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Summary
In recent years significant effort has been devoted to exploring the potential effects of
macromolecular crowding on protein folding and association phenomena. Theoretical calculations
and molecular simulations have, in particular, been exploited to describe aspects of protein behavior
in crowded and confined conditions and many aspects of the simulated behavior have reflected, at
least at a qualitative level, the behavior observed in experiments. One major and immediate challenge
for the theorists is to now produce models capable of making quantitatively accurate predictions of
in vitro behavior. A second challenge is to derive models that explain results obtained from
experiments performed in vivo, the results of which appear to call into question the assumed
dominance of excluded volume effects in vivo.

Introduction
In accepting the editors’ kind invitation to contribute to this issue I have been asked to review
recent theoretical and computational studies that have advanced our understanding of
macromolecular crowding, and to a lesser extent, confinement effects. To provide a little
background to what follows I think I should start by acknowledging that, like many, my
understanding of macromolecular crowding effects was first informed primarily by the work
of Minton and Zimmerman [1,2] and that my initial knowledge of the termodynamic
consequences of confinement was essentially defined by a single article written some years
ago by Zhou and Dill [3]. When I was last closely involved in the field some years ago, explicit
simulations of confinement effects on protein folding had just been reported by the Takada
[4], Shea [5], and Thirumalai groups [6] and I had made my own contribution to the crowding
field by showing that the effects of Ficoll70 on protein rebinding to GroEL could be
quantitatively captured by molecular simulations [7].

In the intervening years, a considerable amount of work has been conducted in both the
theoretical/computational and experimental arenas and this review will provide a brief
summary of what I think I have learned from the most recent work. I will take as my starting
point a review published by Zhou, Rivas and Minton in 2008 [8], and already cited, at the time
of writing, 50 times, evidence of the current interest in the field. In keeping with journal policy,
I will focus mostly on papers written in the last few years, although I will make reference to
earlier works where necessary to make the review more self-sufficient. Since this article forms
part of the “Theory & Simulation” issue of Current Opinion in Structural Biology, I will
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primarily emphasize recent studies that have used theory or simulation approaches to explore
crowding, confinement, or related issues, but since one of my hopes in writing this piece is to
encourage the theoretical community to make more concerted efforts to connect with
experiment I will also be highlighting some experimental studies that I think raise issues that
we, as theorists, need to be able to explain. I make no claim to be comprehensive in my sampling
of the literature and I hope that readers will forgive me if I have overlooked work that they feel
is important. I also hope that my colleagues whose work is critiqued here will not object to a
little gentle nose-tweaking: I ask that they remember that, in line with the title of this journal,
what follows is only my opinion.

Macromolecular Crowding & Confinement Principles
Almost all discussions of macromolecular crowding effects start with some kind of statement
stressing that the interior of the cell is a very congested place and that the high degree of
crowding might cause significant differences between the behavior observed in vitro and that
occurring in vivo. For an operational definition of the term ‘macromolecular crowding effects’
I will use that suggested by Zhou, Rivas and Minton [8]: such effects are those caused by
“macromolecular cosolutes that are nominally inert with respect to the reaction of interest”,
with the crucial term ‘inert’ meaning that the only interaction between the crowder and the
other macromolecular components of the system is an excluded-volume (i.e. steric) interaction.
A similar operational definition of ‘confinement effect’ is any that results from the physical
sequestration of a macromolecule from a dilute solution environment to the interior of a pore
or slab (or any other geometry) whose walls engage in only excluded-volume (steric)
interactions with the macromolecule of interest.

