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Abstract
Cardiomypathies are a heterogeneous group of diseases of the myocardium associated with
mechanical and/or electrical dysfunction that frequently show inappropriate ventricular hypertrophy
or dilation. Current data suggest that numerous mutations in several genes can cause
cardiomyopathies, and the severity of their phenotypes is also influenced by modifier genes. Two
major types of inherited cardiomyopathies include familial hypertrophic cardiomyopathy (FHC) and
dilated cardiomyopathy (DCM). FHC typically involves increased myofilament Ca2+ sensitivity
associated with diastolic dysfunction, whereas DCM often results in decreased myofilament Ca2+

sensitivity and systolic dysfunction. Besides alterations in myofilament Ca2+ sensitivity, alterations
in the levels of Ca2+-handling proteins have also been described in both diseases. Recent work in
animal models has attempted to rescue FHC and DCM via modifications at the myofilament level,
altering Ca2+ homeostasis by targeting Ca2+-handling proteins, such as the sarcoplasmic reticulum
ATPase and phospholamban, or by interfering with the products of different modifiers genes.
Although attempts to rescue cardiomyopathies in animal models have shown great promise, further
studies are needed to validate these strategies in order to provide more effective and specific
treatments.

INTRODUCTION
The term “cardiomyopathy” was first used in 1957 and since then the knowledge about this
group of complex cardiac diseases has increased substantially. Concomitant with this
increasing knowledge has been changes in the classification of cardiomyopathies. Currently,
the American Heart Association has adopted the following definition proposed in 2006:
“Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with
mechanical and/or electrical dysfunction that usually (but not invariably) exhibit inappropriate
ventricular hypertrophy or dilatation and are due to a variety of causes that frequently are
genetic. Cardiomyopathies either are confined to the heart or are part of generalized systemic
disorders, often leading to cardiovascular death or progressive heart failure-related
disability” [1].

Cardiomyopathies can be divided into two groups: 1) primary and 2) secondary. Primary
cardiomyopathies describe diseases in which the heart is the sole or predominantly organ
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involved, while secondary cardiomyopathies describe those in which cardiac function is
impaired due to systemic disorders [2]. Primary cardiomyopathies can be subdivided into three
groups: a) genetic cardiomyopathies: familial hypertrophic cardiomyopathy (FHC),
arrhythmogenic right ventricular cardiomyopathy/dysplasia, left ventricular noncompaction,
glycogen storage cardiomyopathies, conduction system disease cardiomyopathies,
mitochondrial cardiomyopathies and ion channel-related cardiomyopathies; b) mixed (genetic
and nongenetic): dilated cardiomyopathy (DCM) and restrictive cardiomyopathy; and c)
acquired: inflammatory, stress-provoked, peripartum, tachycardia-induced and infants of
insulin-dependent diabetic mothers [1].

Recent work has done much to identify the genes involved in cardiomyopathies. However, the
molecular steps which connect gene defects to clinical phenotypes are still unknown. Genetic
and molecular biology studies have provided new insights into the pathophysiology of the
cardiomyopathies, and are now beginning to have an impact in guiding preventive and
therapeutic strategies for these diseases. The current article focuses mainly on genetic
cardiomyopathies linked to sarcomeric proteins. We review the recent advances in
experimental pharmacological and molecular strategies for treatment of cardiomyopathies with
emphasis on interventions affecting calcium handling and sarcomeric proteins.

HYPERTROPHIC CARDIOMYOPATHY
Hypertrophic cardiomyopathy is characterized by unexplained left ventricle hypertrophy,
having an overall prevalence of 200 per 100,000 individuals [2]. The genetic form of the
disease, referred to as familial hypertrophic cardiomyopathy (FHC), is inherited as an
autosomal trait and has been linked to mutations in sarcomeric protein genes in the vast majority
of cases, although phenocopies have been observed in metabolic, mitochondrial and
neuromuscular cardiomyopathies [1]. To date, over 400 FHC-causing mutations (see Table 1)
in different components of the sarcomere have been reported reflecting its marked genetic
heterogeneity [3]. Sarcomere-linked mutations account for about up to 65% of all diagnosed
cases of FHC [4]. The main genes affected are MYH7 (beta myosin heavy chain or β-MyHC),
MYBPC3 (myosin binding protein C or MyBPC), TNNT2 (cardiac troponin T or cTnT),
TNNI3 (cardiac troponin I or cTnI), TPM1 (alpha tropomyosin or α-Tm), MYL2 (regulatory
myosin light chain or RLC), MYL3 (essential myosin light chain or ELC), TNNC1 (cardiac
troponin C or cTnC), ACTC1 (alpha cardiac actin or α-actin) and TTN (titin) (see Table 1).

