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Abstract

In this companion article to “Dynamic Regime Marginal Structural Mean Models for Esti-
mation of Optimal Dynamic Treatment Regimes, Part I: Main Content” [Orellana, Rotnitzky and
Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a
proposal for the computation of a confidence set for the optimal index when this lies in a finite set,
and (iii) an example to aid the interpretation of the positivity assumption.
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1 Introduction

In this companion article to "Dynamic regime marginal structural mean mod-
els for estimation of optimal dynamic treatment regimes. Part I: Main Con-
tent" (Orellana, Rotnitzky and Robins, 2010) we present (i) proofs of the
claims in that paper, (ii) a proposal for the computation of a con�dence set
for the optimal index when this lies in a �nite set, and (iii) an example to aid
the interpretation of the positivity assumption.

The notation, de�nitions and acronyms are the same as in the companion
paper. Througout, we refer to the companion article as ORR-I.

2 Proof of Claims in ORR-I

2.1 Proof of Lemma 1

First note that the consistency assumption C implies that the event

Ok = ok; Ak�1 = gk�1 (ok�1)

is the same as the event

O
g

k = ok; Ak�1 = gk�1 (ok�1) :

So, with the de�nitions

V k;k+l � (Vk+1; :::; Vk+l) ; l > 0 and V k;k � nil

we obtain
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Then, it follows from the second to last displayed equality that
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So, part 1 of the Lemma is proved if we show that
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This proves the result for the case k = K: If k < K � 1; we analyze the
conditional expectation of the last equality in a similar fashion. Speci�cally,
following the same steps as in the long sequence of equalities in the second to
last display we arrive at
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Equality (1) is thus shown by continuing in this fashion recursively for
K � 2; K � 3; :::; K � l until l such that K � l = k � 1:
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To show Part 2 of the Lemma, note that specializing part 1 to the case
k = 0; we obtain

E [IB (O
g; Ag) jO0] = E
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Thus, taking expectations on both sides of the equality in the last display we
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��
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This shows part 2 because B is an arbitrary Borel set.

2.2 Proof of the Assertions in Section 3.2, ORR-I

2.2.1 Proof of Item (a)

Lemma 1, part 2 implies that the densities pmargg factors as
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and this coincides with the right hand side of (2) which, as we have just argued,
is equal to �k+1 (ok) :

2.3 Proof of Lemma 2 in ORR-I

Let X be the identity random element on (X ;A) and let EPmarg�PX (�) stand
for the expectation operation computed under the product law Pmarg�PX for
the random vector (O;A;X). Then the restriction stated in 2) is equivalent
to

EPmarg�PX
�
b (X;Z)!K

�
OK ; AK

�
fu (O;A)� hpar (X;Z; ��)g

�
= 0 for all b

(3)
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and the restriction stated in 3) is equivalent to

EPmarg�PX [fb (X;Z)� EP�PX [b (X;Z) jZ]g � (4)

!K
�
OK ; AK

�
fu (O;A)� hsem (X;Z; ��)g

�
= 0 for all b:
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(ORR-I, (14))) (3) :

EPmarg�PX [b (X;Z) d (O;A;X)] = EPmarg�PX [b (X;Z)EP�PX [d (O;A;X) jX;Z]]
= 0

where the last equality follows because EPmarg�PX [d (O;A;X) jX = x; Z] =
EPmarg [d (O;A; x) jZ] by independence of (O;A) with X under the law Pmarg�
PX and, by assumption, EPmarg [d (O;A; x) jZ] = 0 �-a.e.(x) and hence
EPmarg [d (O;A; x) jZ] because PX and � are mutually absolute continuous.

