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Abstract Vitamin E (VE) in soybean seed has value for
foods, medicines, cosmetics, and animal husbandry. Selec-
tion for higher VE contents in seeds along with agronomic
traits was an important goal for many soybean breeders. In
order to map the loci controlling the VE content, Fs-derived
F¢ recombinant inbred lines (RILs) were advanced through
single-seed-descent (SSD) to generate a population includ-
ing 144 RILs. The population was derived from a cross
between ‘OAC Bayfield’, a soybean cultivar with high VE
content, and ‘Hefeng 25°, a soybean cultivar with low VE
content. A total of 107 polymorphic simple sequence repeat
markers were used to construct a genetic linkage map. Seed
VE contents were analyzed by high performance liquid
chromatography for multiple years and locations (Harbin in
2007 and 2008, Hulan in 2008 and Suihua in 2008). Four
QTL associated with «-Toc (on four linkage groups, LGs),
eight QTL associated with y-Toc (on eight LGs), four QTL
associated with -Toc (on four LGs) and five QTL associ-
ated with total VE (on four LGs) were identified. A major
QTL was detected by marker Satt376 on linkage group
C2 and associated with «-Toc (0.0012 > P > 0.0001,
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5.0% < R* < 17.0%, 25.1 < a-Toc < 30.1 pg g~ "), total
VE (P < 0.0001, 7.0% < R* < 10.0%, 118.2 < total VE <
478.3 ug g 1. A second QTL detected by marker Satt286
on LG C2 was associated with y-Toc (0.0003 > P > 0.0001,
6.0% < R* < 13.0%, 141.5 < y-Toc < 342.4 pg g~ ') and
total VE (P < 0.0001, 2.0% < R* < 9.0%, 353.9 < total
VE < 404.0 pg g~ "). Another major QTL was detected
by marker Satt266 on LG DI1b that was associated with
«-Toc (0.0002 > P > 0.0001, 4.0% < R* < 6.0%, 27.7 <
a-Toc <43.7 pgg~') and y-Toc (0.0032 > P > 0.0001,
3.0% < R* < 10.0%, 69.7 < y-Toc < 345.7 pg g~ "). Since
beneficial alleles were all from ‘OAC Bayfield’, it was con-
cluded that these three QTL would have great potential value
for marker assisted selection for high VE content.

Introduction

Vitamin E (VE) is composed of a group of compounds
known as a-(a-Toc), p-(B-Toc), y-(y-Toc), J-(6-Toc)
tocopherol and four corresponding unsaturated derivatives,
o-, B-, y-, and J-tocotrienol (Van Eenennaam et al. 2003).
All tocopherols are amphipathic molecules consisting of a
polar chromanol head group derived from homogentisic
acid and a lipophilic tail derived from phytyl-diphosphate
(Bramley et al. 2000; Savidge et al. 2002). Tocotrienols
differ from tocopherols only in having a lipophilic tail
derived from geranylgeranyl diphosphate with double
bonds at carbon positions 3’, 7 and 11’ (Cahoon et al.
2003; Munne-Bosch and Alegre 2002). Four tocopherols,
a-Toc, f-Toc, y-Toc and 6-Toc, differ from one another in
the number and position of methyl groups on the chro-
manol head group (Tavva et al. 2007). The VE activities of
p-Toc, y-Toc and 6-Toc are 50, 10 and 3% equivalent to
o-Toc (Kamal-Eldin and Appelqvist 1996; Sheppard et al.
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1993; Shintani and DellaPenna 1998). Tocopherols are
synthesized from precursors derived from two pathways.
The methylerythritol phosphate pathway contributes to the
side chain of tocopherol through the synthesis of phy-
tyldiphosphate (Bramley et al. 2000). The shikimate path-
way produces homogentisic acid, which contributes the
aromatic ring of tocopherol. The first committed step in the
tocopherol biosynthetic pathway is the prenylation of
homogentisic acid with phytyldiphosphate to form
2-methyl-6-phytylbenzoquinol (Van Eenennaam et al.
2003). Many studies showed VE has a number of vital
functions in plants, including the protection of chloroplasts
from photooxidative damage (Munne-Bosch and Alegre
2002). Moreover, human nutritional studies have suggested
that VE might play an important role in enhancing the
function of the immune system (Adachi et al. 1997), and
the treatment or prevention of a number of serious diseases
including cardiovascular disease (Pryor 2000) and cancer
(Prasad et al. 1999).