FHC is largely identified by the presence of unexplained left ventricle (LV) hypertrophy
together with other echocardiographic and histopathological features such as LV outflow tract
obstruction, diastolic dysfunction with preserved ejection fraction and increased interstitial
fibrosis with myocyte hypertrophy/disarray [5]. The diversity of causal mutations, associated
with a variable genetic background and the influence of modifier genes, leads to a wide
variability in FHC-phenotypic expression [6–8]. FHC follows a variable clinical course, can
be diagnosed at any age and manifests itself across a wild spectrum spanning from mild cardiac
hypertrophy and no symptoms to marked hypertrophy with diastolic heart failure and sudden
death [9].

The current medical therapy of FHC aims to relieve symptoms and includes the use of β-
blockers, the Ca2+ channel blocker verapamil, and the Na+ channel blocker disopyramide
[10–12]. In drug refractory patients, the therapeutic options are surgical myectomy, alcohol
septal ablation, dual-chamber (DDD) pacing and heart transplantation [13–15]. Although the
overall survival of patients with FHC is similar to the general population, the risk of sudden
death is increased, especially in young people and athletes, and is often the first manifestation
of the disease.
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DILATED CARDIOMYOPATHY
DCM is characterized by enlargement of the cardiac chambers, decreased myocardial
contractility and unspecific histopathological findings, such as myocyte loss, increased
apoptosis and interstitial fibrosis [1,16]. DCM is an important cause of cardiac morbidity and
mortality and the leading cause of cardiac transplantation, with an estimated prevalence of 36.5
per 100,000 individuals. It has been linked to genetic causes in approximately 25–30% of the
cases [17,18]. Autosomal dominance is the most commonly observed pattern of inheritance,
but X-linked, autosomal recessive and mitochondrial DNA mutations (matrilinear inheritance)
also occur [1]. DCM was initially identified in genes coding for proteins of the cytoskeleton
and Z-disc [2]. Thus, it has been described as a disease resulting from impaired force
“transmission”, due to the role of these proteins in translating force generated by the sarcomere
to the extracellular matrix [19,20]. However, a significant number of mutations in sarcomeric
proteins that lead to disruption of sarcomere activation have also been demonstrated, thereby
implicating impaired force “generation” as an additional mechanism in the pathogenesis of the
disease [18,21,22]. Gene mutations linked to DCM are listed in Table 1.

As with FHC, the clinical presentation of DCM is widely variable, ranging from an
asymptomatic life-long course to rapid and progressive heart failure requiring cardiac
transplantation [17,23]. The diagnosis of asymptomatic patients can be incidental in routine
medical screening or after family evaluation of patients with established diagnosis. More
typically, however, patients present at the time of diagnosis with symptoms of pulmonary
congestion or low cardiac output [17]. DCM is often associated with defects in the conduction
system, arrhythmias and sudden death that have been linked to myocardial remodeling and
increased fibrosis. Medical treatment includes combined use of angiotensin converting enzyme
(ACE) inhibitors, angiotensin II receptor (AR) antagonists, β-blockers, aldosterone antagonists
and diuretics [16]. Despite new advances in the treatment of patients with DCM in the last
decade, mortality is still elevated, approaching 50% at five years in symptomatic patients
[24].

GENETIC AND MOLECULAR PATHOGENESIS
Defective proteins resulting from genetic mutations can lead to a disruption of the mechanisms
of force production and transmission, resulting in impaired cardiomyocyte contractility and
relaxation. However, the mechanism by which a single mutation leads to a specific pathological
phenotype, the signaling pathways activated to determine that phenotype, and the role of other
genetic and environmental factors that influence the phenotype remain poorly understood. In
the past two decades, several studies have demonstrated that genetic FHC and DCM most
commonly result from defects in genes encoding proteins of the sarcomere and Z-disc, but also
involve defective proteins of the cytoskeleton/sarcolemma, sarcoplasmic reticulum, nuclear
membrane, intercalated disc, and altered metabolic and transcriptional pathways (Table 1).

