
PERSPECTIVE

A wheel of time: the circadian clock,
nuclear receptors, and physiology

Xiaoyong Yang1

Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department
of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA

It is a long-standing view that the circadian clock func-
tions to proactively align internal physiology with the
24-h rotation of the earth. Recent studies, including one
by Schmutz and colleagues (pp. 345–357) in the February
15, 2010, issue of Genes & Development, delineate strik-
ingly complex connections between molecular clocks and
nuclear receptor signaling pathways, implying the exis-
tence of a large-scale circadian regulatory network co-
ordinating a diverse array of physiological processes to
maintain dynamic homeostasis.

Light from the sun sustains life on earth. The 24-h
rotation of the earth exposes a vast number of plants
and animals to the light/dark cycle. Consequently, the
behavior and physiology of numerous living organisms
exhibit circadian rhythms. The word ‘‘circadian’’ is de-
rived from Latin circa diem, which means ‘‘about a day.’’
Behavioral rhythms such as sleeping, food seeking, and
predator avoidance are thought to help animals survive.
Physiological rhythms such as body temperature, blood
pressure, and metabolism also anticipate and adapt to
predictable changes in the environment to maintain the
overall well-being of animals (Young 2000).

Circadian rhythms are controlled by evolutionarily
conserved internal clocks residing in most tissues of the
body. The central clock is located in the suprachiasmatic
nucleus (SCN) of the hypothalamus and is entrained
directly by light (Hatings et al. 2008). This master
pacemaker can synchronize circadian oscillators in pe-
ripheral tissues, yet underlying neural and humoral
mechanisms remain obscure. Besides light, other external
cues such as feeding and ambient temperature are also
powerful Zeitgebers (from German for time givers) for
peripheral clocks (Damiola et al. 2000; Brown et al. 2002).
How these time cues act in concert to entrain tissue-
specific oscillators and evoke diverse physiological re-
sponses is poorly understood. Nevertheless, these processes
clearly involve the endocrine system.

The rhythmic production and circulation of many
hormones and metabolites within the endocrine system
is instrumental in regulating regular physiological pro-
cesses such as reproduction, blood pressure, and metabo-
lism. Levels of circulating estrogen and progesterone
fluctuate with the menstrual cycle, which in turn affect
circadian rhythms in women (Shechter and Boivin 2010).
In parallel with a diurnal rhythm in circulating adrenocor-
ticotropic hormone, secretion of glucocorticoids and aldo-
sterone from the adrenal gland rises before awakening
(Weitzman 1976). Glucocorticoids boost energy produc-
tion, and aldosterone increases blood pressure, together
gearing up the body for the activity phase. Similarly,
plasma levels of thyroid-stimulating hormone and triiodo-
thyronine have a synchronous diurnal rhythm (Russell
et al. 2008). A broad range of metabolites—such as glucose,
free fatty acids, cholesterol, and bile acids—also exhibit
diurnal fluctuation. A number of these hormones and
metabolites serve as ligands for nuclear receptors that
direct a large array of transcriptional programs involved
in lipid and carbohydrate metabolism (Chawla et al. 2001).
A survey of the diurnal expression profile of the mRNAs
encoding all 49 mouse nuclear receptors revealed that
more than half of receptors follow rhythmic cycles in key
metabolic tissues (Yang et al. 2006). Together, these
observations suggest a complex interaction between the
circadian clock and nuclear receptor signaling (Yang et al.
2007; Teboul et al. 2008). Several recent studies lend
further insight into an elaborate ‘‘wheel of time’’ composed
of molecular clocks and nuclear receptors, which together
help shape an emerging perspective on ‘‘design principles’’
and biological implications of the clock–receptor signaling
network.