Twenty to thirty percent of VE in the American diet is
derived from oil-based products such as margarines,
dressings, and mayonnaise (Sheppard et al. 1993;
Eitenmiller 1997). In many developed countries, the rec-
ommended daily intake of VE has been increased from
7-10 to 15 mg (Cho et al. 2005). Soybean oil accounts for
30% of the worldwide oil consumption (Van Eenennaam
et al. 2003). Soybean oils has a much higher VE content
than other oil seed crops such as safflower and sunflower
(Dwiyanti et al. 2007). However, the relatively inactive
y-Toc is the most abundant component (about 70% of VE)
in soybean, while in safflower and sunflower, highly active
o-Toc was the most abundant component (about 80% of
VE content; Dwiyanti et al. 2007). VE activity in soybean
is actually lower than that of safflower or sunflower
(Bramley et al. 2000). Therefore, increase of VE activity
in soybean was necessary through increase of total VE or
a-Toc contents.

VE biosynthesis occurs in the plastids of higher plants
(Soll and Schultz 1980; Soll et al. 1985). The biosynthetic
enzymes are associated with the chloroplast envelope and
have proven difficult to isolate and purify. Some studies
have focused on increasing VE content through transgenic
techniques using proteins predicted to encode genes in the
VE synthesis pathways (Cho et al. 2005; Van Eenennaam
et al. 2003). However, the difficulties of soybean trans-
formation and legal obstacles to transgenic soybean in
China limited applications. Hence, selecting cultivars or
breeding lines with higher VE and «-Toc content may be
most effective.

Traditionally, plant improvement has relied on pheno-
typic selection of populations from crosses between com-
mercial cultivars or experimental lines (Stuber et al. 1992).
Selection for high VE and a-Toc contents in seeds based on
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phenotype is complicated by genotype x environment
interaction (GE interaction) that significantly influences
seed VE accumulation (Ujiie et al. 2005; Almonor et al.
1998; Dolde et al. 1999). Hence, selection for soybean
cultivars with high VE and «-Toc contents in seeds requires
evaluation in multiple environments over several years,
which is expensive, time consuming, and labor intensive.
Molecular markers offer a faster and more accurate
approach to breeding, since selection could be based on
genotype rather than solely on phenotype. The use of
molecular markers for indirect selection of important
agronomic traits, or marker-assisted selection (MAS) could
improve the efficiency of traditional plant breeding. Some
aspects of plant breeding that can be improved by MAS
include; identification and elimination of undesirable
individuals in the early stages of selection; identification of
individuals prior to flowering when backcrossing genes
governing the favorable expression of quantitative traits
into adapted genotypes, and facilitation of selection for
several traits simultaneously (Allen 1994). MAS could
potentially improve selection of traits that have low heri-
tability by using markers with high heritability.

Cregan et al. (1999) and Song et al. (2004) developed an
integrated genetic linkage map of soybean containing 1,849
markers, including 1,015 SSR markers polymorphic in one
or more of five different populations. Markers were aligned
into molecular linkage groups (LGs) into a consensus map
of 20 LGs which correspond to the 11 of the 20 pairs of
soybean chromosomes (Zou et al. 2003). The remaining
nine LGs were assigned to chromosomes based on size
(Soybase; unpublished).

Currently, few studies attempted to map quantitative
trait loci (QTL) associated with individual and total VE in
soybean seed. Dwiyanti et al. (2007) analyzed individual
and total VE using a set of F, seeds and F3 seeds from a
cross between ‘Keszthelyi A.S.” and ‘Ichihime’ soybean.
The results showed SSR markers Sat_243 and Satl167 in
LG K were significantly associated with «-Toc. By 2009
the authors could find no report of QTL associated with
individual tocopherols and total VE of soybean based on
RIL populations tested in multiple environments.

The objective of the present study was to identify
QTL associated with individual tocopherols and total VE
using ‘Hefeng 25° x ‘OAC Bayfield’ RILs in multiple
environments.

