Na+, Cl− and glucose,
is on the order of 10−9 m2/s, whereas for larger solutes such as bovine serum albumin and
40kDa Dextran, the gel diffusivity is on the order of 10−11 m2/s. From these results, it is
estimated that Rg is in the range 10−2–103 in cartilage and agarose gels (see Table 2). Typical
values of the diffusivity Dwf of solutes in aqueous solutions are also provided in Table 1, along
with representative values of the water volumetric fraction φf, from which it can be estimated
that for neutral solutes Rd is typically in the range 0.1–1.0. Physiological loading frequencies
for articular cartilage are typically in the range 0.01–1 Hz, and various basic science studies
of the response of chondrocyte-seeded agarose gels have employed similar ranges (e.g., [18,
19,22,24,28,54,55]). Given the representative values of HAk reported above, and typical radii
r0 of 1–3 mm, a representative range for f̂ is 101–106.

Poisson's ratio, νs = 0, the initial solute concentration in the tissue, , and the external bath
concentration (scaled by the partition factor), κfĉf* = 10−3, were kept constant in this analysis.
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The parameters which were varied were Rg = 1–100, Rd = 0.1–1, f̂ = 10–1000 and ε0 = −0.20
– −0.01 (for transport with dynamic loading), or f̂ = 0, ε0 = 0 (for loading-free transport).

Results
Representative results for selected cases are presented first, followed by aggregate results for
all tested cases. The solute concentration, ĉf(r ̂,t̂), is shown as a function of the radial coordinate
r ̂ at various times t̂ in Figure 2a for the case Rg = 100, Rd = 0.1, in the absence of dynamic
loading. For this choice of governing parameters, the figure shows Fick's classical diffusion
solution in cylindrical coordinates. At the radial edge of the sample, r ̂ = 1, the solute
concentration remains equal to ĉf* at all times, according to the boundary condition of Eq.

(48)2. Inside the cylindrical sample, the solute concentration is initially equal to  throughout
the domain 0 ≤ r ̂ < 1, but with increasing time the concentration eventually achieves an
equilibrium value, which is the same as κfĉf*. When dynamic loading is applied, e.g., with
frequency f̂ = 1000 and strain amplitude ε0 = −0.20, the solute concentration distribution is
generally oscillatory but can be plotted in a similar way, as shown in Figure 2b. For this case,
the solute concentration distribution is significantly different than in the absence of loading.
At early times of loading, in a region near the radial edge of the sample, solute concentration
is nearly the same as ĉf*, while inside the tissue solute concentration remains below the external
bath concentration ĉf*. As loading continues, solute concentration in the radial edge remains
unchanged, while solute accumulates in the inner region of the tissue to levels greater than that
of the boundary value. It is also evident, from the comparison of Figure 2a and Figure 2b, that
solute concentration increases significantly faster in the dynamically loaded case. Since the
solute concentration is generally non-uniform along the radial direction, its average value,

(54)

can be evaluated and plotted as a function of time to indicate the rate at which solute is taken
up by the whole tissue, as shown in Figure 3 for select choices of governing parameters. When
the Rg and Rd are at unity, it can be noted that although dynamic loading induces an oscillatory
variation in average solute concentration, the mean response oscillates about the loading-free
diffusion solution at low frequencies (f̂ = 10) and shows only a slight elevation above the mean
at higher frequencies (f̂ = 1000). Thus dynamic loading at best slightly enhances solute transport
for this particular choice of governing parameters. In contrast, when Rg is greater than unity
and Rd is less than unity, increasing the loading frequency produces increasingly faster rises
and increasingly higher values of the average solute concentration, as evident in Figure 4. To
summarize the salient feature of these results, the steady-state value (averaged over the last

loading cycle) of  as t̂ → ∞, and the time t̂e when the average solute concentration

has reached 63.2% of the external solute concentration, , are plotted
against Rg and loading frequency in Figure 5. For reference, in the absence of loading,

regardless of the values of Rg or Rd, the corresponding values are  and t̂e =
0.111. From these results it is evident that for values of Rd below unity, higher Rg and higher
loading frequencies may considerably enhance solute transport in this problem. The effect of
the strain magnitude is similarly presented in Figure 6, where it is noted that increasing dynamic
strain magnitudes also enhance solute transport, as long as Rd < 1, Rg > 1.