(3) ) (ORR-I, (14)) : De�ne b� (X;Z) = EPmarg�PX [d (O;A;X) jX;Z] :
Then,

0 = EPmarg�PX [b
� (X;Z) d (O;A;X)] = EPmarg�PX

�
EP�PX [d (O;A;X) jX;Z]

2�
consequently, EPmarg�PX [d (O;A;X) jX;Z] = 0 with Pmarg�PX prob. 1 which
is equivalent to (ORR-I, (14)) because PX is mutually absolutely continuous
with �:

To show 3) rede�ne d (O;A;X) as !K
�
OK ; AK

�
fu (O;A)� hsem (X;Z; � �)g :
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= EPmarg�PX [fb (X;Z)� EPmarg�PX [b (X;Z) jZ]g q (Z)] = 0
where the third equality follows because EPmarg�PX fd (O;A;X) jX = x; Zg =
EPmarg fd (O;A; x) jZg and EPmarg fd (O;A; x) jZg = q (Z) �-a.e.(x) and hence
PX-a.e.(x) by absolute continuity.

(4)) (ORR-I, (15)) : De�ne b� (X;Z) = EP�PX [d (O;A;X) jX;Z] : Then,
0 = EPmarg�PX [fb� (X;Z)� EPmarg�PX [b� (X;Z) jZ]g d (O;A;X)]
= EPmarg�PX [fb� (X;Z)� EPmarg�PX [b� (X;Z) jZ]g b� (X;Z)]
= EPmarg�PX
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fb� (X;Z)� EPmarg�PX [b� (X;Z) jZ]g
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Consequently, b� (X;Z) = EPmarg�PX [b

� (X;Z) jZ] � q (Z) PX � a:e: (X) and
hence �X�a:e: (X) by absolute continuity: The result follows because b� (x; Z) =
EPmarg�PX [d (O;A;X) jX = x; Z] = EPmarg [d (O;A;X) jZ] :
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2.4 Derivation of Some ormulas in Section 5.3, ORR-I

2.4.1 Derivation of Formula (26) in ORR-I

Any element
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But,

E
�
S� (�; 

�; b) jOk; Ak
�

=

Z
Xpos

b� (x; z)E
�
!xK
�
OK ; AK

�
fu (O;A)� h� (x; Z; �)g

��Ok; Ak� dPX (x)
=

Z
Xpos

b� (x; z)!
x
k

�
Ok; Ak

�
�

�E
�
!xk;K

�
OK ; AK

�
fu (O;A)� h� (x; Z; �)g

��Ok; Ak� dPX (x)
=

Z
Xpos

b� (x; z)!
x
k

�
Ok; Ak

�
�

�E
�
!xk;K

�
OK ; AK

�
fu (O;A)� h� (x; Z; �)g

��Ok; Ak = gx �Ok�� dPX (x) :
So formula ((27), ORR-I) is proved if we show that

E
�
!xk;K

�
OK ; AK

�
fu (O;A)� h� (x; Z; �)g

��Ok; Ak = gx �Ok�� = (5)�
�xk+1

�
Ok
�
� h� (x; Z; �)

	
:
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where the last equality follows by the de�nition of �xk+1
�
Ok
�
and the fact

that E
�
!xk;K

�
OK ; AK

�
jOk; Ak = gx

�
Ok
��
= 1 (as this is just the function

�xk+1
�
Ok
�
resulting from applying the integration to the utility u (O;A) = 1):

2.4.3 Derivation of Formula (31) in ORR-I

It su¢ ces to show that Saug
�
; db�;�;;� ;opt

�
=
PK

k=0

R
Xpos b (x; Z)Mk (x; �; ; �) dPX (x)

where

Mk (x; �; ; �) �
�
!xk ()� !xk�1 ()

	�
�xk+1

�
Ok; �

�
� h� (x; Z; �)

	
:
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But by de�nition

Saug
�
; db�;�;;� ;opt

�
=

=
KX
k=0

�
db�;�;;� ;opt;k

�
Ok; Ak

�
� E

�
db�;�;;� ;opt;k

�
Ok; Ak

�
jOk; Ak�1

�	
=

KX
k=0

(Z
Xpos

b (x; Z)!xk ()
�
�xk+1

�
Ok; �

�
� h� (x; Z; �)

	
dPX (x)�

� E
"Z

Xpos
b (x; Z)!xk ()