Materials and methods

Plant materials

The mapping population contains 144 Fs. recombinant inbred
lines (RILs) which were advanced by single-seed-descent
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(SSD) in 2003-2008 from the cross between ‘Hefeng 25’
(developed by the Heilongjiang Academy of Agriculture,
Jiamushi, China) and ‘OAC Bayfield’ (developed by Uni-
versity of Guelph, Guelph, Canada) (Tanner et al. 1998).
‘OAC Bayfield’ showed consistently high seed VE content
(mean o-Toc 49.1 pg g~ '; 7-Toc 5033 pg g~ '; o-Toc
254.2 ug g~ '; total VE 853.9 ug g~ '), “Hefeng 25" had low
seed VE content (mean o-Toc 8.8 pg g~ ';y-Toc 84.4 pg g~ '

9-Toc 44.0 pg g~ '; total VE 176.6 pg g~ ).
Field experiments

RILs were grown together with the parents; at Harbin
(N45°, fine-mesic chernozen soil) in 2007 and 2008; at
Hulan (46°, fine-mesic chernozen soil) in 2008 and
Suihua (N47°, fine-mesic chernozen soil) in 2008. Seeds
were planted with rows 3 m long, 0.65 m apart and with a
space of 6 cm between two plants. Three replicates were
used with a randomized complete block design. Each plot
of a single genotype provided 20 plants as seed donors
that were later used to analyze individual and total VE
content.

Sample preparation and high performance liquid
chromatography (HPLC) analysis

High performance liquid chromatography was performed
following the procedure of Ujiie et al. (2005). Soybean
seed samples (about 5 g) were ground to a fine powder.
A total of 0.1 g of soybean flour and 0.05 g of ascorbic
acid were mixed in a 5 ml tube, and stirred with 3 ml of
80% (w/v) ethanol for 10 s. After super-sonication for
15 min at room temperature exactly 2 ml of hexyl-
hydride was added and stirred for 10 min. The slurry was
centrifuged at 13,000xg for 15 min. The clear aliquot
was filtered through a 0.45-pum PTFE filter. The resulting
supernatant was analyzed for VE contents by HPLC
(Dionex ASI-100, USA) with a C18 reverse-phase column
(250 mm length and 4.6 pum particle size). The condition
used was as follows: mobile phases were solvent
A (100% methanol), flow rate 1.5 ml min~!, the tem-
perature of the column was 40°C; and the injection vol-
ume was 20 pl. A dionex fluorescent light detector was
used with excitation at 295 nm and emission at 330 nm
(Abbasi et al. 2007). The a-Toc, y -Toc and J-Toc stan-
dards, obtained from Sigma Inc (St. Louis, MO, USA),
were dissolved and serially diluted in ethanol. Standard
concentrations ranged from 5 to 100 pM, and 10 pl vol-
umes (5-1,000 pM) were injected (Tavva et al. 2007). FR
spectra were recorded and its responses were integrated
by software Dionex 2.0. Quantification of the VE was
done by the external standard method.

SSR analyses

Total DNA of parents and each RIL were isolated from freeze-
dried leaf tissue by the CTAB method (Doyle and Doyle
1990). SSR analysis was performed with the primers devel-
oped by Cregan et al. (1999). PCR was performed in 20 pl
reaction containing 2 pl genomic DNA (25 ng pl™"), 1.5 pl
MgCl, (25 mM), 0.3 pl ANTP mixtures (10 mM), 2 pl 10 x
PCR buffer, 2 pl each primer (2 uM), 0.2 pl Tag polymerase
enzyme (10 units pul™"), 12 pl double distilled water. The
amplification profiles were; 2 min at 94°C, followed by 35
cycles of 30 s at 94°C; 30 s at 47°C, 30 s at 72°C; then 5 min
at 72°C. After amplification, the PCR products was mixed
with loading buffer [2.5 mg ml™' bromophenol blue,
2.5 mg ml~"' diphenylamine blue, 10 mM EDTA, 95% (v/v)
formamide], denatured for 5 min at 94°C and put on ice for
5 min. The denatured PCR products were separated on 6%
(w/v) denaturing polyacrylamide gel and visualized by silver
straining (Trigizano and Caetano-Anolles 1998).