If we assume that crowding agents behave as defined above, it is relatively straightforward to
use statistical mechanical theories to at least roughly predict their potential termodynamic
consequences on processes such as protein folding and protein-protein association equilibria
[1,2]. In fact, all that is required is some kind of structural model for the crowder (e.g. if it is
modeled as a sphere we need only specify its radius), and a structural model for the initial and
final states of the process of interest. In order to obtain qualitative effects, and perhaps obtain
order-of-magnitude estimates of quantitative effects, these models need not be especially
elaborate: modeling both the folded and unfolded states of proteins as spheres [9], for example,
is often enough to get a good idea of the expected results. Statistical mechanics theories can
also be used to predict the kinetic consequences of macromolecular crowding in an approximate
way as long as some model for the transition state (ensemble) can be produced; more often,
how ever, such effects are investigated via direct molecular simulation using techniques such
as molecular dynamics, Langevin dynamics, or Brownian dynamics.

While it is easy to show that (idealized) crowding and confinement effects can in principle
have significant effects on macromolecular behavior, there are at least three major issues that,
I think, need to be kept in mind. First, there is the question of whether truly inert crowding
agents exist that can be used in experiments to provide a direct read out of excluded volume
effects only, or whether it is inevitable that all crowding agents will also cause additional effects
that must be considered. Second, there is the perhaps related question of whether theoreticians
can develop predictive models that can quantitatively describe the effects of the crowding
agents used experimentally. Third, and arguably the most important issue, there is the question
of whether an environment dominated by idealized macromolecular crowding agents such as
Ficoll or Dextran is even a good mimic of a true intracellular environment such as the cytoplasm
of E. coli (Figure 1). If it is not, and one is interested primarily in behavior in vivo, one might
be tempted to view pursuit of macromolecular crowding effects as of only peripheral interest.
Toward the end of this review I will briefly discuss a number of recent studies that touch on
all three of these questions.
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Calculations of crowding (and confinement ) effects
In recent years, a number of groups have conducted theoretical and computational studies of
the effects of macromolecular crowding on protein folding and protein-protein binding
reactions. Several of these have reported combined computational and experimental studies, a
strategy which, in principle, has significant potential to advance our understanding of such
effects.

The Zhou group has been especially productive in recent years in the macromolecular crowding
field. This group has employed experimental techniques to study the effects of Ficoll and
Dextran on both protein stability [10•] and protein-protein binding affinity [11] and has used
both scaled particle theory (SPT; [12]) and a variant of Widom’s particle insertion method
[13] to carry out corresponding sets of calculations [14,15•]. Building on the work of others
[16], Zhou has also recently reported the use of SPT calculations to rationalize and predict
potential crowding effects in membrane proteins [17]. The Zhou group’s experimental work
is a valuable contribution to the field since it sets quantitative goals that future models and
calculations should attempt to reach. The calculation work on the other hand hints at the kinds
of challenges likely to be faced in attempting to quantitatively reproduce the experimental
numbers. For example, while good quantitative fitting of the observed effects of Dextran was
reported by the group in three separate publications reported in the last year [10•,11,18], in all
three cases a different (spherical) model for the Dextran was used in the calculations: in a study
modeling crowding effects on the binding affinity of two subunits from DNA polymerase III,
the radius of Dextran was assumed to have no dependence on its concentration [11]; in a study
examining the effects of mixed crowding agents on the stability of the FKBP protein, the radius
was assumed to be linearly dependent on concentration [10•]; and, in a collaboration with the
Yang group exploring crowding effects on the forced-unfolding of tandem ubiquitin constructs,
the radius was assumed to be quadratically dependent on concentration [18]. Since these three
studies were all published in rapid succession, readers would be forgiven for being confused
about what these studies tell us about how to model Dextran. Perhaps the key conclusion that
we should draw is that, while quantitative agreement between calculation and experiment can
be obtained, it can only be achieved currently by the use of fitting parameters, which them
selves may need to take on different values depending on the system that the calculations are
intended to describe. This in turn means that the models we have are on the right track, but
cannot yet be considered predictive, which is what they need to be if we are to say that we truly
understand the problem.