To help understand the solute transport mechanism, the molar flux of solute relative to the solid
phase is plotted in Figure 7, for representative loading-free and dynamically loaded cases. In
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the loading-free case (f̂ = 0), the solute transport is always directed into the tissue as indicated
by its negative values, and is greatest in magnitude in the early time response, eventually
decreasing to zero at equilibrium. In the dynamically loaded cases (f̂ = 1000), the solute
transport is directed into the tissue in the very early time response, with a magnitude much
greater than the loading-free case; and the first cycle is seemingly independent of Rd. In
subsequent cycles the solute molar flux relative to the solid phase becomes oscillatory,
alternating between influx and efflux from the tissue. Interestingly, with Rd = 1, solute molar
flux is nearly balanced, with only a slight movement into the tissue while with Rd = 0.1 solute
flux is directed into the tissue over nearly the entire loading cycle. In both cases, the magnitude
of the solute flux is greatest near the periphery of the cylindrical sample, decreasing to zero at
its center.

Figure 8 shows a representative plot of the radial displacement ûr(r ̂ = 1,t̂) and the axial load Ŵ
(t̂) under loading-free conditions, with Rg = 100 and Rd = 0.1. The instantaneous influx of solute
at time t̂ = 0 causes a small, transient, drag induced compressive strain in the radial direction
on the order of −0.08% (Figure 8a). This radial compression in turn generates a small transient
axial load Ŵ, which reaches a peak of 0.0025 (Figure 8b). For a sample piece of cartilage, with
HA = 0.5 MPa, r0 = 0.003 m, where , the peak axial load corresponds to 0.0113 N.

Discussion
The objective of this study was to examine theoretically the effect of dynamic loading of a
biological tissue or gel on solute transport, and to identify how the various non-dimensional
parameters governing this problem affect its outcome. Using the theory of mixtures has
provided a convenient framework to combine transport phenomena with porous media models
of biological tissues. Indeed, under the proper limiting conditions, the general governing
equations derived in this study reduce to Fick's laws of diffusion [44] or the linear isotropic
biphasic theory of Mow and co-workers [34,39]. A direct outcome of the analysis has been the
formulation of familiar dimensional and non-dimensional parameters which govern the
response. In particular, the analysis is able to distinguish between the solute diffusivity in the
gel (D) and its diffusivity in the solvent (Dwf) by taking into account frictional effects between
solute and solvent (fwf) as well as solute and gel solid matrix (fsf). It is interesting that the related
non-dimensional parameter, Rd = D/φw Dwf, is scaled by the solvent volumetric fraction in the
gel. If it is assumed that Rd has an upper bound of unity for neutral solutes in a neutral gel, this
relation suggests (but does not prove) that even under ideal conditions (Rd = 1), the diffusivity
D of a neutral solute in a neutral gel will at most equal the product of the gel porosity times
the diffusivity in free solution, φw Dwf. This relationship implies that under ideal conditions
solute diffusivity in the gel is directly proportional to the solvent volumetric fraction, a
relationship which remains self-consistent over the entire range 0 ≤ φw ≤ 1. In general however,
steric exclusion limits the volumetric fraction of accessible solvent so that the actual gel
diffusivity D is smaller than the ideal gel diffusivity φw Dwf. As noted in Table 1, the
experimental value of Rd decreases with increasing molecular weight, and only small solutes
can achieve values that approach unity.