�
�xk+1

�
Ok; �

�
� h� (x; Z; �)

	
dPX (x) jOk; Ak�1

#)

=
KX
k=0

Z
Xpos

b (x; Z)
�
!xk ()� E

�
!xk () jOk; Ak�1

�	
��

�xk+1
�
Ok; �

�
� h� (x; Z; �)

	
dPX (x)

=
KX
k=0

Z
Xpos

b (x; Z)
�
!xk ()� !xk�1 ()

	�
�xk+1

�
Ok; �

�
� h� (x; Z; �)

	
dPX (x)

where the last equality follows because

E
�
!xk () jOk; Ak�1

�
=

= !xk�1 ()E

"
Ifgx;k(Ok)g (Ak)

�k
�
AkjOk; Ak�1

������Ok; Ak�1
#

= !xk�1 ()
E

h
Ifgx;k(Ok)g (Ak)

���Ok; Ak�1i
�k
�
gx;k

�
Ok
�
jOk; Ak�1

� = !xk�1 () :

2.5 Proof that b�;opt is Optimal

Write for short, b�� (b) � b�� �b; bd�;opt� ;
Qpar (b) �

R
Xos b (x; Z)Qpar

�
x; �y; y; � y

�
dPX (x) and

Qsem (b) �
R
Xpos

�
b (x; Z)� b (Z)

	
Qsem

�
x; �y; y; � y

�
dPX (x) :

We will show that J� (b) = E
�
Q� (b)Q� (b�;opt)

0	 for � = par and � = sem:
When either model (16; ORR-I) or (29; ORR-I) are correct, �� = �y: Conse-
quently, for � = par we have that Jpar (b) is equal to
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� E
(Z

Xpos
b (x; Z)

@

@�
hpar (x; Z; �)

����
�y
dPX (x)

)

= E

"Z
Xpos

b (x; Z) dPX (x) �

�
(Z

Xpos
bpar;opt (x; Z)E

n
Qpar

�
x; �y; y; � y

�
Qpar

�ex; �y; y; � y�0 jZo dPX (ex))#

= E

"(Z
Xpos

b (x; Z)Qpar
�
x; �y; y; � y

�
dPX (x)

)
�

�
(Z

Xpos
bpar;opt (x; Z)Qpar

�ex; �y; y; � y�0 dPX (ex))#
= E

�
Qpar (b)Qpar (bpar;opt)

0	 :
For � = sem and with the de�nitions eb (x; Z) � b (x; Z)� b (Z) andeQsem �ex; �y; y; � y� � Qsem �ex; �y; y; � y��Qsem �ex; �y; y; � y� ; the same argu-
ment yields Jsem (b) equal to

E

"(Z
Xpos

eb (x; Z) eQsem �ex; �y; y; � y� dPX (x))

�
(Z

Xpos

ebsem;opt (x; Z) eQsem �ex; �y; y; � y�0 dPX (ex))#

= E

"(Z
Xpos

eb (x; Z)Qsem �ex; �y; y; � y� dPX (x))(Z
Xpos

ebsem;opt (x; Z)Qsem �ex; �y; y; � y�0 dPX (ex))#
= E

�
Qsem (b)Qsem (bpar;opt)

0	 :
Now, with varA

�b�� (b)� denoting the asymptotic variance of b�� (b) ; we
have that from expansion ((32) in ORR-I)

varA

�b�� (b)� = varnE �Q� (b)Q� (b�;opt)0��1Q� (b)o
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and consequently

covA

�b�� (b) ; b�� (b�;opt)� =
= E

�
Q� (b)Q� (b�;opt)

0��1 cov (Q� (b) ; Q� (b�;opt))E �Q� (b�;opt)
2��1
= E

�
Q� (b�;opt)


2��1 = varA �b�� (b�;opt)� :
Thus, 0 � varA

�b�� (b)� b�� (b�;opt)� = varA

�b�� (b)� + varA �b�� (b�;opt)� �
2covA

�b�� (b) ; b�� (b�;opt)� = varA

�b�� (b)� � varA �b�� (b�;opt)� which concludes
the proof.