Hub of time: nuclear receptors at the core
of molecular clocks

Circadian clocks are self-sustained, robust, and tunable
molecular oscillators. At the core of both the central and
peripheral clocks are two interlocked transcriptional/
post-translational feedback loops (Ko and Takahashi
2006). In the negative feedback loop, BMAL1/CLOCK
heterodimers activate the transcription of Period genes
(Per1, Per2, and Per3) and Cryptochrome genes (Cry1 and
Cry2) by recognizing E-box cis elements in their promoters.
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The PER/CRY complex in turn inhibits the transcription of
their own genes by blocking BMAL1–CLOCK activity. The
second feedback loop involves the ROR (a, b, and g) and
REV-ERB (a and b) proteins, members of a subfamily of
nuclear receptors that recognize similar cis-regulatory
elements (ROREs) on target genes. RORs act as transcrip-
tional activators, and REV-ERBs are repressors. BMAL1/
CLOCK binds to E-box elements present in Ror and Rev-
erb genes and activate their transcription. RORs and REV-
ERBs in turn drive rhythmic transcription of the Bmal1
gene by alternately binding to ROREs in its promoter
(Preitner et al. 2002; Liu et al. 2008).

Theoretically, a negative feedback loop with time delay
is sufficient to generate an oscillator. Why does the
molecular clock adopt the ‘‘two-loop’’ design principle?
Recent studies with synthetic oscillators in bacteria and
mammalian cells as well as computational modeling
demonstrate that a second feedback loop would make an
oscillator robust and tunable (Stricker et al. 2008; Tigges
et al. 2009). In the clockwork, these features are likely to
be accomplished by the ROR/REV-ERB/BMAL1 loop.

The clock control of nuclear receptor pathways

One of the major efforts in circadian biology is to define
molecular pathways by which the core clockwork regu-
lates physiology and behavior. It has been demonstrated
that many nuclear receptors exhibit circadian-like pat-
terns of expression (Yang et al. 2006). Recent studies
reveal a few of the nuclear receptor genes as being direct
targets of the circadian clock. Peroxisome proliferator-
activated receptor-a (PPARa) and PPARg regulate lipid
metabolism and energy homeostasis by coordinated ac-
tions in a variety of tissues (Evans et al. 2004). Ppara

transcription is induced by CLOCK and BMAL1 via an
intronic E-box-rich region (Oishi et al. 2005; Canaple
et al. 2006). In contrast, PPARg expression is regulated by
two clock-controlled genes, albumin gene D-site-binding
protein (Dbp) and E4 promoter A-binding protein 4
(E4bp4). DBP is an activator, whereas E4BP4 is a repressor.
Together, they induce oscillation of PPARg expression by
binding reciprocally to the D-boxes located in the first
exon (Takahashi et al. 2010). Constitutive androstane
receptor (CAR) is a potent regulator of xenobiotic metab-
olism (Qatanani and Moore 2005). Gachon et al. (2006)
showed that CAR cycling is regulated by the clock-
controlled PARbZIP family of transcription factors, in-
cluding DBP, HLF, and TEF. Mice devoid of all three of
these proteins showed the loss of rhythmic expression of
CAR and its target genes and defects in xenobiotic
detoxification, providing a compelling example of nuclear
receptor signaling linking the clock to xenobiotic metab-
olism (Gachon et al. 2006).

Nuclear receptor signaling is dependent on levels of
receptors as well as ligands. It has long been known that
plasma levels of hormonal ligands such as glucocorticoids
and aldosterone have daily rhythms (Williams et al.
1972). Very recently, several studies provided direct
evidence that endogenous clocks can regulate ligand
production in the endocrine glands. A survey of the

adrenal transcriptome revealed that a number of genes
involved in steroid biosynthesis are expressed in a rhyth-
mic fashion (Oster et al. 2006). Disruption of the adrenal
clock by tissue-specific knockdown of BMAL1 abolishes
circadian rhythms in steroidogenic gene expression and
glucocorticoid production (Son et al. 2008). Cry-null mice
showed a dramatic increase in aldosterone production
and resultant hypertension, which is due to the loss of
repression of Hsd3b6, a gene involved specifically in
steroidogenesis in the adrenal cortex (Doi et al. 2010).