The theoretical analysis also produces a non-dimensional parameter, Rg = HAk/D, for the solute
in the gel. This parameter can be identified with the ratio  described by Urban et al.
[14] and O'Hara et al. [12], as governing solute transport in a dynamically loaded tissue. In
their expression,  is a 'fluid transport coefficient' [17], which these authors described as
being dependent on the difference between the swelling and applied pressures and on the
hydraulic permeability of the tissue [14]. The present study formulates this coefficient as the
product of the familiar parameters HA (aggregate modulus) and k (hydraulic permeability) of
the biphasic theory. The non-dimensional parameter Rg, which is the ratio of the characteristic
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diffusive velocities of the solvent and solute in the gel, can be related to the non-dimensional
Peclet number, which is the ratio of the characteristic convective velocity V of the gel to the
diffusive velocity D/r0 of the solute in the gel, Pe = Vr0/D. This relationship is given by Pe =
Rg · Rh, where the non-dimensional parameter Rh = Vr0/HAk is the ratio of the convective
velocity of the gel to the diffusive velocity of the solvent in the gel. Rh was first described by
Lai and Mow [56,57] when analyzing the problem of a load sliding with a velocity V on the
surface of a biphasic articular layer, and has since been used in other related studies [58,59].
It can be interpreted as a Peclet number for interstitial fluid diffusivity, in contrast to the more
common usage of the Peclet number for solute diffusivity as described above, or for heat
diffusivity. We now note that the dynamic compression of the gel, as provided in Eq.(51),
induces a convective gel velocity of characteristic magnitude V = ε0r0f, so that the non-
dimensional parameter f̂ appearing in Eq.(53) is equal to Rh/ε0. Hence the product f̂Rg appearing
in Eq.(52) is equal to Pe/ε0, which indicates that the Peclet number also governs this problem,
consistent with the electroosmotic study of Garcia et al. [13].

It is found that Rd and Rg have very little effect on the loading-free diffusion response (f̂ = 0,
Figure 5). Thus, despite the fact that the governing equations for loading-free diffusion in Eqs.
(39)–(40) are generally different from Fick's laws (when Rd ≠ 1), the gel deformation resulting
from frictional drag between solute and gel solid matrix (Figure 8) does not significantly alter
solute transport in the absence of dynamic loading. This result is encouraging because it
suggests that in the absence of loading it is entirely consistent to use Fick's laws for the
experimental determination of the diffusivity of a solute in a deformable soft tissue or gel [2–
6,10,23] despite the fact that these laws do not fully describe transport within a deformable
matrix. For loading-free diffusion, the equilibrium response yields a uniform solute
concentration across the cylindrical gel (Figure 2a,4), and ĉavg(∞)/κfĉf* = 1. Because all non-
dimensional concentrations are normalized with the same factor (Eq.(41)), this ratio is equal
to the ratio of dimensional concentrations, cavg(∞)/κfcf* = 1. The non-dimensional
characteristic time required to reach equilibrium in loading-free diffusion remains essentially
constant at t̂e = 0.111 over the range of Rd and Rg analyzed in this study; in dimensional form,
the characteristic time is  and is thus dependent on specimen size and gel diffusivity
(a result similar in form to [60]).

In contrast to loading-free diffusion, under dynamic loading, the values of Rd, Rg, and f̂ have
a great influence on solute transport into the tissue. As Rd decreases from unity and Rg increases
from unity, and with increasing non-dimensional loading frequency f̂, the equilibrium partition
factor increases relative to that under loading-free diffusion, i.e., ĉavg(∞)/κfĉf* > 1 (Figure 5).
Similarly, the non-dimensional time t̂e correspondingly decreases (Figure 5). A small Rd and
large Rg are representative of higher molecular weight solutes which typically have a smaller
gel diffusivity D (everything else assumed constant). To illustrate this phenomenon, consider
the transport of Gd-ovalbumin (MW= 45 kDa, D = 0.4×10−11m2/s, Dwf = 5.2×10−11m2/s,
[11]) in a 5 mm disk (r0 = 2.5 mm) of articular cartilage (HA = 0.5 MPa, k = 10−15m4/N.s,
φw = 0.8) loaded dynamically at a frequency f = 0.1 Hz with a strain amplitude ε0 = −0.2. These
parameters produce Rd = 0.096, Rg = 125 and f̂ = 1,250, and according to Figure 5 the solute
concentration at steady-state would be cavg (∞)/κfcf* ~ 3 and the characteristic time te would
be approximately 2.2 hrs. In contrast, under loading-free diffusion, cavg(∞)/κfcf* = 1 and te ~
48 hrs (keeping in mind that diffusion is occurring only through the lateral surface of the
cylindrical sample). It is important to emphasize that the results of this analysis do not
necessarily suggest that the solute concentration inside the tissue will exceed the external
concentration, because of the scaling factor introduced by the partition coefficient κf. In general,
the larger the molecular weight of the solute, the smaller the partition coefficient will be. For
example, if the external concentration of Gd-ovalbumin is cf* = 100 µM and its partition factor
under loading-free diffusion is κf = 0.2, the steady-state concentration will be cavg(∞) = 20 µM
without loading and cavg(∞)~60 µM with loading. It can be concluded that these theoretical
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predictions support the experimental finding [12,14,24] that dynamic loading enhances the
transport of larger molecular weight solutes relative to transport under loading-free diffusion.