Data analysis

Broad-sense heritability and statistic parameters for RILs
were analyzed using the SAS procedure (line regression and
GLM.SAS). A linkage map was constructed by MAP-
MAKER/EXP version 3.0b (Lander et al. 1987) as described
by Primomo et al. (2005). The commands “group,” “map,”
“sequence,” “lod table,” “try,” and “compare” were used
for building the linkage groups. The error detection ratio was
set at 1%. The Haldane mapping function was used with a
minimum LOD score of 3.0 and a maximum distance of
50 cM.

QTL were identified by single-factor analysis of vari-
ance (PROC. GLM. SAS) as described by Primomo et al.
(2005), based on individual environment value. Locus
main effects were considered for linear models if they were
significant at P < 0.01. Significant loci on the same LG
were tested by two-factor analysis of variance without
interactions. If both loci were significant at P < 0.05 in the
two-factor model, they would both be considered for linear
models. Otherwise, the locus with the larger individual R?
value was chosen to represent the effect of the putative
QTL on the LG. The nomenclature of QTL included four
parts. For example QuC2_1, Q, «, C2 and 1 represent QTL,
trait («-Toc), linkage group name and QTL order in the
linkage group, respectively.

Genotype by trait (GT) biplot methodology (Yan 2001)
was employed to analyze the interactions between QTL
and environments or individual and total VE means, based
on the formula; Ty — T/S; = Mlath + AlnTp + &5
where T;; was the mean value of QTL i for environment j;
T; was the mean value of environment j over all QTL; §;
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was the standard deviation of environment j among QTL
mean; (;; and {;» were the PC1 (first principle component)
and PC2 (second principle component) scores, respec-
tively, for QTL mean i; 7;; and 7, were the PC1 and PC2
scores, respectively, for environment j; and ¢; was the
residual of the model associated with QTL i, challenged
with environment j.

Results
Phenotypic analysis of individual and total VE content
The results of a-Toc, y-Toc, d-Toc and total VE contents

from RILs and parents across four different environments
were shown in Table 1. The mean values of individual and

total VE for ‘OAC Bayfield’ were significantly higher than
those of ‘Hefeng 25” across four environments. In contrast,
the variation of these traits for 144 RILs across various
environments, and individual or total VE means were not
significant (P > 0.05). Both Skewness and Kurtosis values
for these traits and their means were less than 1.0 in the
different environments, suggesting that the segregation of
these traits approximatively fit a normal distribution model.
Broad-sense heritability for 144 RILs across various
environments and individual or total VE means were listed
in Table 1, most of them showed relatively low heritability.

Linkage analysis

A total of 463 SSR markers were used to detect poly-
morphisms between the two parents. One hundred and

Table 1 Range, average, standard deviation, coefficient of variation, Skewness, Kurtosis, and broad-sense heritability for vitamin E contents of

RILs under multiple environments

Trait Environment  Parents RIL
Hefeng 25  OAC Bayfield® Range Mean SD° CV®  Skewness Kurtosis BSH®
a-Toc® 07 Harbin 10.36 37.78 9.91-62.23 26.97 7.58 0.28 0.52 0.21 0.37
08 Harbin 14.52 80.26 2.53-95.295 34.42 16.62 0.48 0.67 0.37 0.32
08 Hulan 5.99 40.73 1.92-42.26 19.48 8.54 0.43 0.22 —0.16 0.28
08 Suihua 4.32 37.79 0.98-39.85 18.45 7.28 0.39 0.27 0.26 0.33
a-Toc®" 8.79 49.14 3.84-59.91 24.83 10.01 0.39 0.42 0.25 0.30
“/—Tocg'f 07 Harbin 100.54 158.49 85.18-196.95 139.73  118.24 0.13 —-0.17 0.32 0.40
08 Harbin 43.87 372.08 8.22-533.80 145.18  107.08 0.50 0.996 0.97 0.40
08 Hulan 87.54 682.52 34.84-808.84 450.51 155995 034 —0.345 —0.16 0.33
08 Suihua 105.64 800.05 29.93-991.12 515.83  165.61 032 —-0.28 0.58 0.42
‘,)-Tocg’f 84.39 503.28 39.54-632.68 312.81 111.73 0.38 0.45 0.51 0.33
0-Toc 07 Harbin 14.62 60.01 27.39-82.72 57.97 10.57 0.18 —0.01 —0.59 0.22
08 Harbin 53.65 486.17 27.43-522.89 244.30 88.48 0.36 0.35 0.18 0.31
08 Hulan 32.87 277.71 14.28-312.64 175.75 59.99 0.34  —0.499 —0.06 0.40
08 Suihua 74.75 193.07 15.13-293.03 187.11 56.03 029 —-0.54 0.25 0.36
6-Toc™! 43.97 254.24 21.06-302.82 166.28 53.77 0.29 0.35 0.27 0.29
TE 07 Harbin 157.69 294.68 139.85-306.20 224.23 27.53 0.12 —-0.35 0.17 0.32
08 Harbin 183.49 947.2 38.35-952.85 391.85 155.89 0.39 0.59 0.61 0.35
08 Hulan 136.04 1013.96 23.63-1117.54  289.25 96.21 033 —-0.54 0.03 0.31
08 Suihua 229.18 1159.65 22.25-1189.26  312.00 89.34 0.28 —-0.79 0.59 0.36
TEY 176.60 853.88 56.02-961.96 304.33 92.24 0.28 0.57 0.35 0.32
“hgg!