A range of ligands can be produced in local tissues.
Heme is a porphyrin that functions as a prosthetic group
for enzymes involved in oxygen and electron transport.
Recently, two independent studies identified heme as an
endogenous ligand for REV-ERBa (Raghuram et al. 2007;
Yin et al. 2007). Interestingly, the circadian clock and
heme biosynthesis are reciprocally regulated (Kaasik and
Lee 2004). Expression of ALAS1, the rate-limiting enzyme
in heme biosynthesis, is under clock control, resulting in
oscillation in the intracellular level of heme and its
association with REV-ERBa. Another example is that
the circadian clock regulates cyclic expression of HMG-
CoA reductase and cholesterol 7a-hydroxylase, the rate-
limiting enzymes in cholesterol and bile acid biosynthe-
sis, respectively (Le Martelot et al. 2009). This is believed
to lead to cyclic production of oxysterols and bile acids,
and activation of their corresponding receptors, LXR and
FXR. Therefore, cyclic production of ligands for nuclear
receptors provides a potential means of circadian regula-
tion of metabolism.

The clock entrainment by nuclear receptors

Peripheral clocks appear to act as the integrators of
signals from the light-sensing central clock and other
physiological cues. The nature of the signals that entrain
peripheral clocks in individual tissues remains obscure.
Serving as endocrine and metabolic sensors, a number of
nuclear receptors have been implicated in clock entrain-
ment (Yang et al. 2007; Kovac et al. 2009).

Early studies showed that glucocorticoids are involved
in the phase resetting of peripheral clocks in response to
restricted feeding (Le Minh et al. 2001). Recent analysis
revealed that glucocorticoid response elements (GREs) are
present at multiple clock genes, including Per1 and Per2
(So et al. 2009). Through a distal GRE in the 59-flanking
region, Per1 is induced in peripheral tissues by acute
physical stress, supporting the notion that PER1 is likely
to mediate early response to time cues (Yamamoto et al.
2005). A recent report showed that chronic administration
of glucocorticoids impairs glucose metabolism in a PER2-
dependent manner (So et al. 2009). These findings reinforce
the idea that glucocorticoid signaling may be partially
involved in clock entrainment by metabolic cues.

It was mentioned earlier that the molecular clock
modulates the expression of PPARa and PPARg. Con-
versely, PPARa and PPARg directly regulate peripheral
clocks. PPARa affects the amplitude of Bmal1 expression
in the liver. This likely occurs through PPRE cis elements
at the promoters of Bmal1 and Rev-erba genes (Canaple
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et al. 2006). Ablation of PPARg in vascular cells reduces
diurnal variations in blood pressure and heart rate, which
is associated with impaired rhythmicity of the core clock
genes in the aorta (Wang et al. 2008). Wang et al. (2008)
further demonstrated that Bmal1 is a direct target of
vascular PPARg. These studies suggest that different
nuclear receptors may mediate clock entrainment in
different tissues and, furthermore, that the molecular
clock and nuclear receptors are intertwined through
multiple feedback loops.

This notion is also supported by studies on gonadal
hormones. It has long been known that the SCN controls
daily rhythms in gonadal hormone secretion (Turek et al.
1984). Interestingly, the SCN itself expresses the androgen
receptor, through which androgen is likely to modulate the
responses of the central clock to light (Karatsoreos et al.
2007). Estrogen has a potent effect on the circadian period
of locomotor activity (Morin et al. 1977). The estrogen
receptors are absent in the SCN but enriched in several
brain areas, such as the medial preoptic area and the dorsal
raphe. The medial preoptic area is the primary brain site
responsible for the behavioral effect of estrogen (Ogawa
et al. 2003). It is tempting to speculate that estrogen
directly affects the local clock in this area. In the dorsal
raphe, estradiol treatment modulates the light-induced
response of serotonergic neurons, which may in turn affect
the SCN through a median raphe projection (Abizaid et al.
2005). In addition to the brain, circadian rhythms in other
tissues are also modulated by estrogen. Estradiol treatment
alters the phase and amplitude of Per1 expression in the
liver and kidney, but induces biphasic rhythms in Per1 and
Per2 transcripts in the uterus (Nakamura et al. 2005).
These findings stem from pharmacological intervention of
the circadian timing system. Physiological roles for go-
nadal hormones in clock entrainment will need to be
examined.