Statistical mechanics-based calculations have also been extensively used by Minton’s group
in attempts to model crowding effects in experimental system s. Guided by the radius of
gyration distributions sampled in Goldenberg’s Monte Carlo simulations of unfolded states
[19], Minton has calculated the potential termodynamic effects of hard-sphere and hard-rod
crowding agents on protein folding equilibria [20]. Similar kinds of calculations, albeit with
significant technical differences, were carried out by Zhou (reviewed in [21]), with the latter
predicting smaller effects of crowding on protein folding termodynamics than the former. In
keeping with suggestions from both authors, how ever, one wonders if such calculations –
which involve very simplified descriptions of both the protein (in its folded and unfolded states)
and the crowding agent itself – might have reached the limit of their effectiveness, at least in
so far as they are able to predict experiment at a quantitative level.

Perhaps one area where more simplified structural models may continue to be of use is as a
means of quantitatively describing the colligative proper ties (e.g. the osmotic pressure) of
protein solutions at very high concentrations [22]. In the ‘effective hard particle’ model
advocated by Minton, proteins are to be modeled as spheres, with their effective radii reflecting
not only their physical dimensions but also the nature of their intermolecular interactions:

Elcock Page 3

Curr Opin Struct Biol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



proteins involved in predominantly repulsive interactions, for example, end up being ascribed
larger radii than their structures would strictly dictate. Minton’s group has recently shown that
effective hard-sphere models parameterized against experimental data on one-component
protein solutions can also quantitatively describe the behavior of two-component (i.e. mixed )
solutions at high concentrations [23,24•]. Since, as noted by the authors, this nice result has so
far only been demonstrated for mixtures of proteins that share similar pIs (and so are mutually
electrostatically repulsive), it remains uncertain whether a similar kind of model can adequately
describe the behaviors of systems where attractive interactions are significant. Even if they
cannot, how ever, perhaps such models – since they are directly parameterized against
experimental data – might be useful for predicting the effects that the modeled proteins may
exert on, for example, the folding behavior of other proteins in cases where attractive
interactions can be overlooked.

In recent years the Cheung group has conducted a number of interesting molecular simulation
studies in collaboration with the experimental groups of Wittung-Stafshede [25•,26•,27] and,
more recently, that of Waxham [28•]; the Cheung and Thirumalai groups pioneered the use of
molecular simulation methods to directly simulate protein folding behavior in crowded
conditions [29]. Directly simulating protein folding events is computationally expensive, but
has the significant ad vantages that it (a) avoids potential concerns about the applicability of
theories such as SPT to highly concentrated system s, (b) allows the kinetics of processes to
be directly observed, without the need to apply termodynamic thinking to transition state
ensembles, and (c) can lead to unanticipated predictions of conformational redistributions
induced by the environment [26•,28•] that are not accessible by SPT or Widom-like insertion
calculations (since, with the latter approach [14], for example, one must a priori know the
structures of the conformations one wishes to explore). A challenge for the groups that do this
kind of molecular simulation work, how ever, is to show that the behavior observed in their
simulations is not just superficially consistent with that seen experimentally, but remains
consistent when examined in greater detail. Ultimately, this will require that the experimental
observations, such as % increases in helicity deduced from CD experiments [25•,26•], or donor-
acceptor distances (and their variation with crowder concentration) derived from FRET
experiments [28•], be more directly and accurately reproduced by the simulations than is
currently the case.

A molecular simulation approach has also recently been used by the Thirumalai group to
explore the effects of both crowding and confinement on protein folding behavior. In addition
to the group’s initial work in this area [29], they have attempted to model the Yang group’s
experiments [18] exploring crowding effects on the forced unfolding of ubiquitin constructs
[30]. The group has also used simulations to explore the potential effects of crowding agents
on the formation of amyloid fibrils [31] and to examine the effects of crowders on
conformational distributions of a modeled homopolymer [32]; the latter work is less directly
connected to experimental work than are the two former studies.