® Standard deviation

c

Coefficient of variation

4 Broad-sense heritability

¢ o-Tocopherol

f Mean of all data from four different environments
€ y-Tocopherol
" §-Tocopherol

! Total VE

@ Springer



Theor Appl Genet (2010) 120:1405-1413

1409

seven of them (23.1%) were polymorphic and mapped on
20 linkage groups (LGs) according to Cregan et al. (1999)
and Song et al. (2004). The map encompassed about
1,521.3 cM with a mean distance of 14.2 cM between
markers (data not shown). The relative order of the SSR
markers on most of LGs was similar to the public soybean
genetic map (Song et al. 2004).

QTL associated with individual and total VE content

QTL associated with individual and total VE contents were
identified by single-factor analysis of variance. Four QTL,
QuB2_1(Sat_177, LG B2), QuC2_1(Satt376 LG C2),
QaD1b_1(Satt266, LGD1b) and Qul_1(Satt440, LG I), were
associated with «-Toc (Table 2). QuB2_1 explained
6.5-7.3% of the phenotypic variations at Harbin in 2 years
or o-Toc means. QuC2_1 explained 5.8-16.7% of the
phenotypic variations at three locations in 2 years or a-Toc
overall means. QoD1b_1 explained 4.3-5.6% of the
phenotypic variation at Harbin in 2 years. Qual_1 explained
5.4% of the phenotypic variation at Hulan location in 1 year.

Eight QTL underlying y-Toc were detected and mapped
onto eight LGs and explained 2.8—-13.0% of the phenotypic
variation at three locations in 2 years or y-Toc overall
means (Table 2). Of them, QyC2_1 (Satt286), QyG_1
(Satt199), QyD1b-1 (Satt266) and QyO-1 (Satt576), were
identified in 2—4 environments and y-Toc means. Other
QTL, including QyA2_1 (Sat_383), QyCl_1 (Satt565),
QyE_1 (Satt355) and QyJ_1 (Satt280), were detected in
only one environment.

Four QTL, Qo0A2_1 (Sat_383), QdéDla_1 (Satt179),
QJOF_1 (Satt262), QJI_1 (Satt354) associated with 5-Toc,
were identified on LGs A2, Dla, F, and I, respectively. The
phenotypic variation ranged from 4.2 to 10.2% at three
locations in 2 years or 6-Toc means (Table 2). Of them,
Only QJ0A2_1 (Sat_383) could be identified in multiple
environments (two environments and 6-Toc means). The
other three QTL, QoéDla_1, QSF _1, and QOI_1, were
detected in only one environment.

QTL underlying total seed VE content, QTVEC2_1
(Satt376), QTVEC2_2 (Satt286), QTVE D1b_1 (Sattl172),
QTVEN _1 (Sat_125), and QTVEO _1 (Satt592) were
identified in 1-4 environments and total VE overall means
and mapped onto four LGs (Table 2). They explained
2.9-10.9% of the phenotypic variation.