Thick filament mutations
The thick filament consists of myosin associated with the essential (ELC) and regulatory (RLC)
light chains. Mutations in β-MyHC account for 20–30% of all FHC patients, and they are also
an important cause of DCM [6,18,22,25]. In general, FHC linked to mutations in β-MyHC lead
to a clinical phenotype characterized by severe hypertrophy and high risk of sudden death, with
an early onset and poor prognosis [25]. Mutations such as R453Q and R1053G are associated
with an FHC phenotype that gradually transitions to DCM, while others such as S532P and
F764L result in primary DCM [22,26]. Thus, different mutations in the same molecule can
lead to diverse phenotypes.
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Most of these mutations occur in the globular head or near the head-rod junction of the myosin
molecule. The missense mutation R403Q in β-MyHC is located at the base of the surface loop
that attaches the myosin head to actin, and was the first to be linked to FHC. Therefore, it is
intuitive to hypothesize that a resulting effect of the mutation would be to disrupt the
actomyosin interaction. Indeed, initial in vitro studies have described functional abnormalities
caused by the R403Q mutation, including decreased actin-activated ATPase activity and
reduced actin sliding speed [27–29]. These results suggested that the hypertrophic response
observed in R403Q carriers could represent a compensation for decreased force generation.
However, other studies using purified myosin or skinned cardiac fibers from TG mice
expressing the R403Q mutation have shown increased actin-dependent ATPase, actin sliding
speed [30,31] and Ca2+ sensitivity [32,33]. These results suggest that instead of decreasing the
power generation, the R403Q mutation actually potentiates it and thereby leads to “gain of
function”. Debold et al. [34] have also shown that the FHC-linked mutations R403Q and
R453Q increase the force generation per cross bridge in the laser trap assay, while the DCM-
linked mutations S532P and F764L show a decrease.

In addition to gain of function, Semsariam et al. [35] have hypothesized that altered biophysical
properties of the R403Q mutation lead to Ca2+ retention by the myofilament (Ca2+ trapping).
According to this hypothesis, increased myofilament Ca2+ affinity would lead to decreased
kinetics of relaxation, which is compatible with the clinical observation that diastolic
dysfunction is the primary defect in FHC hearts. Besides the abnormalities of the myofilament,
they also suggested that “abnormal SR Ca2+ responses and reduced Ca2+-binding proteins are
early events in the pathogenesis of hypertrophic cardiomyopathy”. In their study, α-MyHC
R403Q mice exhibit decreased SR Ca2+ content, decreased calsequestrin and ryanodine
receptor (RyR2) expression, and increased RyR2 phosphorylation. Although the Ca2+ trapping
hypothesis is attractive, further data are necessary to confirm it.

Finally, Spindler et al. [36] have shown that α-MyHC R403Q mice have altered myocardial
energetics, as demonstrated by 31P NMR spectroscopy studies. These studies showed that α-
MyHC R403Q mice had decreased phosphocreatine (PCr), increased inorganic phosphate (Pi)
and a decreased calculated free energy release from ATP hydrolysis, when compared to wild
type mice. The authors hypothesized that the free energy available during times of high energy
consumption in α-MyHC R403Q hearts would not be enough to maintain the cytoplasmic-SR
Ca2+ gradient, which could result in diastolic Ca2+ overload. They also suggested that the
energetic abnormalities in α-MyHC R403Q are likely to be primarily caused by the myosin
mutation, with less cross-bridge produced force per ATP hydrolysed, and are not secondary to
hypertrophy. This hypothesis has been supported by 31P NMR spectroscopy studies in patients
with FHC expressing mutations in β-MyHC (16 patients), TnT (8 patients) and MyBP-C (7
patients) in which a decreased PCr to ATP ratio in human FHC hearts was observed irrespective
of the degree of hypertrophy [37].

Thin filament mutations
Functional units of thin filaments consist of seven actin monomers, one coiled-coil Tm protein
and one Tn complex, which itself is comprised of three units: TnT, TnI and TnC. The thin
filament plays an important role in muscle contraction by translating the Ca2+ signal into
sarcomere activation and force production following a complex sequence of protein-protein
interactions. In systole, Ca2+ binds to the regulatory site on cTnC and brings about
conformational alterations in the Tn complex, which in turn shifts the position of Tm on the
actin molecule and exposes its myosin binding sites. Activation of the actomyosin complex
results in sliding of the thin filament along the thick filament, sarcomere shortening and muscle
contraction [38].
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It has been demonstrated that modification of this finely tuned mechanism by mutations in thin
filament components can lead to the development of FHC and DCM [6,39]. Indeed, studies
have revealed that mutations in the TNNT2, TPM1, TNNI3, ACTC1 and TNNC1 genes are
linked to the pathogenesis of FHC or DCM [22,40]. Thus, any component of the thin filament
can be affected, and the development of FHC or DCM phenotypes is dependent on the specific
mutation and other genetic and non-genetic modifier factors [7].

The clinical phenotypes associated with TnT mutations have been extensively described [41,
42], whereas phenotypes from mutations in Tm, TnI, TnC and actin are less well-characterized
in humans due to the limited number of genotype-phenotype studies [43–45]. Taken together,
the phenotypes of thin filament-linked cardiomyopathies are quite heterogeneous and include
families with a relatively benign course and others with severe or malignant cardiomyopathies.
One remarkable characteristic that “defines” thin filament-linked FHC is the apparent
dissociation between the degree of hypertrophy and the clinical outcome. On average, thin
filament mutations result in less hypertrophy and cardiac remodeling when compared to β-
MyHC mutations [40]. However, mutations in TnT have been associated with a high incidence
of sudden death and poor prognosis, which implies an associated arrhythmic cellular
mechanism, even in the absence of hypertrophy and fibrosis [46].