One new area in which molecular simulations have begun to be used is in explicitly modeling
the kinetics of protein-protein association processes in crowded conditions. Two recent studies
have focused on modeling the rates of association of spherical protein models [33,34•]. In one,
the Yethiraj group showed, in line with theoretical expectations [8], that the rates of association
of spheres can be either accelerated, or diminished, by crowding effects depending on the
criteria used to define successful association. In the second, a similar kind of problem was
considered but on a much more ambitious scale: the Ellison group reported modeling the
diffusion-limited association of barnase and barstar in a coarse-grained model of the bacterial
cytoplasm [34•]. In spirit, this model represents a (major) extension of one proposed in Bicout
& Field’s far-sighted study of many years ago [35], and, as far as I am aw are, is the first
published working model of the cytoplasm that begins to look like the ‘real thing’. The
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disadvantage of the model is that it considers all macromolecules as spheres, and, while this
is perhaps just about acceptable for modeling non-specific interactions, it may not be so for
modeling highly specific interactions (such as barnase-barstar) since proteins have ‘faces’, and
therefore care about which direction they are pointing. It will be interesting to revisit this issue
with detailed models of the associating proteins.

In fact, a more structurally detailed simulation study looking at how a model protein-protein
association event might be affected by macromolecular crowding has already been reported in
the last year by Wieczorek & Zielenkiewicz [36•]. In this work, Brownian dynamics (BD)
simulation techniques similar to those pioneered by Gabdoulline and Wade [37] were used to
compute hundreds of trajectories of the proteins diffusing and associating in solutions of hard-
sphere crowders. Again, it was shown that the rate of association could be significantly
accelerated in crowded conditions depending on the model used. As the authors point out, a
limitation of the study is that it does not consider electrostatic interactions between the proteins,
which are certainly important in a number of diffusion-limited protein-protein associations
(e.g. [38]), but presumably future studies will directly address this issue. Eventually, a goal for
these kinds of simulations must be to establish a connection with the Schreiber group’s
groundbreaking studies of the association rates of protein-protein complexes in crowded
solutions. Building on their own previous report [39], this group has recently published a
comprehensive study [40••] exploring the effects of poly(ethylene glycol) (PEG) and Dextran,
and also their monomeric equivalents (ethylene glycol and glucose), on the kinetics and
termodynamics of a number of protein-protein complexes (including the venerable barnase-
barstar system ). For me, the data presented in this most recent report from the Schreiber group
represent the kinds of ‘gold standard’ measurements that I think we as theoreticians need to be
able to quantitatively reproduce.

In addition to theoretical and computational work that seeks to directly model the effects of
macromolecular crowding, a number of similar works have attempted to model it indirectly,
by restating it as a confinement problem, i.e. by assuming that when crowding is sufficiently
high, proteins are effectively confined (e.g. [41–44]). Unfortunately, most of these studies
make little or no connection with experiment and, when they do claim to make such
comparisons, they are so indirect or selective that they are, in my view, effectively meaningless
(e.g. [43,44]). This is a shame because there are certainly interesting experimental systems
where confinement is clearly a potential issue and where there is still room for studies that
attempt to quantitatively explain the observed behavior. One obvious biological example is the
GroEL/ES chaperonin [45] from E. coli, which physically sequesters misfolded proteins in a
cage-like environment (though one, it should be remembered, that actually contains holes
through which water can pass). This system has already inspired a large number of
computational studies [e.g. 4,5,7], and is likely to inspire still more owing to the interesting
experimental effects reported when the internal volume of the GroEL cage is varied by
lengthening (or deleting) the highly flexible C-terminal tails that form the base of the chamber
[46,47]. At least two theoretical attempts have already been made to rationalize and explain
the experimental results [48,49•]; in terms of explaining all of the observed behavior, how ever,
there is still an enormous amount of work left to do.