Satt376 on LG C2 was associated both with «-Toc
(QaC2-1) and total VE (QTVEC2-1) across four environ-
ments on linkage group C2 with beneficial allele from
‘OAC Bayfield’. QyC2_1 was associated with y-Toc across
three environment and y-Toc means, and QTVEC2_2 was
associated with total VE across three environments and the
total VE means. Both were linked with the same SSR
marker (Satt286) on linkage group C2. QoDI1b_1,

associated with o-Toc across two environments, QyD1b-1,
associated with y-Toc across three environments, and the
y-Toc means, were both associated with the same SSR
marker (Satt266) on linkage group D1b.

Analyses of QTL by environment interaction

GT biplot analysis (Yan 2001) of all QTL with individual
and total VE contents against four environments, and indi-
vidual or total VE mean, showed that these QTL explained
64.0% of the total variation of VE. The performance of
different QTL in each environment was evaluated. When
QTL QJA2_1,QyDI1b_1,QTVEC2_1 and QTVEC2_2 were
set as the corner QTL, four different environments and
individual or total VE means fell in the sector in which
QTVEC2_1 were the best QTL for four environments (at
Harbin in 2007 and 2008, at Hulan in 2008, at Suihua in
2008) for a-Toc and total VE means. Q0A2_1 and QyD1b_1
were the best QTL for 6-Toc and y-Toc means, respectively.
No tested location fell into sectors with QTVEC2_2 as
vectors, indicating it was the poorest QTL for any of four
different locations tested (Fig. 1).

Discussion

‘OAC Bayfield’ had high VE and a-Toc contents in Canada
over many years. Therefore, there is great interest in
transferring high VE and a-Toc contents into the cultivars
in Northeastern China to increase VE activity, and under-
standing the breeding potential among the progeny.
Because VE content in soybean is difficult to evaluate by
phenotype, increasing the genotype selection intensity by
MAS should improve the selection efficiency.

Phenotypic variability of individual and total VE content
in soybean seed was high, whether in cultivars (Dolde et al.
1999; Ujiie et al. 2005; Concordia et al. 2007) or a cross
derived population (Dwiyanti et al. 2007; Table 1). Many
studies have demonstrated that the interactions between
environmental factors, such as year by location and geno-
type by environment, were the primary sources of variation
of VE contents in soybean seeds (Almonor et al. 1998;
Dolde et al. 1999). However, main genotypic effects of
total and individual VE were large enough for effective
cultivar improvement (Rani et al. 2007).

Four QTL associated with «-Toc, eight QTL associated
with y-Toc, four QTL associated with §-Toc and five QTL
associated with total VE, were mapped onto four, eight,
four and four LGs, respectively. These QTL explained 2.8—
16.7% of phenotypic variation for individual and total VE
in different environments, and most of the variation was
less than 10.0%. The low level of phenotypic variation
evaluated by these QTL indicated the quantitative nature of
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Table 2 QTL associated with individual tocopherols and total VE content