Several studies have evaluated the effects of thin filament mutations on the mechanism of
Ca2+-dependent activation of the myofilament. Most of the studies have shown that virtually
all mutations in TnT, Tm and TnI can modify the myofilament response to Ca2+ [47]. Moreover,
different groups have shown that thin filament FHC-linked mutations increase myofilament
Ca2+ sensitivity and lead to diastolic dysfunction while DCM-linked mutations have the
opposite effect, resulting in systolic dysfunction [48–55] [56,57] [52,58,59,59–61]. Michele
et al. [62] have also demonstrated that different FHC-linked mutations in thin filaments fit into
a specific hierarchy in their capacity to increase the Ca2+ sensitivity, and that the magnitude
of this increase is transgene dose-dependent.

It has been proposed that FHC- and DCM-causing mutations in Tn and Tm result in altered
flexibility of these proteins, which might modify their interaction and consequently alter
Ca2+-dependent tension development. This hypothesis has been supported by recent work in
which the authors used a fluorescent probe to measure the Ca2+-binding affinity to TnC in
order to determine the effect of different mutations in the reconstituted thin filament [63,64].
They have shown that FHC- or DCM-linked mutations in thin filament proteins alter the
Ca2+-binding affinity of TnC only when incorporated into the fully integrated thin filament,
suggesting that the mutations lead to a disruption in thin filament cooperative activation.

EXPERIMENTAL STRATEGIES TO RESCUE CARDIOMYOPATHIES
Targeting the myofilaments

Although mutations in sarcomeric proteins lead to a wide spectrum of cardiomyopathic
phenotypes and result from an array of factors, the primary defect of FHC and DCM lies in
altered myofilament properties. Functionally, the major defect and common thread in DCM is
systolic dysfunction often associated with decreased myofilament Ca2+ sensitivity, whereas in
FHC the major defect is diastolic dysfunction and in most cases an increase in myofilament
Ca2+ sensitivity. Examples of this increased myofilament Ca2+ sensitivity in animal models of
human FHC include Tm [48–50], TnT [51–55] or TnI [56,57]. In contrast, animal models of
DCM in Tm [58] and TnT [59,60] show decreased myofilament sensitivity to Ca2+. If the
primary defect in sarcomere-linked cardiomyopathies is altered myofilament Ca2+ sensitivity,
a logical therapeutic approach would be to bring their sensitivity back to normal levels,
preferably early in the development of the disease. In heart failure (HF), increasing sarcomeric
activity by pharmacological sensitization of the myofilament to Ca2+ has provided beneficial
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effects in the short term [65–67]. However, little is known as to whether interventions via
sarcomeric sensitization to Ca2+ might be beneficial in DCM or whether desensitization is
beneficial in FHC. In addition, it is not known whether there is a specific time period when the
therapy should be initiated. To the best of our knowledge there are no published studies
concerning early intervention in children from families with familial cardiomyopathies.

There are several possible targets within the myofilament for altering myofilament Ca2+

sensitivity, including both thin filament proteins (TnI, TnC and Tm) and thick filament proteins.
An example of the therapeutic potential of myofilament desensitization in FHC was shown in
TG mice expressing mutated Tm at position 180 (TmE180G or Tm180) [49]. These mice
exhibit increased Ca2+ sensitivity and were crossbred with chimeric Tm TG mice with
decreased Ca2+ sensitivity [68]. The result of this cross produced a mouse with Ca2+ sensitivity
similar to wild-type, a decrease in both fibrosis and myocyte disarray compared to Tm180,
systolic function equivalent to wild-type, and improved diastolic function for up to one year
when compared to Tm180 [69].

TnI is also a potential target since its phosphorylation by protein kinase A (PKA), protein
kinase C (PKC), protein kinase D (PKD) and p21-activated kinase has significant effects on
myofilament properties [70–74]. For example, it is well documented that PKA-mediated
phosphorylation of cTnI at residues S23 and S24 results in desensitization of the myofilaments
to Ca2+ [75,76]. Furthermore, myofilament Ca2+ sensitivity is increased in hearts from patients
with HF due to reduced level of cTnI phosphorylation [77,78]. In addition, a small amount of
myofilament desensitization via exercise following myocardial infarction improved LV
function compared to infarcted sedentary mice [79]. Since phosphorylation of TnI at residues
S23/S24 decreases myofilament Ca2+ sensitivity, this effect could be used as strategy to
attenuate the increased Ca2+ sensitivity in FHC and early results using this strategy look
promising [80]. Collectively, these data suggest interventions that desensitize the myofilament
to Ca2+ may serve as potential therapies for treating FHC phenotypes associated with increased
myofilament Ca2+ sensitivity.