A second biological example where confinement may be an issue concerns the behavior of
nascent polypeptide chains as they traverse the ribosome’s exit tunnel. Here again, at least three
simulation studies have explored issues either directly or indirectly related to this question: the
Thirumalai group considered the stabilization of an α-helix due to confinement within a
cylindrical tunnel [50], I used coarse-grained molecular simulations to model the coupled
synthesis and folding of proteins as they are translated [51], and the Pande group [52] used
distributed computing to map out potential interaction sites of amino acid residues with the
tunnel’s wall (which was treated as completely inert in each of the two former studies). Again,
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none of these studies can really be said to have addressed all of the potentially interesting issues
and, in particular, there appears to be an opportunity to develop a much more direct connection
with experiment in the form of the very clever studies conducted by the Deutsch group (e.g.
[53,54•]).

A third, non-biological area where confinement is thought to play a role is in the behavior of
proteins encapsulated within silica ‘sol-gel’ matrices. Although studies of encapsulated
proteins had been conducted for some years previously, interest in this area, at least from the
stand point of confinement effects, appears to have started mainly with the work of Eggers &
Valentine [55]. Theoreticians have since focused almost exclusively on the fact that the melting
temperatures of the proteins studied appear to be shifted upwards (which is an easy fact to
explain at least qualitatively) but there are other important observations in this paper that have
largely been ignored. At room temperature, for example, apomyoglobin was shown to have
lost a great deal of its (helical) secondary structure when trapped within the gel; perhaps this
observation is not so easily explained with excluded volume arguments. Interestingly,
restoration of apomyoglobin’s secondary structure within the gel could be achieved by adding
1M potassium phosphate, and investigation of other salts showed their stabilizing effects to be
consistent with the Hofmeister series [55]. These, and other observations reported in the paper,
strongly implicate the solvent, and its hydrogen bonding properties, as playing a significant
role in determining behavior within the gel. More recently, Eggers’ group has reported
interesting work indicating that the inclusion of additional hydrophobic groups in the silica
matrix can significantly stabilize proteins against thermal denaturation [56•,57]. Since these
and other experimental works (e.g. [58,59]) continue to advance our understanding of protein
folding in sol-gel system s, and since significant computational and theoretical attention has
already been focused on modeling solvent-driven effects that control behavior of biomolecules
in confined, hydrophobic environments (e.g. [60–62]), it appears that there should be
opportunities for using simulations to understand sol-gel behavior at a level beyond that of
pure excluded volume effects.

The status of the field
The clearest lesson that I think I have learned from preparing this review is that while obtaining
some kind of qualitative agreement with experiment is relatively straightforward, it is much
more difficult to predict, determine and understand crowding and confinement effects at a
quantitative level. It must be, because in all the papers that I read I never once came across a
table or figure that directly compared numbers from theory and experiment except in cases
where the theoretical results had been aided by use of fitting parameters. In fact, during the
course of researching this review I became somewhat dismayed by the readiness with which
theoreticians were apt to claim in print that their calculations were “in agreement with
experiment” when a close examination of the work would often reveal that the connection with
experiment was very indirect. For a comparison between calculation and experiment to be truly
meaningful it is important that they both be examining the same system (e.g. the same protein)
and that they both be measuring exactly the same observable; there should be no differences
that could act as sources of either discrepancies or fortuitous correspondence.

I raise the issue of performing quantitative comparisons with experiment because I think that
our understanding of the basic concepts underpinning crowding and confinement effects is
now sufficiently complete that we probably have little more to learn from qualitative
comparisons. Pursuing quantitatively predictive models will certainly not be easy, and may
even require us to discard some of our more cherished approximations. It is quite possible, for
example, that we may find that our current structural models of crowding agents are
insufficiently detailed to allow truly quantitative predictions of their effects to be made.
Ficoll70, for example, is routinely modeled as a hard sphere, but use of a reasonable value for
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its radius [63] leads to an unrealistic estimate that at 150mg/ml its volume occupancy is ~75%
[25•]. This would suggest that Ficoll is, in fact, somewhat ‘squishy’ and this idea is strongly
supported by experiments that have measured its diffusion through nanofabricated pores of
known dimensions [64]. A quantitatively predictive model of Ficoll, therefore, may need to
accurately mirror this behavior. A similar increase in sophistication may also be required in
the modeling of Dextran, which in just the past few years has been modeled as a dumb-bell
[27], a rigid rod [20], and a sphere [10•,11,18].