3 Con�dence Set for xopt (z) when X is Finite
and h� (z; x; �) is Linear in �

We �rst prove the assertion that the computation of the con�dence set Bb
entails an algorithm for determining if the intersection of #(X )�1 half spaces
in Rp and a ball in Rp centered at the origin is non-empty. To do so, �rst
note that linearity implies that h� (z; x; �) =

Pp
j=1 sj (x; z) �j for some �xed

functions sj; j = 1; :::; p: Let N = #(X ) and write X = fx1; :::; xNg : The
point xl is in Bb i¤

there exists � in Cb :
pX
j=1

[sj (xl; z)� sj (xk; z)] �j � 0 for all xk 2 X�fxlg :

(6)
De�ne the p � 1 vector vkl whose jth entry is equal to sj (xl; z) � sj (xk; z) ;
j = 1; :::; p: De�ne also the vectors v�kl = vk0l

b�� (b) and the constants akl =
vk0l
b�� �b; bdb�;opt� : Then Pp

j=1 [sj (xl; z)� sj (xk; z)] �j > 0 i¤ v�kl b�� (b)�1=2��
� � b�� �b; bdb�;opt�� > akl : Noting that � in Cb i¤ b�� (b)�1=2 �� � b�� �b; bdb�;opt��
is in the ball

U �
�
u 2 Rp : u0u � �2p;1��

	
we conclude that the condition in the display (6) is equivalent to

there exists u in U such that v�k0l u > a
k
l for k = 1; :::; N; k 6= l:

The set
�
u 2 Rp : v�k0l u = a

k
l

	
is a hyper-plane inRp which divides the Euclid-

ean spaceRp into two half-spaces, one of which is
�
u 2 Rp : v�k0l u > a

k
l

	
: Thus,
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the condition in the last display imposes that the intersection of N � 1 half-
spaces (each one de�ned by the condition v�k0l u > a

k
l for each k) and the ball

U is non-empty.
Turn now to the construction of a con�dence set B�b that includes Bb: Our

construction relies on the following Lemma.

Lemma. Let

D =
�
u 2 Rp : (u� u0)0��1 (u� u0) � c0

	
where u0 is a �xed p� 1 real valued vector and � is a �xed non-singular p� p
matrix.

Let � be a �xed, non-null, p�1 real valued vector: Let � 0 � �
0
u0 and �� =

�1=2�: Assume that �1 6= 0. Let, v�1 be the p�1 vector
�
����11 � 0; 0; :::; 0

�0
: Let

� be the linear space generated by the p�1 vectors v�2 =
�
���11 ��2; 1; 0; 0; :::; 0

�0
;

v�3 =
�
���11 ��3; 0; 1; 0; ::; 0

�0
; :::;v�p =

�
���11 ��p; 0; 0; 0; :::; 1

�0
and de�ne

v�1;proj = v�1 � � [v�1j�]
= v�1 �V� (V�0V�)

�1
V�0v�1

where
V� =

�
v�2; :::;v

�
p

�
:

Then there exists u 2 D satisfying

�
0
u = 0

if and only if
c0 �

v�1;proj2 � 0:
Proof

�
0
u = 0 , �

0
�1=2��1=2 (u� u0) = ��

0
u0:

Then, with � 0 � ��
0
u0 and �� = �1=2�; we conclude that there exists u 2D

satisfying �
0
u = 0 if and only if there exists u� 2 Rp such that

u�0u� � c0 and ���
0
u� = � 0:

Now, by the assumption ��1 6= 0 we have ���0u� = � 0 i¤ u1 = ����11 �h
� 0 +

Pp
j=2 �

�
ju
�
j

i
: Thus, the collection of all vectors u� satisfying���0u� = � 0

is the linear variety
v�1 +� = v

�
1;proj +�
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where v�0j s and � are de�ned in the statement of the lemma. The vector v
�
1;proj

is the residual from the (Euclidean) projection of v�1 into the space �:
Thus, ���0u� = � 0 i¤u� = v�1;proj+v�� for some v�� 2 �: Consequently, by

the orthogonality of v�1;proj with � we have that for u
� satisfying ���0u� = � 0

it holds that

u�0u� = ku�k2

=
v�1;proj2 + kv��k2 :

Therefore, since kv��k
2 is unrestricted,

u�0u� � c0 for some u� satisfying ���
0
u� = � 0

if and only if
c0 �

v�1;proj2 � 0: (7)

This concludes the proof of the Lemma.