If the primary defect of sarcomeric-linked DCM is associated with decreased myofilament
Ca2+ sensitivity, it would be intuitive that resensitizing the myofilaments to normal levels
should be beneficial. To this end, the first class of Ca2+ sensitizers was developed almost 20
years ago. Some, such as levosimendan and pimobendan, reached the clinical trial level, but
they have not been used for treatment of DCM patients resulting from sarcomeric protein
mutations. Levosimendan acts by binding to TnC[81], and it also shows vasodilatory and anti-
ischemic effects by opening ATP-sensitive K+ channels in the sarcolemma and mitochondria
[82,83]. Thus, levosimendan has two mechanisms of action: increasing inotropism and
reducing afterload. In clinically approved doses levosimendan improves cardiac output without
impairing relaxation, yet it inhibits phosphodiesterase only at higher doses [84]. So far
levosimendan is used only for the treatment of acute and decompensated HF [67]. To our
knowledge, it has not been tested in animal models of DCM. On the other hand, pimobendan,
which is also used in acute HF, was recently tested in a mouse model of DCM caused by the
deletion mutation ΔK210 in TnT[85]. The phenotype of these mice includes cardiac
enlargement, reduced cardiac performance and frequent sudden death, while physiological
parameters include decreased Ca2+ sensitivity that is compensated by increased Ca2+ transient
amplitude. Early intervention with pimobendan had profound effects on the development of
DCM as seen in improvements in cardiac performance and morphology, HF and even sudden
cardiac death [85]. Although these results are truly compelling, it would also be interesting to
determine if the effects of intervention with pimobendan can reverse the process of DCM-
induced cardiac remodeling after full development of the phenotype.
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Myofilaments versus calcium-handling proteins
Contraction and relaxation of the heart are regulated by complex processes involving the
myofilaments, Ca2+-handling proteins and the loading conditions of the heart (for review see
Bers [86]). At the single cardiomyocyte level, the dynamics of contraction and relaxation are
regulated both on a beat-to-beat basis (short-term regulation) and as a result of adaptation and
maladaptation to different cardiovascular stresses (long-term regulation). In short-term
regulation during systole, Ca2+ is bound to only 20–25% of troponin C (TnC). Thus, augmented
Ca2+ delivery to the myofilaments, or increase in their sensitivity to this ion, result in improved
contractility. During diastole, extrusion of Ca2+ from the cytosol by the sarcoplasmic reticulum
Ca2+ pump (SERCA2a), the Na+/Ca2+ exchanger, and to a marginal extent the sarcolemmal
Ca2+ pump, returns systolic Ca2+ concentration to resting levels and allows for relaxation of
the cell [87].

Controversy remains, however, concerning the relative contribution of the myofilaments
versus Ca2+-handling proteins to the rate of relaxation in cardiac muscle. Some have argued
that relaxation is limited by the myofilaments, since active force in cardiac papillary muscle
is maintained for a considerable period after Ca2+ concentration returns to resting levels [88].
Others have shown that Ca2+ uptake limits the late phase of relaxation in experiments using
isolated, unloaded cardiomyocytes [89,90]. This controversy may be partially explained by the
differences in experimental conditions such as temperature and loaded versus unloaded
preparations. Janssen et al. [91] have recently shown that myofilaments may be the rate limiting
factor only near physiological temperatures.

Despite the controversy, there is agreement that when the expression of SERCA2a and
phospholamban (PLB) are altered such as in HF, Ca2+ transient decay significantly contributes
to the observed slower relaxation rate (for review see Hasenfuss [92]). To rectify this, studies
with PLBKO mice and mice overexpressing SERCA2a have shown that altering Ca2+

homeostasis by either method results in a faster rate of relaxation in cells, papillary muscle,
and the whole heart. This suggests that it is possible to improve cardiac relaxation by decreasing
the decay time of the Ca2+ transient [93–97]. The next section discusses recent attempts to
rescue HF, FHC and DCM by manipulating sarcoplasmic Ca2+-handling proteins.