Since both Ficoll and Dextran appear to be sufficiently inert that their effects may be largely
describable in terms only of excluded volume contributions, the additional structural detail
required of newer-generation models for the two polymers may not be great: it may be that
even comparatively coarse-grained models could prove sufficient. It should be borne in mind,
how ever, that for true quantitative accuracy from calculations and simulations there might
eventually be a need to include chemical details in the models. One recent experimental study
that speaks to the possibility of subtle potential differences between the two crowders, and
which may therefore only be resolvable with more chemically detailed models, comes from
the Gai group [65• •]. This group compared the effects of Dextran70 and Ficoll70 on the
termodynamics and refolding kinetics of three small folding motifs (two of 34 residues and
one of 16 residues in length). The rationale for choosing small polypeptides to study was an
interesting and, to me at least, compelling one: the authors argued that in studies of larger
proteins the excluded volume effect is likely to be dominant “thus obscuring other subtle but
important effects arising from the presence of crowding agents”. One intriguing result found
in the group’s study was that Ficoll70 caused a 0.5 kcal/mol stabilization of the folding free
energy of a 16-residue β-hairpin while Dextran70 had essentially zero effect. This, it may be
noted, is in contrast to the results obtained by others on larger protein system s, where it is
usually the case that Dextran exerts the bigger effect (e.g. [10•,27]) It would be nice to have
an explanation for this difference.

It is now pretty clear that inertness is not a property shared by the third of the three ‘usual
suspects’ considered when choosing a macromolecular crowding agent, PEG. In their 2008
review, Zhou, Rivas and Minton [8] presented a thoughtful argument that PEG should be
avoided as a crowding agent precisely because of its potential for favorably interacting with
the proteins it is intended to crowd; as a result, PEG is now fast becoming something of a pariah
in the macromolecular crowding community. Certainly, if one’s intention is to specifically
dissect contributions from excluded-volume effects, then this sidelining of PEG makes perfect
sense. But PEG is used in somany other scenarios (e.g. protein crystallization) that I think that
there are good reasons for attempting to better understand its behavior anyway. Interesting new
information on the nature of PEG-protein interactions has recently become available thanks to
the work of the Crowley group who have performed NMR studies to explore the interaction
between PEG and the small model protein cytochrome c [66•]. Notably, the largest chemical
shift changes induced by the addition of PEG map to a region of the protein’s surface implicated
in interactions with other proteins. Since both atomically detailed [67,68] and coarse-grained
[69] MD simulations have already been performed on PEG polymers in aqueous solution it
may be interesting to see if the interactions observed in the NMR experiments can be
recapitulated in direct simulations of PEG-protein interactions

If, as suggested above, obtaining quantitative and predictive models of crowding effects
requires improvements in our modeling of crowding agents, then it may also require that greater
consideration be given to solvation issues. A nice demonstration of potential solvation effects
– at least in regard to confinement phenomena – has come from an explicit-solvent simulation
study reported by the Pande group [70•]. In their work it was shown that, while confinement
of a protein within a spherical cavity led to a clear relative stabilization of the folded state,
imposing spatial confinement on the waters also – by the addition, in effect, of a hydrophobic
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wall – led to a relative destabilization of the protein’s folded state. The latter result cannot be
explained by models that consider only excluded volume effects operating on the
macromolecule. This does not necessarily mean, how ever, that an explicit treatment of solvent
would be essential to capture the behavior: instead, it may be possible to adequately describe
it by adding an attractive energetic interaction between the hydrophobic groups of the
macromolecule and the confining wall, in much the same way that one was incorporated in the
Shea group’s early modeling of the GroEL/GroES cage [71]. Regardless of that issue, the study
by Lucent et al. provides a nice illustration of how molecular simulations can be exploited and
designed – in a way that experiments cannot – to explicitly address the role of a single variable
(in this case, confinement of water) in determining observed behavior (in this case, folding of
a model protein). Similar types of simulations, but with the hydrophobic wall replaced by one
that mimics the surface of a sol-gel, might also be helpful in understanding the Hofmeister
effects on protein stability noted earlier by Eggers and Valentine [55].