Additional level of complexity within the nuclear
receptor–clock network

The above sections outlined the bidirectional connec-
tions between the circadian clock and nuclear receptor
pathways. The circadian oscillators directly govern cyclic
expression of nuclear receptors or regulate cyclic pro-
duction of their ligands. Nuclear receptors in turn regu-
late the circadian oscillators through their cis-regulatory
elements on specific clock genes. In this way, nuclear
receptors and the molecular clock may be organized into
tissue-specific transcriptional circuits that relay temporal
and nutritional cues to control metabolic physiology.
Nonetheless, this scheme seems to be oversimplified.
Direct protein–protein interactions between clock com-
ponents and nuclear receptors are emerging as a crucial
mechanism for the working of the circadian clock.

Physical interactions between clock proteins and nu-
clear receptors were first demonstrated in the vascula-
ture. McNamara et al. (2001) found that the retinoic
acid receptors RARa/RXRa associate with CLOCK in
a ligand-dependent fashion. This association blocks the
binding of the CLOCK/BMAL1 heterodimer to E-box

elements and activation of target genes. Through this
mechanism, retinoic acid can reset the vascular clock in
mice (McNamara et al. 2001).

The above study clearly indicates that nuclear receptors
can function as cofactors for clock components. In fact, the
converse also holds true. In the February 15, 2010, issue of
Genes & Development, Schmutz et al. (2010) report that
PER2 interacts physically with a handful of nuclear re-
ceptors, including REV-ERBa, PPARa, HNF4a, and TRa.
In a meticulous effort to explore functional roles of these
interactions, Schmutz et al. (2010) found that REV-ERBa

recruits PER2 to the RORE region of the Bmal1 promoter,
where PER2 contributes to REV-ERBa-mediated repression.
In a different phase, PER2 is brought to the upstream PPRE
region and acts as a coactivator for PPARa to induce Bmal1
transcription. PER2 is also rhythmically bound to other
nuclear receptor target genes in liver, such as HNf1a and
Glucose-6-phosphatase, suggesting a novel role for PER2 as
a nuclear receptor cofactor to transform clock information
into metabolic responses (Schmutz et al. 2010).

A similar scenario occurs with Dec1 and Dec2, which
are clock-controlled genes that encode E-box-bind-
ing transcriptional repressors. They are involved in circa-
dian regulation by competing with BMAL1/CLOCK for
E-box association. A recent study showed that DEC1
and DEC2 can bind to RXRa and repress the trans-
activation potency of a number of RXRa heterodimers
on the nuclear receptor elements (Cho et al. 2009), further
supporting the concept that there is pervasive cross-talk
between clock proteins and nuclear receptors via their
cis-regulatory elements. Given that both clock protein-
binding sites and nuclear receptor-binding sites are highly
abundant in the genome, this mode of cross-talk may
expand the regulatory capacity of the clock–receptor
network in the order of magnitude.

Connections between the clock and metabolism via
nuclear receptors?

From the evidence presented above, it seems clear that the
circadian clock and nuclear receptor pathways are inter-
locked at the molecular level. However, whether nuclear
receptors serve as a direct link between metabolic cycles
and the core clock circuitry remains largely elusive. This is
due partly to the lack of the clock/receptor double-mutant
mouse models for metabolic phenotype analysis. It is
further hindered by the fact that metabolic regulators
often function in both nuclear receptor-dependent and
receptor-independent manners. One such example is the
NAD+-dependent deacetylase SIRT1.