Trait QTL LG Marker Environment R* (%)° P Allelic means (pg gfl) + SEMs?*
Hefeng 25 OAC Bayfield
o-Toc® QuB2_1 B2 Sat_177 07 Harbin 6.7 <0.0001 195 £ 1.2 524 £12
08 Harbin 6.5 <0.0001 125 £ 1.7 585+ 1.7
o-Toc Mean 73 <0.0001 179 £ 14 494 £+ 14
QuC2_1 Cc2 Satt376 07 Harbin 74 0.0012 237+ 1.6 48.8 £ 1.6
08 Harbin 8.6 0.0002 197 £ 1.6 498 £ 1.6
08 Suihua 16.7 <0.0001 9.8+ 1.6 355+ 1.6
08 Hulan 5.8 <0.0001 79+ 15 37.0 £ 1.5
o-Toc Mean 7.9 0.0009 125 £ 1.6 385+ 1.6
QuD1b_1 DI1b Satt266 07 Harbin 5.6 0.0002 258+ 14 535+ 14
08 Harbin 43 <0.0001 184 £ 1.2 62.1 £1.2
Qul_1 1 Satt440 08 Hulan 5.4 <0.0001 41+£12 373+ 1.2
o-Toc Mean 5.0 <0.0001 179 + 1.2 64.3 £ 1.2
QyA2_1 A2 Sat_383 07 Harbin 11.8 <0.0001 254 £ 10.6 164.8 £ 10.7
y-Toc Mean 12.0 <0.0001 272 + 10.6 166.4 £+ 10.6
y-Toc* QyCl1_1 Cl Satt565 08 Harbin 2.8 <0.0001 248.2 £ 9.6 4643 £ 9.7
y-Toc Mean 6.7 <0.0001 283.6 £ 9.7 5375 £ 9.7
QyC2_1 C2 Satt286 08 Harbin 7.5 <0.0001 3225 £ 83 646.1 £ 8.3
08 Hulan 8.6 0.0003 297.0 £ 9.4 4385 +94
08 Suihua 13.0 <0.0001 383.0 £ 9.6 725.5 £ 9.6
y-Toc Mean 6.9 <0.0001 3373 £ 119 586.2 £ 11.8
Qy G_1 G Satt199 07 Harbin 4.2 0.0032 100.7 £ 8.3 176.9 £ 8.3
08 Hulan 6.0 <0.0001 2473 £ 9.6 707.8 £ 9.7
y-Toc Mean 6.0 0.0002 226.9 £9.3 689.5 £9.3
QyD1b-1 DI1b Satt266 07 Harbin 35 0.0032 100.3 £+ 10.6 169.9 £+ 10.6
08 Harbin 74 <0.0001 102.8 £ 9.4 4379 £ 94
08 Suihua 9.0 <0.0001 4833 +£ 9.7 829.0 £ 9.7
y-Toc Mean 52 0.0003 4183 +93 545.6 £9.3
QyO-1 (0} Satt576 07 Harbin 10.5 0.0032 97.8 £ 9.6 158.6 £ 9.6
08 Harbin 6.4 0.0002 2204 £9.3 462.0 £ 9.3
08 Suihua 7.7 <0.0001 3972 £9.6 851.2 £ 9.6
08 Hulan 5.8 0.0001 394.6 £ 10.0 7274 £ 10.0
y-Toc Mean 6.0 0.0001 227.3 £ 9.6 689.7 £ 9.6
QyE_1 E Satt355 08 Harbin 9.2 0.0002 96.1 £9.4 4279 £ 9.5
y-Toc Mean 24 <0.0001 3209 £ 10.0 537.8 £ 10.0
Qyl_1 J Satt280 08 Suihua 9.0 <0.0001 3803 £92 8403 £9.3
y-Toc Mean 2.5 <0.0001 360.8 £ 9.2 5783 £9.3
0-Toc® QJA2_1 A2 Sat_383 07 Harbin 4.2 <0.0001 374 £5.0 754 £5.0
08 Suihua 52 <0.0001 843 5.5 1789 £5.5
0-Toc Mean 7.8 <0.0001 1239 £ 5.5 264.0 £ 5.6
QdDla_1 Dla Satt179 08 Harbin 6.5 <0.0001 147.8 £ 5.0 4283 £ 5.0
QJF_1 F Sat_262 08 Suihua 7.6 <0.0001 106.8 £ 5.3 240.5 £ 53
Qol_1 1 Satt354 08 Hulan 10.2 <0.0001 874+ 5.6 253.1 £ 5.6
0-Toc Mean 7.7 <0.0001 118.6 £ 5.6 2655 £ 5.6
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Table 2 continued

Trait QTL LG Marker Environment R? (%)° P Allelic means (pug g~') &+ SEMs®
Hefeng 25 OAC Bayfield
Total VE! QTVEC2_1 2 Satt376 07 Harbin 75 <0.0001 166.1 £ 2.9 2843 + 3.0
08 Harbin 9.4 <0.0001 398.6 + 8.3 7643 + 8.3
08 Suihua 8.3 <0.0001 377.6 £ 9.0 758.6 & 9.0
08 Hulan 7.2 <0.0001 327.0 £ 9.6 805.4 + 9.7
TVE Mean 8.6 0.0001 402.6 + 9.5 772.9 £ 10.0
QTVEC2_2 2 Satt286 08 Harbin 6.3 <0.0001 3944 + 838 764.5 + 8.9
08 Hulan 2.9 <0.0001 3745 £ 9.3 728.5 £+ 9.3
08 Suihua 8.3 <0.0001 299.8 + 10.3 703.8 + 12.0
TVE Mean 6.1 <0.0001 400.3 + 8.0 776.8 + 8.3
QTVE DIb_1 Dib Satt172 07 Harbin 9.0 <0.0001 156.7 £ 9.2 290.0 £ 9.3
08 Harbin 10.9 <0.0001 2873 + 8.3 864.9 + 8.3
TVE Mean 7.3 <0.0001 271.0 &+ 9.0 789.4 £ 9.0
QTVEN _1 N Sat_125 08 Harbin 6.7 <0.0001 407.0 £ 9.3 8255 £ 9.3
TVE Mean 3.8 <0.0001 3191 £93 678.9 + 9.3
QTVEO _1 0 Satt592 08 Suihua 3.5 <0.0001 2935+ 9.3 647.0 £ 9.3
08 Hulan 5.5 0.0001 4205 £ 9.3 809.4 £ 9.3
TVE Mean 6.4 <0.0001 3577493 766.4 + 9.3