To construct the set B�b we note that the condition in the display (6) implies
the negation, for every subset X(�l) of X�fxlg ; of the statement

pX
j=1

X
k2X(�l)

[sj (xl; z)� sj (xk; z)] �j < 0 for all � 2 Cb: (8)

Thus, suppose that for a given xl we �nd that (8) holds for some subset X(�l)
of X�fxlg ; then we know that xl cannot be in Bb: The proposed con�dence
set B�b is comprised by the points in X for which condition (8) cannot be
negated for all subsets X(�l). The set B�b is conservative (i.e. it includes
Bb but is not necessarily equal to Bb) because the simultaneous negation of
the statement (8) for all X(�l) does not imply the statement (6) : To check if
condition (8) holds for any given subset X(�l) and xl, we apply the result of
Lemma as follows. We de�ne the vector� 2Rp whose jth component is equal toP

k2X(�l) [sj (xl; z)� sj (xk; z)] ; j = 1; :::; p and the vector u0 = b�� �b; bdb�;opt�2
Rp: We also de�ne the constant c0 = �2p;1��, and the matrix � = b�� (b) : We
compute the vectors �� = �1=2�; v�1; :::;v

�
p and the matrix V

� as de�ned in
Lemma. We then check if the condition (7) holds. If it holds then this implies
that the hyperplane comprised by the set of ��s that satisfy the condition in
display (8) with the < sign replaced by the = sign, intersects the con�dence
ellipsoid Cb; in which case we know that (8) is false. If it does not hold, then
we check if condition

pX
j=1

X
k2X(�l)

[sj (xl; z)� sj (xk; z)] b�� �b; bdb�;opt�
j
< 0 (9)
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holds. If (9) does not hold, then we conclude that (8) is false for this choice
of X(�l). If (9) holds, then we conclude that (8) is true and we then exclude
xl from the set B�b :

4 Positivity Assumption: Example

Suppose that K = 1 and that Rk = R
g
k = 1 with probability 1 for k = 0; 1, so

that no subject dies in neither the actual world nor in the hypothetical world
in which g is enforced in the population. Thus, for k = 0; 1; Ok = Lk since
both Tk and Rk are deterministic and hence can be ignored. Suppose that Lk
and Ak are binary variables (and so are therefore A

g
k and L

g
k) and that the

treatment regime g speci�es that

g0 (l0) = 1� l0 and g1 (l0; l1) = l0 (1� l1) :

Assume that

0 < P (Lg0 = l0; L
g
1 = l1) < 1; l0 = 0; 1; l1 = 0; 1: (10)

Assumption PO imposes two requirements,

P [�0 (Ag0jL
g
0) > 0] = 1 and (11)

P [�1 (Ag1jL
g
0; L

g
1; A

g
0) > 0] = 1: (12)

Because by de�nition of regime g; Ag0 = 1� L
g
0; then requirement (11) can be

re-expressed as

1 = P (Lg0 = 0) I(0;1] (�0 (1j0)) + P (L
g
0 = 1) I(0;1] (�0 (0j1)) :

Since indicators can only take the values 0 or 1 and P (Lg0 = l0) < 1; l0 = 0; 1
(by assumption (10)), the preceding equality is equivalent to

I(0;1] (�0 (1j0)) = 1 and I(0;1] (�0 (0j1)) = 1;

that is to say,
�0 (1j0) > 0 and �0 (0j1) > 0:

By the de�nition of �0 (�j�) (see (3) in ORR-I), the last display is equivalent to