Targeting the sarcoplasmic reticulum proteins (SERCA2a and PLB)
In cardiac cells, the SR proteins, SERCA2a and PLB, play a critical role in regulating release
and uptake of Ca2+ from the SR (for review see Brittsan and Kranias [98]. During diastole,
SERCA2a pumps Ca2+ from the cytoplasm into the SR, but its activity is inhibited by its
association with PLB. Phosphorylation of PLB dissociates it from SERCA2a and thus reverses
the inhibition allowing for faster Ca2+ reuptake into the SR. The rate of Ca2+ uptake by SR
also depends on the levels of SERCA2a and PLB protein expression. The PLB/SERCA2a ratio
is critical in the regulation of myocardial contractility [99]. The PLB/SERCA2a ratio also
affects the force-frequency relationship as myocytes overexpressing SERCA2a exhibit
shortened relaxation times and a negative force-frequency relationship, while myocytes
overexpressing PLB exhibit prolonged relaxation and an augmented, positive force-frequency
relationship [100]. In HF, the SERCA2a/PLB ratio is decreased, reducing the SR Ca2+ uptake
[101–103]. Thus, because of their importance in the contractile process, modulating levels of
either could be beneficial in preventing HF, FHC or DCM. Overexpression of SERCA2a, the
muscle-specific isoform, has been used to rescue HF in several instances. In aortic-baned rats,
injection of SERCA2a adenovirus into decompensated or failing hearts resulted in
normalization of LV systolic pressure, the maximal rate of pressure development and decline,
and the rate of isovolumic relaxation (tau) [104]. A similar study showed that SERCA2a
adenovirus administered to aortic-banded rats during the HF phase normalized left ventricular
volumes and improved both the phosphocreatine/ATP ratio and survival rates [105]. SERCA2a
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overexpression also improved function at the cellular level in human ventricular myocytes
taken from patients with HF. SERCA2a gene transfer induced faster contraction and relaxation
velocities, decreased diastolic Ca2+, increased systolic Ca2+ and even normalized the force-
frequency relationship [106]. In TG SERCA2a overexpression mice subjected to aortic
banding, numerous parameters improved compared to controls including mortality rate, LV
systolic function, myocyte fractional shortening and relengthening, calcium transient
amplitude and rate of transient decay [107].

While most of these studies have focused on rescuing heart failure resulting from secondary
cardiomyopathies, our group has recently shown similar findings in a mouse model of primary
FHC, Tm180 [49]. Results indicate that intraventricular injection of SERCA2a adenovirus into
one day-old Tm180 mice increased SERCA2a protein expression for several weeks, delayed
development of FHC and restored contractile parameters [108,109]. We believe that this is the
only study thus far that attempts to rescue FHC via SERCA2a overexpression. Nonetheless, it
is notable that depressed cardiac contractility or diastolic dysfunction resulting from reduced
SERCA2a expression can be reversed not only by SERCA2a overexpression, but by
overexpressing other Ca2+-binding proteins such as sorcin [110] or parvalbumin [111].
Moreover, parvalbumin was shown to correct slower relaxation in adult cardiac cells
expressing mutated Tm linked to FHC [112]. Similar to SERCA2a overexpression, decreasing
PLB expression has similar beneficial effects on cardiomyopathies. In a mouse model of DCM
resulting from ablation of muscle LIM protein [113], crossbreeding with PLBKO mice restored
numerous morphological abnormalities including cardiac chamber dilation, myofibrillar
disarray and large scale fibrosis [114]. At the cellular level, PLBKO also suprarescued
contractile parameters and increased calcium transient amplitude, activation and inactivation
kinetics. Interestingly, PLB ablation seems to be dose-dependent as heterozygotes had an
intermediate level of rescue. PLBKO was also used to rescue another mouse model of DCM,
overexpression of calsequestrin [115]. Calsequestrin TG mice exhibit hypertrophy, increased
hypertrophic marker gene expression, reduced levels of LV contraction and relaxation,
depressed calcium transient amplitude despite increased SR load, and a decrease in L-type
Ca2+ channel current [116]. Following crossbreeding with PLBKO mice, these mice displayed
increased cardiac performance both in vivo and ex vivo, decreased inactivation time for L-type
Ca2+ currents, and reduced expression levels of hypertrophic marker genes [115]. In contrast,
in a third mouse model of DCM, tropomodulin TG, crossbreeding with PLBKO mice failed
to rescue their dilated phenotype and juvenile lethality [117].

In addition to DCM, PLB ablation has also been used to rescue HF in both failing human
myocytes and animal models. In failing human myocytes, gene delivery of an antisense strand
to PLB increased contraction and relaxation velocities, enhanced SR Ca2+ release and restored
the normal frequency response [118]. In a hamster model of HF, in vivo gene delivery of
pseudophosphorylated PLB increased contractile and relaxation parameters, both in single
cardiomyocytes and in vivo, and decreased both fibrosis and hypertrophic marker genes.
Surprisingly, the effects lasted for 28–30 weeks, giving credence to their newly described
method of adenovirus gene delivery [119]. In contrast, PLBKO in the Gαq TG model of HF
did not improve hemodynamic parameters, hypertrophy or fibrosis even though unloaded,
isolated cardiomyocytes displayed a suprarescue of both fractional shortening and calcium
transient amplitude [120].