SIRT1 is an energy sensor, as its activity depends on
intracellular NAD+/NADH ratio. Two groups reported
recently that levels of NAD+ display circadian oscillation
in mouse embryonic fibroblasts and in liver (Nakahata
et al. 2009; Ramsey et al. 2009). This oscillation is at-
tributed to a negative feedback loop between the clock
and the salvage pathway of NAD+ biosynthesis. The
gene encoding nicotinamide phosphoribosyltransferase
(Nampt), the rate-limiting enzyme for NAD+ biosynthe-
sis, is a direct target of BMAL1/CLOCK. Oscillation in
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the levels of NAMPT and NAD+ leads to cyclic activa-
tion of SIRT1, which feeds back on the core clock by
deacetylating and destabilizing PER2 and probably
BMAL1 (Asher et al. 2008; Nakahata et al. 2008). Al-
though this feedback loop does not directly involve nu-
clear receptors, SIRT1 has been shown to deacetylate and
destabilize LXR and FXR (Li et al. 2007; Kemper et al.
2009). Previous work revealed that levels of LXR and
FXR transcripts are constant in liver (Yang et al. 2006).
These findings raise an intriguing possibility that LXR
and FXR may be subject to circadian regulation by SIRT1
through a post-translational mechanism.

The nuclear receptor coactivator PGC-1a is a key
regulator of mitochondrial biogenesis, hepatic gluconeo-
genesis, fatty acid b oxidation, and heme biosynthesis.
Expression of PGC-1a in metabolic tissues shows robust
circadian rhythms (Yang et al. 2006; Liu et al. 2007). This
is at least in part due to direct transcriptional repression
by REV-ERBa (Wu et al. 2009). Conversely, PGC-1a stim-
ulates expression of clock genes, including Bmal1 and
Rev-erba, through coactivation of RORa and RORg (Liu
et al. 2007). This regulatory circuit further integrates the
circadian clock and energy metabolism through nuclear re-
ceptors (such as PPARa, ERRa, HNF4a, and GR) as well as
other transcription factors (such as FOXO1 and NRF-1) (Li
and Lin 2009). Furthermore, it has been shown recently
that feedback regulation between REV-ERBa and PGC-1a

dictates circadian oscillation in the levels of heme and an
endocrine hormone referred to as FGF21 (Estall et al. 2009;
Wu et al. 2009). FGF21 in turn regulates carbohydrate and
lipid metabolism, partially through induction of PGC-1a

expression (Potthoff et al. 2009). Taken together, these
studies underscore the evolving complexity of connections
between the circadian clock and metabolism, and pose
a daunting challenge to understanding the circadian met-
abolic network by the reductionist approach.

On the rim of time: more than metabolic rhythms

Virtually all physiological processes—such as growth and
differentiation, immune responses, and reproduction—
have intrinsic rhythms. The links between the circadian
clock and rhythmic cellular and physiological processes
are just beginning to be unveiled.

A remarkable example is the discovery of the connec-
tion between the circadian clock and the cell cycle (Hunt
and Sassone-Corsi 2007). Expression of several cell cycle
genes, including Wee1, c-Myc, cyclin D1, Gadd45, and
Mdm2, oscillate in a circadian manner (Fu et al. 2002;
Matsuo et al. 2003). Wee1 and c-Myc are directly regu-
lated by the molecular clock via the E-box elements at
their promoters and, as a result, their expression is
severely disturbed in mice deficient in Clock, Cry, or
Per2. These are associated with impaired liver regenera-
tion in Cry-deficient mice and increased tumor incidence
in Per2 mutant mice, suggesting that the circadian clock
may protect against aberrant cell proliferation under
adverse conditions. It should be noted that several mouse
strains deficient in core clock genes are normal in growth
and development. Whether the circadian clock influences

the cell cycle in a normal physiological setting is yet to be
addressed. The circadian clock is likely to serve as a fine-
tuning mechanism rather than a determinant of cell
growth and differentiation.