P (A0 = 1jL0 = 0) > 0 and P (A0 = 0jL0 = 1) > 0: (13)
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Likewise, because Ag1 = L
g
0 (1� L

g
1) ; and because P(L

g
0 = l0; L

g
1 = l1; A

g
0 =

l0) = 0 by the fact that A
g
0 = 1� L0; requirement (12) can be re-expressed as

1 = P (Lg0 = 0; L
g
1 = 0; A

g
0 = 1) I(0;1] (�1 (0j0; 0; 1))

+ P (Lg0 = 0; L
g
1 = 1; A

g
0 = 1) I(0;1] (�1 (0j0; 1; 1))

+ P (Lg0 = 1; L
g
1 = 0; A

g
0 = 0) I(0;1] (�1 (1j1; 0; 0))

+ P (Lg0 = 1; L
g
1 = 1; A

g
0 = 0) I(0;1] (�1 (0j1; 1; 0))

or equivalently, (again because the events (Lg0 = l0; L
g
1 = l1; A

g
0 = 1� l0) and

(Lg0 = l0; L
g
1 = l1) have the same probability by P (L

g
0 = l0; L

g
1 = l1; A

g
0 = l0) =

0);

1 = P (Lg0 = 0; L
g
1 = 0) I(0;1] (�1 (0j0; 0; 1)) + P (L

g
0 = 0; L

g
1 = 1)

� I(0;1] (�1 (0j0; 1; 1)) + P (Lg0 = 1; L
g
1 = 0) I(0;1] (�1 (1j1; 0; 0))

+ P (Lg0 = 1; L
g
1 = 1) I(0;1] (�1 (0j1; 1; 0)) :

Under the assumption (10) ; the last display is equivalent to

�1 (0j0; 0; 1) > 0; �1 (0j0; 1; 1) > 0;
�1 (1j1; 0; 0) > 0 and �1 (0j1; 1; 0) > 0

which, by the de�nition of �0 (�j�; �; �) in ((3), ORR-I); is, in turn, the same as

P (A1 = 0jL0 = 0; L1 = 0; A0 = 1) > 0; P (A1 = 0jL0 = 0; L1 = 1; A0 = 1) > 0
(14)

P (A1 = 1jL0 = 1; L1 = 0; A0 = 0) > 0; P (A1 = 0jL0 = 1; L1 = 1; A0 = 0) > 0 :

We conclude that in this example, the assumption PO is equivalent to the
conditions (13) and (14) : We will now analyze what these conditions encode.

Condition (13) encodes two requirements:

i) the requirement that in the actual world there exist subjects with L0 = 1
and L0 = 0 (i.e. that the conditioning events L0 = 1 and L0 = 0
have positive probabilities), for otherwise at least one of the conditional
probabilities in (13) would not be de�ned, and

ii) the requirement that in the actual world there be subjects with L0 = 0
that take treatment A0 = 1 and subjects with L0 = 1 that take treatment
A0 = 0, for otherwise at least one of the conditional probabilities in (13)
would be 0.
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Condition i) is automatically satis�ed, i.e. it does not impose a restriction
on the law of L0; by the fact that L

g
0 = L0 (since baseline covariates cannot

be a¤ected by interventions taking place after baseline) and the fact that we
have assumed that P (Lg0 = l0) > 0; l0 = 0; 1:

Condition ii) is indeed a non-trivial requirement and coincides with the
interpretation of the PO assumption given in section 3.1 for the case k = 0:
Speci�cally, in the world in which g were to be implemented there would exist
subjects with L0 = 0: In such world the subjects with L0 = 0 would take
treatment Ag0 = 1, then the PO assumption for k = 0 requires that in the
actual world there also be subjects with L0 = 0 that at time 0 take treatment
A0 = 1: Likewise the PO condition also requires that for k = 0 the same be
true with 0 and 1 reversed in the right hand side of each of the equalities of
the preceding sentence. A key point is that (11) does not require that in
the observational world there be subjects with L0 = 0 that take A0 = 0; nor
subjects with L0 = 1 that take A1 = 1: The intuition is clear. If we want
to learn from data collected in the actual (observational) world what would
happen in the hypothetical world in which everybody obeyed regime g, we
must observe people in the study that obeyed the treatment at every level of
L0 for otherwise if, say, nobody in the actual world with L0 = 0 obeyed regime
g there would be no way to learn what the distribution of the outcomes for
subjects in that stratum would be if g were enforced. However, we don�t care
that there be subjects with L0 = 0 that do not obey g; i.e. that take A0 = 0;
because data from those subjects are not informative about the distribution
of outcomes when g is enforced.