Conversely, when 0.5 ≤ Rd ≤ 1, and Rg ≤ 10, as is more typical of smaller solutes, there is less
significant enhancement in the equilibrium partition factor relative to loading-free diffusion
(Figure 5), though t̂e does decrease with increasing Rg and f̂ (Figure 5). This case can be
illustrated with the transport of glucose (MW = 180 Da, D = 0.31×10−9m2/s, Dwf =
0.53×10−9m2/s, [7]) in cartilage (same parameters as above); then Rd = 0.73, Rg = 1.6 and f̂ =
1,250, and under dynamic loading, cavg (∞)/κfcf* ~ 1.1; therefore, there is only a ~10% increase
in average equilibrium solute concentration relative to loading-free diffusion in this case. The
corresponding characteristic time te is approximately 28 min. with dynamic loading and 37
min. without loading, showing a more significant influence of dynamic loading on the initial
transient response of solute transport than on the steady-state response. These predictions are
also consistent with experimental findings described in the literature [12,14].

To understand why dynamic loading can enhance solute transport in a hydrated gel or soft
tissue, it is necessary to examine the governing equations along with their numerical solutions.
The molar flux of solute relative to the solid phase is given by Eq.(46), which shows solute
transport is driven by the concentration gradient (∂ĉf/∂r ̂) as in classical diffusion, as well as an
additional term contributed by the dynamic loading of the gel solid matrix, Rdĉf(∂ûr/(∂t̂ + (r ̂/
2)dε/dt̂); the net transport into or out of the tissue depends on these quantities at the
circumferential edge of the cylindical sample (r̂ = 1). In the detailed view of Figure 7, the molar
flux of solute relative to the solid is displayed for the first five cycles of loading, showing the
loading-free diffusion case, and two comparable dynamically loaded cases which differ only
in the value of Rd. In all cases, theory predicts that the solute flux is infinite at t̂ = 0+ because
of the initial jump in concentration between inside and outside; because of the finite mesh size
used in the numerical analysis, the initial value of the flux is finite but demonstrates an
asymptotic trend toward infinity. From these plots, it is immediately apparent that the flux in
the presence of dynamic loading achieves greater magnitudes than under loading-free
diffusion, over certain portions of the loading cycles. The primary reason for this behavior is
that during dynamic loading the solute concentration gradient at r ̂ = 1 oscillates from zero to
a peak positive value which exceeds the peak concentration gradient under loading-free
diffusion. Over time, this produces a faster rise in average solute concentration in the loaded
cases than in the absence of loading. Interestingly, with Rd = 1, the flux is positive (solute efflux
from the sample) over a significant portion of a loading cycle, whereas with Rd = 0.1, it remains
mostly negative. Though not shown in the figure, the difference between these two loaded
cases results from the contribution of the oscillatory term Rdcf (∂ûr/(∂t̂+(r ̂/2)dε/dt̂) to the flux,
which is proportionally more significant with higher values of Rd. As a result, cases with small
values of Rd produce a larger solute concentration at steady state because of the increased net
influx of solute; this increase represents an effective increase in the solubility of the solute in
the gel.