Finally, PLBKO mice have been used to rescue models of FHC. In the Song et al. [120] study
listed above, rescue was also attempted in a mouse model of FHC stemming from a mutated
form of MyBP-C. Unfortunately, the results were similar to those seen in the G q TG model.
Freeman et al. [121] also describe attempts to rescue an FHC mutation, MyHC R403Q, via
PLBKO. PLBKO increased systolic function and exercise tolerance in the FHC model, yet
exacerbated hypertrophy as assessed by heart weight/body weight ratio at 10.5 months. In
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contrast, we have recently shown that PLB ablation in a mouse model of FHC, Tm180, provided
significant improvement of cardiac function and morphology, including hypertrophy and
fibrosis, for up to one year [122].

In addition to alterations in the SR proteins, SERCA2a and PLB, Ca2+ fluxes can be modified
by using the Ca2+ channel blocker diltiazem. Diltiazem has demonstrated efficacy in two
different models of FHC [35,123]. Overall, these data strongly suggest that HF, DCM and FHC
can be rescued by modifying Ca2+ fluxes.

Targeting modifier genes
In addition to incomplete penetrance and diversity of causal mutations in FHC and DCM,
studies have shown that the broad heterogeneity in phenotype of these cardiomyopathies is
influenced by modifier genes [21,124–127]. Modifier genes compound the individual genetic
background that differs within a population due to DNA polymorphism. They are neither
necessary nor sufficient to cause disease, but exert an important influence in the expression of
a genetic disease. Thus, pharmacological or genetic interventions on target signaling pathways
under the influence of modifier genes could result in new strategies of treatment for
cardiomyopathies.

Several gene polymorphisms have been considered candidates to modify the phenotype
expression of FHC or DCM including ACE, angiotensinogen, AR type 1 and 2, aldosterone
synthase, endothelin-1, tumor necrosis factor-α, interleukin-6, insulin-like growth factor-2,
transforming growth factor β1, variants of α2c-, β1- and β2-adrenergic receptors and others
[126,128–148]. The renin-angiotensin-aldosterone system (RAAS) is one of most widely
studied in this context. The role of RAAS in cardiovascular disease such as hypertensive
cardiomyopathy, myocardial infarction and HF is well-established [149,150]; however, the
impact of polymorphisms in key constituents of RAAS on the severity of phenotype in FHC
or DCM has been more controversial [151–154]. For example, the ACE gene has a polymorphic
region containing an insertion (I) or deletion (D) of a 287 bp fragment (I/D polymorphism). In
some studies, the D/D genotype has been associated with increased hypertrophy and high risk
of sudden death in patients with FHC [124,125,132], whereas it correlated with reduced LV
systolic performance and increased LV cavity size in patients with DCM [126]. Other studies,
in contrast, have shown a lack of association [155,156].

The blockade of key steps in RAAS activation has been correlated with improvement in LV
function and cardiac remodeling in rodent models of FHC and DCM by reversing the
hypertrophic and profibrotic effects of angiotensin II and aldosterone. ACE inhibition using
enalapril alone, or in association with the mineralocorticoid receptor antagonist spironolactone,
decreased LV cavity size and collagen density in cardiomyopathic hamsters [157,158]. It has
also been shown that aldosterone and aldosterone synthase mRNA levels are elevated in
humans with FHC [153]. Aldosterone increases the expression of hypertrophic markers in rat
cardiac myocytes through phosphorylation of PKD, and the expression of collagens and
transforming growth factor-β1 in rat cardiac fibroblasts through upregulation of
phosphoinositide 3- kinase [153]. Spironolactone reversed the hypertrophic and profibrotic
effects of aldosterone in a mouse model of human FHC caused by a missense mutation in TnT
(R92Q), decreasing interstitial fibrosis, myocyte disarray and improving LV diastolic function
[153]. Furthermore, blockade of angiotensin II receptors using losartan also reversed the
interstitial fibrosis and the expression of collagen-1α and transforming growth factor-β1 in the
same mouse model [159]. Together, these studies suggest RAAS as a therapeutic target in
genetic cardiomyopathies. Despite concerns about the vasodilatory properties of ACE
inhibitors and AR blockers in the obstructive form of FHC, the safety and efficacies of
candesartan and losartan have been described in studies from patients with nonobstructive FHC
[160,161].
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Additionally, it has been demonstrated that 3-hydroxy-3-methylglutarylcoenzyme A (HMG-
CoA) reductase inhibitors reduce the levels of important molecules in cardiac hypertrophic
signaling. Recently, Patel et al. [162] have shown that the HMG-CoA reductase inhibitor
simvastatin reduced hypertrophy and fibrosis and improved cardiac function in β-MyHC-
R403Q TG rabbits by reducing the levels of activated extracellular signal-regulated kinase
(ERK) 1/2. Senthil et al. [163] have also demonstrated that another HMG-CoA reductase
inhibitor, atorvastatin, had similar effects in preventing cardiac dysfunction and remodeling in
the same model by reducing the levels of membrane-bound Ras and phospho-p44/42 mitogen-
activated-protein kinase (MAPK). Furthermore, treatment of TnT-R92Q TG mice with the
antioxidant N-acetylcysteine reduces markers of oxidative stress, 4-hydroxy-2(E)-nonenal and
malondialdehyde, expression levels of the mRNAs for procollagen Col1(α1), Col1(α2) and
Col3(α1) and the phosphorylation levels of p44, 42, p38 and c-Jun NH2-terminal kinase
[164].