The immune system exhibits distinct diurnal features.
It has been known for 50 years that mice have diurnal
variation in survival rate after endotoxin shock (Halberg
et al. 1960). Circulating immune cell numbers, serum
cytokine levels, and amounts of cell surface cytokine
receptors vary in a diurnal manner (Coogan and Wyse
2008). Recent studies provide compelling evidence that
these diurnal variations are ascribed to intrinsic clock-
works in immune cells (Arjona and Sarkar 2006; Keller
et al. 2009). This is corroborated by genetic evidence
showing a phase-delayed circadian pattern in lymphocyte
numbers in Clock mutant mice and a blunted rhythm in
interferon-g expression in Per2 mutant mice (Coogan and
Wyse 2008). Conversely, exogenous cytokines can mod-
ulate clock gene expression in the liver and cultured
fibroblasts, although the physiological relevance of this
observation is not clear (Cavadini et al. 2007). The
regulation of the circadian system by the immune system
has been better revealed in the brain. Endotoxin can
induce a phase shift in mouse locomotor activity and
the expression of c-Fos in the SCN, an immediate early
response gene involved in the central clock entrainment
(Marpegan et al. 2005). Interferon-a and tumor necrosis
factor-a can also modulate locomotor rhythms and the
expression of the clock genes in the SCN (Ohdo et al.
2001; Cavadini et al. 2007). These observations suggest
that cytokines may play a role in the central clock
function. However, whether direct or indirect mecha-
nisms are involved is debatable, because cytokines may
act at other brain sites that control sleep, feeding, or
activity. In aggregate, a bidirectional relationship be-
tween the circadian and immune systems is becoming
evident.

The question arises as to whether nuclear receptors
play any roles. By surveying the expression of all 49
mouse nuclear receptors on a system-wide scale, Bookout
et al. (2006) reveal the existence of a high-order regulatory
network tying nuclear receptor function to reproduction,
development, the CNS, and immunity, as well as nutrient
metabolism and energy homeostasis. This opens the door
to further investigation into the integration and orches-
tration of distinct physiological processes through the
circadian clock–nuclear receptor network on an organis-
mal scale (Fig. 1).

The dissolving boundaries

To date, the prevailing view of the circadian system is
a hierarchical structure in which the light-sensing master
pacemaker and other environmental cues synchronize
numerous peripheral oscillators via the ‘‘input’’ pathways
and, subsequently, drive rhythmic physiologic ‘‘outputs.’’
Much effort is focused on the identification of molecular
components of the input and output pathways. How-
ever, as exemplified by the interactions between the
circadian clock and nuclear receptors, feedback loops
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are pervasively present at the molecular, cellular, tissue,
and systems levels. The boundary between the input and
output pathways is dissolving. Thus, it is probably time to
revisit the role of the circadian system in whole-body
physiology. In addition to keeping internal physiology
synchronized with the environment—predominantly the
light/dark cycle—circadian clocks may serve at least two
other ancient purposes: (1) to temporally separate chemi-
cally incompatible metabolic processes, such as anabolism
and catabolism; and (2) to coordinate distinct physiological
processes to maintain dynamic homeostasis. Evidence for
these scenarios is emerging. The Clock mutant mice
display a vast array of physiological defects, including
metabolic syndrome, mania-like behavior, disrupted re-
productive function, and reduced embryonic fibroblast
proliferation (Turek et al. 2005; Miller et al. 2007; Roybal
et al. 2007). Similarly, Bmal1-deficient mice have altered
glucose metabolism, arrhythmic blood pressure, infertil-
ity, impaired adipocyte differentiation, and early aging
(Shimba et al. 2005; Kondratov et al. 2006; Curtis et al.
2007; Alvarez et al. 2008; Lamia et al. 2008). These findings
highlight the broad scope of physiology controlled by
molecular clocks. As illustrated in Figure 1, it seems that
connections between the circadian clock and most (if not
all) physiological processes are bidirectional. Therefore,
the circadian system might provide a potential means
of communications between different physiological
domains. In view of the dissolving boundary between

different physiological processes, the circadian clock is
probably not merely a timekeeper, but also a guardian of
physiological homeostasis.
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