Based on the results of this study, it may be possible to estimate whether dynamic loading of
tissue engineered constructs produces enhanced transport of growth factors that are present in
or added to culture media. In our previous studies [29,30], it was found that the equilibrium
aggregate modulus of chondrocyte-seeded agarose gels increases from HA~5 kPa to HA~100
kPa over 28 days, when the 6.76 mm-diameter constructs are dynamically loaded in unconfined
compression with f = 1 Hz and ε0 = −0.1 for one-hour-on, one-hour-off, thrice daily. Though
not measured directly in those studies, the permeability of the same type of agarose and
chondrocyte-seeded agarose gels has been shown to range from k ~ 10−12 m4/N.s to k ~
10−13 m4/N.s [61–63]. From the studies of Schneiderman et al. [8], the diffusivity of insulin-
like growth factor (IGF-I) is estimated at D = 2.2×10−11 m2/s in articular cartilage. Combining
these factors together suggests that during tissue elaboration, Rg increases from 250 to 500 and
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f̂ decreases from 1,250 to 625; if Rd is estimated at <0.5, these results suggest that solute
transport is enhanced by dynamic loading throughout the tissue growth process. Consequently,
it is plausible that one of the beneficial effects of dynamic loading on cartilage tissue
engineering is the enhanced transport of large solutes, such as growth factors, into the tissue.
Based on the various examples examined in this study, there is a wide range of conditions
which may enhance solute transport in gels and tissues; for our specific cartilage tissue
engineering studies [29,30], it appears that continuous dynamic loading at 1 Hz over a period
of approximately 3 hours would be more appropriate to enhance growth factor adsorption into
the constructs.

This novel application of mixture theory to describe solute transport in dynamically loaded
porous permeable gels may give new insight into the possible mechanisms by which physical
stimuli modulate tissue response and enhance tissue development. The limitations of this first
theoretical formulation, however, are in considering both the solute and gel in which it diffuses
as neutrally charged. Serum growth factors, such as those from the transforming growth factor
(TGF) and insulin like growth factor (IGF)/somatomedin family have isoelectric points that
range from acidic to basic [64–72]. Molecules that are neutral in a physiologic environment
will move independent of external charge, while those which carry a charge will be effected
by the fixed charges of the matrix and the molecules around them [4,73]. Thus the incorporation
of fixed and movable charges into this mixture theory formulation may broaden its general
application. Incorporating charge effects would require modeling the interstitial fluid with at
least three species (a neutral solvent phase, an anionic solute phase and a cationic solute phase)
[36,37,74–76], instead of the two employed in this study. Analyses of these more complex
models may be easier to interpret given the results of the current study.

In addition to charge effects, the inhomogeneity of material properties in both cartilage and
tissue engineered constructs may influence the local distribution of solute transport [77].
Modeling the tension-compression nonlinearity of cartilage, as performed in our earlier studies
[78,79], may also represent an additional refinement of this analysis. Finally, the model
proposed herein does not take account of consumption of solute molecules (either by cellular
metabolism or binding to the extracellular matrix; e.g., [80–83]), which may influence both
transient and steady state solute concentration throughout the gel matrix. If solute binding or
consumption is to be considered, equations for chemical reactions must be incorporated, and
the balance of mass equations must be amended to incorporate mass generation (source or sink)
terms. Incorporating the above modifications into this theory will increase its complexity, but
also its utility both in understanding natural mechanotransduction mechanisms in native
articular cartilage, as well its ability to predict the optimum mechanical environment for the
in vitro functional tissue engineering of replacement tissues. This theoretical framework may
be further extended to examine the influence of deformational loading on solute transport when
engineered constructs are placed in situ, in which case transport across the articular surface
may be of greater relevance.

This analysis also assumes that the volume fractions of the gel solid matrix and the solvent,
the hydraulic permeability, and the solute diffusion coefficient remain constant under the small
deformations being applied to the gel. It is possible to incorporate the higher order effect of
deformation on these parameters using the conservation of mass relation for the volume
fractions [36],

(55)
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where  are the solvent and solid volume fractions in the absence of deformation.
Similarly, constitutive relations can be formulated for the functional dependence of k and D
on tr E [10,45,84,85], for example,

(56)

where k0 and D0 are the hydraulic permeability and solute gel diffusion coefficient in the
absence of strain, and Mk,MD are non-dimensional coefficients.