Conclusions
Although our knowledge about the genetic and molecular pathophysiology of familial
cardiomyopathies has increased substantially in the last two decades, the molecular steps which
connect gene defect to clinical phenotype remain elusive. Current data suggest that an extensive
panel of causal mutations in a number of different genes can cause cardiomyopathies, and the
severity of the disease phenotype is also influenced by several modifier genes. Despite the
broad diversity of causal mutations, the signaling response triggered by defective proteins
seems to converge into two main phenotypes: FHC, characterized by enhanced contractility,
impaired diastolic function and concentric hypertrophy; and DCM, characterized by impaired
force generation or transmission, systolic dysfunction and eccentric hypertrophy.

A variety of structural and functional myocardial abnormalities have been identified in animal
models of human cardiomyopathies, including defects in the sarcomere assembly, crossbridge
kinetics, myofibrillar ATPase activity, myofilament Ca2+-force relationship, excitation-
contraction coupling and energetics. In animal models of cardiomyopathies, the expression of
FHC- or DCM-linked mutations often results in altered myofilament sensitivity to Ca2+

concomitant with abnormal function and expression of Ca2+ handling proteins. In agreement
with these observations, recent studies have been successful in rescuing cardiomyopathies in
animal models by altering either the myofilament response to Ca2+ or the Ca2+ fluxes that
activate myofilaments. Data from animal models of human cardiomyopathies suggest the
possibility of developing new treatments for patients with primary and even secondary
cardiomyopathies, which would involve direct interventions in myofilament properties or
Ca2+ regulation. Further studies and more extensive testing are needed to validate these
strategies in an attempt to provide more effective and specific treatments for these diseases.
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Table1

Disease genes for FHC and DCM.

Gene Chromosome
location

Number of described mutations

FHC DCM

Thick filament

MYH7 (β-Myosin heavy chain) 14q12 190[165] 13

MYH6 (α-Myosin heavy chain) 14q12 2 3

MYL3 (Regulatory light chain) 3p21.3-p21.2 4 -

MYL2 (Essential Light chain) 12q23-q24.3 10 -

Thin filament

TNNT2 (cardiac TnT) 1q32 29 7

TNNI3 (cardiac TnI) 19q13.4 27 6

TNNC1 (cardiac TnC) 3p21.3-p14.3 5[166] 1

TPM1 (α-Tropomyosin) 15q22.1 11 2

ACTC1 (α-Actin) 15q11-q14 7 2

Sarcomere-associated and
Z-disc proteins

MYBPC3 (cardiac MyBP-C) 11p11.2 155 3

TTN (Titin) 2q31 2 7

TCAP (T-cap) 17q12 2 1

CSRP3 (cardiac LIM protein) 11p15.1 7 2

ACTN2 (α-Actinin) 1q42-q43 - 1

OBSCN (Obscurin) 1q42.13 2[167] -

LDB3 (Cypher) 10q22.3-q23.2 - 2

DES (Desmin) 2q35 1 1

DSP (Desmoplakin) 6p24 - 3

MYPN (Myopalladin) 10q21.3 - 4[168]

ANKRD1 (Ankyrin repeat domain) 10q23.33 3[169] 5[170]

MYOZ2 (Myozenin-2) 4q26-q27 2[171] -

Cytoskeleton/sarcolemma

CAV3 (Caveolin-3) 3p25 1 -

MVCL (Metavinculin) 10q22.1-q23 - 2

DMD (Dystrophin) Xp21.2 - 17

SGCD (sarcoglycan delta) 5q33-q34 - 1

Others

COX15 (Cytochrome c oxidase) 10q24 2 -

LMNA (Lamin A/C) 1q21.2-q21.3 - 39

CTF1 (Cardiotrophin) 16p11.2-p11.1 - 1

TAZ (Tafazzin) Xq28 - 4

JPH2 (Junctophilin-2) 20q13.12 3[172] -

PLN (Phospholamban) 6q22.1 - 2

ABCC9 (KATP channel) 12p12.1 - 2

SCN5A (cardiac Na channel) 3p21 - 3
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Gene Chromosome
location

Number of described mutations

FHC DCM

CRYAB (Crystallin αB) 11q22.3-q23.1 - 2

PRKAG2 (γ2 subunit AMPK) 7q36.1 5 -

TOTAL 470 136
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