Condition (14) encodes two requirements:

iii) the requirement that in the actual world there be subjects in the four
strata (L0 = 0; L1 = 0; A0 = 1) ; (L0 = 0; L1 = 1; A0 = 1) ; (L0 = 1; L1 =
0; A0 = 0) and (L0 = 1; L1 = 1; A0 = 0) (i.e. that the conditioning events
in the display (14) have positive probabilities), for otherwise at least one
of the conditional probabilities would not be de�ned, and

iv) the requirement that in the actual world there be subjects in every one of
the strata (L0 = 0; L1 = 0; A0 = 1) ; (L0 = 0; L1 = 1; A0 = 1) ; (L0 = 1;
L1 = 1; A0 = 0) that have A1 = 0 at time 1 and the requirement that
there be subjects in stratum (L0 = 1; L1 = 0; A0 = 0) that have A1 = 1
at time 1; for otherwise at least one of the conditional probabilities in
(14) would be 0.

Given condition ii) and the sequential randomization (SR) and consistency
(C) assumptions, condition iii) is automatically satis�ed, i.e. it does not im-
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pose a further restriction on the joint distribution of (L0; L1; A0) : To see this,
�rst note that by condition (ii) the strata (L0 = 0; A0 = 1) and (L0 = 1; A0 = 0)
are non-empty. So condition (iii) is satis�ed provided

P (L1 = l1jL0 = 0; A0 = 1) > 0 and P (L1 = l1jL0 = 1; A0 = 0) > 0 for l1 = 0; 1:

But

P (L1 = l1jL0 = 0; A0 = 1) = P (Lg1 = l1jL0 = 0; A0 = 1) by assumption (C)
= P (Lg1 = l1jL0 = 0) by assumption (SR)
= P (Lg1 = l1jL

g
0 = 0) by assumption (C)

and P (Lg1 = l1jL
g
0 = 0) > 0 by (10) : An analogous argument shows that

P (L1 = l1jL0 = 1; A0 = 0) > 0: Finally, condition (iv) is a formalization our
interpretation of assumption PO in section 3.1 for k = 1. In the world in which
g was implemented there would exist subjects that would have all four com-
bination of values for (Lg0; L

g
1) : However, subjects with L

g
0 = l0 will only have

Ag0 = 1�l0; so in this hypothetical world we will see at time 1 only four possible
recorded histories, (Lg0 = 0; L

g
1 = 0; A

g
0 = 1) ; (L

g
0 = 0; L

g
1 = 1; A

g
0 = 1) ; (L

g
0 =

1; Lg1 = 0; Ag0 = 0) and (Lg0 = 1; L
g
1 = 1; A

g
0 = 0) : In this hypothetical world

subjects with any of the �rst three possible recorded histories will take Ag1 =
0 and subjects with the last one will take Ag1 = 1: Thus, in the actual
world we must require that there be subjects in each of the �rst three strata
(L0 = 0; L1 = 0; A0 = 1) ; (L0 = 0; L1 = 1; A0 = 1) ; (L0 = 1; L1 = 0; A0 = 0)
that take A1 = 0 and subjects in the stratum (L0 = 1; L1 = 1; A0 = 0) that
take A1 = 1: A point of note is that we don�t make any requirement about the
existence of subjects in strata other than the four mentioned in (iii) or about
the treatment that subjects in these remaining strata take. The reason is that
subjects that are not in the four strata of condition (iii) have already violated
regime g at time 0 so they are uninformative about the outcome distribution
under regime g:
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