In summary, this study presents an original theoretical analysis on the effect of dynamic loading
on neutral solute transport in a neutral gel. It identifies the non-dimensional parameter Rd as
an important governing parameter for this problem. It formulates the non-dimensional number
Rg = HAk/D in terms of the aggregate modulus, hydraulic permeability, and solute diffusivity
in the gel. It establishes that Rg, Rd, f̂ and ε0 together regulate the response of solute transport
to dynamic loading in a gel, and that variations in a single parameter are insufficient to predict
the full spectrum of the response. It identifies the ranges of these non-dimensional governing
parameters over which dynamic loading will enhance solute transport, and the implications for
transport in cartilage and cartilage tissue engineering.

As a final remark, the theoretical results of this study are not uniquely relevant to natural and
tissue engineered articular cartilage but apply to any porous hydrated tissue or gel. Dynamic
loading is inherent to a variety of biological tissues (e.g., muscle, tendon, ligaments,
cardiovascular system, etc.). Its effects need not be limited to extracellular matrix but may be
equally relevant to transport at the cellular level [86]. It is therefore plausible to hypothesize
that dynamic loading may serve to enhance solute transport in a variety of physiological
processes, particularly in the case of larger molecular weight solutes. Such effects may be
investigated using the theoretical framework provided in this study.
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Figure 1.
Schematic of dynamic unconfined compression of gel construct between frictionless
impermeable platens in a bathing solution containing an excess of solute.
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Figure 2.
Solute concentration, ĉf(r ̂, t̂), at select time points for the case Rg = 100, Rd = 0.1, (a) in the
absence of dynamic loading (ε0 = 0), and (b) when ε0 = −0.20 and f̂ = 1000.
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Figure 3.

Average solute concentration normalized by the external bath concentration, , as
a function of time, for various choices of governing parameters (Rg = 1, Rd = 1, ε0 = −0.20 and
f̂ = 1000; Rg = 1, Rd = 1, ε0 = 0; Rg = 1, Rd = 1, ε0 = −0.20 and f̂ = 10).
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Figure 4.

Average solute concentration normalized by the external bath concentration, , as
a function of time, for various choices of governing parameters (Rg = 100, Rd = 0.1, ε0 = −0.20,
and f̂ = 0; Rg = 100, Rd = 0.1, ε0 = −0.20, and f̂ = 10; Rg = 100, Rd = 0.1, ε0 = −0.20, and 100).
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Figure 5.

For Rd = 0.1, 0.5, and 1.0, ε0 = −0.20, (a) steady-state value of  (averaged over a

loading cycle) as t̂→∞, and (b) time te when , as a function of Rg and

f̂. In the absence of dynamic loading,  and t̂e = 0.111 for all values of Rg.
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Figure 6.

For Rd = 0.1 and Rg = 100, and f̂ = 100, (a) transient value of  versus t̂ with

increasing strain magnitude (ε0 = 0 to −0.20) and (b) steady-state values of 

(averaged over a loading cycle) as t̂ → ∞ and time t̂e when , as a function
of ε0. Dashed line indicates loading-free condition.
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Figure 7.
Solute molar flux relative to solid phase, , at r ̂ = 1 over the first five loading cycles
for the case Rg = 100, Rd = 1, in the absence of dynamic loading (ε0 = 0), and when ε0 = −0.20,
f̂ = 1000, and Rd = 1 or Rd = 0.1. Vertical dashed line at t̂ = 0 indicates asymptote to infinity.
Inset shows solute molar flux relative to the solid phase at very early times of loading (t̂ < 5.0
× 10−7) under the above conditions.
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Figure 8.
(a) Radial displacement ûr (r ̂ = 1,t̂) and (b) axial load Ŵ(t̂) over time with Rd = 0.1, Rg = 100,
in the absence of dynamic loading (f̂ = 0).
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