A final scenario where more elaborate modeling may ultimately be required to quantitatively
predict confinement or crowding effects concerns the treatment of diffusion of macromolecules
in highly crowded conditions. My group has recently shown that, in dilute solution conditions,
correct modeling of the translational and rotational diffusion of proteins requires that
hydrodynamic interactions (HI) be modeled between the flexible elements of the protein
[72•]. It is unclear at this stage to what extent the use of a sophisticated HI treatment will alter
the diffusion of proteins in highly crowded solutions relative to simulations that omit HI,
although a very approximate modeling of such effects in crowded solutions of spheres has
suggested that the effect might be significant [73]. If inclusion of HI is confirmed to make a
big difference to diffusion in crowded conditions, then this will have obvious consequences
for the ability of BD simulations such as those mentioned earlier to quantitatively reproduce
diffusion-limited association data of the kind measured by the Schreiber group. If so, a recent
advance made by Geyer & Winter is likely to be extremely important: in highly original work
[74• •], this group has shown that an approximate factorization of the diffusion tensor (which
is norm ally achieved by a computationally nightmarish Cholesky decomposition) can capture
~95% of the HI effect at a fraction of the computational cost. This advance, together with a
subsequent extension of the thinking to a Langevin dynamics setting [75], may provide
something of a revolution in the scale over which hydrodynamic effects are modeled in
concentrated protein system s.

Do macromolecular crowding agents provide a ‘cell-like’ environment?
Implicit in essentially all of the studies that explore crowding effects is the notion that the
studied conditions are much more representative of the cellular interior than would be, say,
dilute solution conditions. But using crowding agents to mimic intracellular conditions is not
the only way forward: increasingly, experimentalists have begun to take on the immense
challenge of using biophysical methods to study protein behavior directly in vivo (see [76] for
a review of recent developments). These studies are not without complications, and occasional
difficulties of interpretation, but the results that have been obtained thus far raise, I think,
sufficiently important issues that they should not be ignored by those in the crowding
community whose primary goal is to mimic in vivo conditions. Particularly pertinent, I think,
are the only two studies that have attempted to measure termodynamic stability of proteins in
vivo. In the first, the Oas group showed that hydrogen/deuterium exchange experiments could
be coupled with urea titrations of live E. coli cells to obtain quantitative measurements of the
in vivo termodynamic stability of the protein λ6-85, a 80-residue segment of the λ-repressor
[77]. Taking into account a systematic offset in the free energies obtained from their
methodology, their final result was that the protein’s stability appeared to be essentially
identical in vitro and in vivo. In the second study (summarized in [78• •]), the Gierasch group
showed (again using urea titration) that a fluorescently-tagged version of the 137-residue
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cellular retinoic acid binding protein, CRABP, had an apparent free energy of folding in vivo
that was estimated to be ~1.4 kcal/mol less favorable than that measured in vitro.