% SEM: Mean + SD\/N; where N was the number of each of allele
® The proportion of the phenotypic data explained by marker locus
a-Tocopherol
y-Tocopherol
o-Tocopherol

 Total VE
PC2
2.8 =] PC1=37% PC2 =27% Sum = p4%
2.1 - §-Tos Mean 5A2 1 ¥ -Toc Mean
o Q v D1b-1
| Qo DIb-1
14 08Suihua
y O-1
0.7 = Q¥C2.1
08Hulan
0
07Harbin
=0.7 -
QTIEC2_1
1.4 — o -Toc Mean Toq) 1'E Mean
21 QTVEC2 2 08Harbin
I I I I I I I I I
-2.8 -21 -14 -0.7 1] 0.7 14 21 28 35 42

PC1

Fig. 1 GT biplot analysis for the relatedness of QTL and environ-
ment or individual and total VE mean. PC/ was the first principle
component; and PC2 the second principle component. Different
environments were represented by year and location, for example ‘at
Harbin location in 2007 was represented by 07 Harbin

individual and total VE inheritance in soybean seeds. These
results seemed to verify the difficulty of genetic improve-
ment by phenotype selection.

QTL specific to one environment were also found
among other nutrient components of soybean (Zeng et al.
2009). Inconsistent QTL detection across multi-environ-
ments could be due to non- or weak-expression of the QTL,
QTL x environment interaction in the opposite direction
to the main QTL effects, and/or epistasis. The results here
demonstrated that QTL x environment interaction was an
important property of many QTL of individual and total
VE. The interactions between QTL and environment
indicated that Satt376, associated with QTEVC2_1 for total
VE and with QaC2_1 for «-Toc was the best molecular
marker for MAS for «-Toc and total VE across environ-
ments (at Harbin in 2007 and 2008, at Hulan in 2008, and
at Suihua in 2008). Therefore, QTL x environment inter-
actions should be considered during marker-assisted
selection of VE contents.

In this study, Q alpha C2_1, which was associated with
o«-Toc across four environments and o-Toc means, and
QTVEC2_1, which was associated with total VE across
four environments and total VE means, were both linked
with the same SSR marker (Satt376 in LG C2; Table 2).
Qgamma C2_1, associated with y-Toc across three envi-
ronments and y-Toc means, and QTVEC2_2 associated
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with total VE across three environments and total VE
means, also were both associated with the same SSR marker
(Satt286 in LG C2). QalphaD1b_1, associated with a-Toc
across two environments, and QyD1b-1, associated with
y-Toc across three environments and y-Toc means, also
were both associated with the same SSR marker (Satt266 in
LG D1b). The SSR markers Satt376, Satt286 and Satt266
were associated with many tocopherols and total VE con-
tent in seed across multi-environment conditions. There-
fore, these three markers might have good potential for
application in MAS for high VE variety development.

The availability of QTL associated with individual and
total VE in soybean seed could facilitate MAS in breeding
programs aiming to transfer high VE and «-Toc content from
soybean cultivar ‘OAC Bayfield’ to other elite breeding
lines in Northeastern China. Knowledge of QTL controlling
individual and total VE in soybean will allow the design and
implementation of more efficient selection schemes to
develop high-VE or «-Toc soybean cultivars. So far, pro-
gress in breeding high-VE and o-Toc cultivars is slow due to
large environmental effects on this trait. However, MAS will
be an efficient and cost effective breeding strategy for
developing high VE and a-Toc soybean cultivars.
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