The above results were considered in the review by Zhou, Rivas and Minton [8], and largely
dismissed on the grounds that in vivo experiments are so difficult to interpret that a more fruitful
avenue for future research would be to take a ‘bottom-up’ approach, focusing instead on
understanding the effects of crowding agents in highly controlled solution conditions. I agree
with many aspects of this view point, although I think it is worth noting that the Record group
has shown that a significant degree of (osmotic) control can be exerted over intracellular
conditions [79], and that this has enabled the Weisshaar laboratory to observe very interesting
alterations to GFP’s apparent diffusion coefficient in E. coli – not all of which appear to be
explicable by excluded-volume considerations [80•]. And while our control over in vitro
conditions is undoubtedly much greater, I also think that the results of the few ‘top-down’ in
vivo studies that have so far been reported (those of the Oas and Gierasch groups) are so
intriguing, and potentially important, that more studies along these lines are urgently needed.
After all, I think that for the majority of crowding researchers it is the in vivo situation that
ultimately counts, and it is perhaps quite telling that while I read a large number of papers in
preparing this review I never once came across one that began “Ficoll and Dextran are
incredibly important molecules and it is therefore vital that we understand their effects on
protein folding and protein-protein associations”.

So let us consider the result of Ignatova and the Gierasch group again and set aside for the
moment whatever concerns a reader might have about the difficulties of obtaining, by
extrapolation, a termodynamic stability in vivo. How are we to interpret it within the confines
of conventional macromolecular crowding theory (i.e. under the assumption that only excluded
volume effects operate)? I am almost certain that we cannot. Instead, I think that we need to
consider other possibilities: for example, that there may be favorable interactions between the
protein and other cytoplasmic macromolecules that differ in magnitude between the folded and
unfolded states, or (less likely) that the cytoplasmic solvent is so disturbed that the hydrophobic
effect is significantly diminished in vivo. Whatever might be the cause of the apparent
destabilization observed by the Gierasch group [78• •], one major issue that it raises is the
heretical notion that macromolecular crowding effects may not be dominant in vivo, but instead
may be only one player whose importance can be overridden by other factors. A second major
issue is that it brings into the question the idea that the use of inert macromolecular crowding
agents in experiments performed in vitro will necessarily provide a good mimic of the
intracellular environment. In fact, if one takes the argument to its logical limit, then one might
conclude that a better in vitro mimic of protein termodynamics in vivo might be a solution
containing mild concentrations of a denaturant (or even PEG). Please note that I am not
advocating the use of guanidinium chloride as an intracellular mimic! I am just trying to point
out that while adding macromolecular crowding agents (Figure 1) might make a solution
look more like the complex, hectic intracellular environment [81], it is conceivable that it might
make the thermodynamics of the solution less like that encountered in vivo. Since the above
issues appear to strike at the heart of the accepted rationale for exploring crowding effects, it
seems to me to be quite urgent that more attempts be made to measure the termodynamics of
protein stability in vivo.

A call to arms
In closing, I would like to try to convince readers that it is time for us, as theoreticians, to stop
declaring victory when a mere qualitative reproduction of crowding effects is obtained, and
time for us to stop comparing experimental apples with simulated oranges (or bananas). Instead,
I think that it is time for us to ‘roll up our sleeves’, ‘to buckle down’, and to invoke any other
cliché that appears apposite, and take on the immense challenge of quantitatively predicting

Elcock Page 9

Curr Opin Struct Biol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the effects of macromolecular crowding agents – be they Ficoll, PEG, Dextran, proteins, or the
Pielak group’s current favorite: polyvinylpyrrolid one [82] – on the termodynamics and kinetics
of folding or binding processes. With this goal in mind, perhaps it would be helpful to propose
that a test set of ‘gold standard’ experimental data be compiled and used to provide a common
yard stick against which to measure the performance of competing quantitative models. At the
very least, this might force us as a community to set down future standards for what we think
would constitute ‘agreement with experiment’. From my reading of the recent literature, it
seems that this is an important issue for us to resolve.
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Figure 1. Do macromolecular crowding agents mimic intracellular environments ?
At left is shown a solution of an idealized, spherical crowding agent of the type typically used
in calculations and molecular simulations (figure prepared with VMD [83]). At right is a
representation of the type of system that such crowding agents are usually intended to mimic:
an atomically detailed model of the cytoplasm of Escherichia coli (McGuffee & Elcock;
unpublished). Are the differences between the two images more important than the similarities?
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