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Abstract
Gastric bypass surgery (GBP), in addition to weight loss, results in dramatic remission of type 2
diabetes (T2DM). The mechanisms by which this remission occurs are unclear. Besides weight loss
and caloric restriction, the changes in gut hormones that occur after GBP are increasingly gaining
recognition as key players in glucose control. Incretins are gut peptides that stimulate insulin secretion
postprandially; the levels of these hormones, particularly glucagon-like peptide-1, increase after GBP
in response to nutrient stimulation. Whether these changes are causal to changes in glucose
homeostasis remain to be determined. The purpose of this review is to assess the evidence on incretin
changes and T2DM remission after GBP, and the possible mechanisms by which these changes occur.
Our goals are to provide a thorough update on this field of research so that recommendations for
future research and criteria for bariatric surgery can be evaluated.
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Introduction
The prevalence of type 2 diabetes (T2DM) has increased rapidly over the last several decades,
both in the US and many developing countries. Obesity is a strong risk factor for T2DM, lending
to the term “diabesity,” or obesity with accompanying T2DM. In the last several years, bariatric
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surgery has become an increasingly preferred option for weight loss and treatment of obesity-
related metabolic complications in morbidly obese individuals. In 2007, 170,000 bariatric
surgery operations were performed in the US, a >9-fold increase from 1999 [1,2]. In the
emergence of the diabesity epidemic, bariatric surgery not only results in significant and
sustained weight loss but in many patients also puts T2DM in remission. Compared to
conventional diet and pharmacological weight loss treatments, which induce a modest 10%
weight loss of short duration and are often followed by weight regain [3], bariatric surgery
results in 50% excess weight loss with control of T2DM in 76% of patients [4,5]. Using bariatric
surgery as a treatment for T2DM independently of morbid obesity, as suggested by clinical
studies [6,7], and recently publicized by the lay press [8], is an emerging concept; however,
there is a need for more well-designed trials to clearly determine how bariatric surgery elicits
these effects and, more importantly, the clinical applicability of these procedures as a treatment
option for T2DM. The goal of this review is to evaluate the currently proposed mechanisms
by which T2DM is controlled after gastric bypass surgery (GBP), principally in relation to the
role of the incretins, based on the available evidence from clinical trials and experimental data
from human and animal studies. Several reviews have addressed changes in gut hormones after
bariatric surgery in relation to T2DM [9-12]; nevertheless, updates such as these may provide
clinicians, researchers, and the public a comprehensive understanding of the current status of
the bariatric surgery field. These assessments may eventually help develop less invasive or
safer alternatives to surgery.

Background
Pathophysiology of T2DM: Role of Incretins

T2DM is characterized by defects in multiple organs, including decreased glucose uptake into
skeletal muscle, pancreatic deficiency (illustrated by defects in β-cell function with impaired
insulin secretion and defects in α-cell function with increased glucagon secretion), increased
liver glucose output, and the reduced effect of incretins, gut hormones that stimulate insulin
secretion after a meal [13,14].

The two major gut hormones that have been identified as incretins are gastric inhibitory peptide
(GIP) and glucagon-like peptide-1 (GLP-1). GIP is secreted from the K cells located mainly
in the duodenum, while GLP-1 is secreted from the L cells found mainly in the ileum [15,
16]. The incretins are rapidly secreted during a meal, circulate in the blood, and have a relatively
short half-life (3–7 min), as they are rapidly inactivated by the enzyme dipeptidyl peptidase-
IV (DPP-IV) [17,18]. Incretin hormones increase insulin secretion in response to glucose
[19,20]. The incretin effect on insulin secretion was originally described by Creuzfeldt and
Ebert [21] as the greater insulin response from an oral glucose load compared to that after an
equivalent rise in blood glucose from an intravenous glucose load.

The effects of incretins on glucose homeostasis have been well reviewed [15,22,23]. The main
function of incretins is to stimulate glucose-dependent insulin secretion. Both in vivo and in
vitro studies showed that GLP-1 in pancreatic β-cells stimulates insulin biosynthesis [24,25].
In addition to its insulinotropic effects, GLP-1 exerts its glucose-lowering effects through
inhibition of gastric emptying [26-29], restoration of insulin sensitivity [26], and inhibition of
glucagon secretion [29,30], which may result in the decrease of hepatic glucose production
[31,32]. GLP-1 agonists also have been shown to increase β-cell mass and pancreas islet size
in rodents [20,33]. GLP-1 receptors have been identified on β-cells of both rats and humans
[34,35], and studies have demonstrated that disruption of the GLP-1 receptor results in
enhanced apoptosis of β-cells [36].

In patients with T2DM, the incretin effect is diminished [37]. Plasma measurements (fasting
and postprandial) of GIP are normal compared to patients without T2DM, but administration
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of exogenous GIP does not increase insulin secretion [38], suggesting GIP resistance in T2DM,
although the GIP response is restored if glycemia is normalized [39]. GLP-1 levels are generally
[40] but not always [41] found to be lower in T2DM. In contrast to GIP administration, patients
with T2DM respond to exogenous GLP-1 [42].

Clinical Use of Incretins in T2DM
Most patients with T2DM require a combination of oral antidiabetic agents, followed
eventually by insulin treatment. Weight gain and fear of hypoglycemia are often barriers to
treatment compliance and glycemic control. Incretin mimetics that are resistant to the effect
of DPP-IV as well as DPP-IV inhibitors have recently been developed and are currently in use
as treatment for T2DM (as reviewed in [43]). Similar to conventional oral hypoglycemic agents
and insulin therapy, incretin mimetics and DPP-IV inhibitors significantly lower hemoglobin
A1C (HbA1C) and postprandial glucose excursions in patients with T2DM and often without
the added weight gain. Nevertheless, the durability of these effects and their potential long-
term benefits are still largely unknown.

Bariatric Surgeries
There are three main categories of bariatric surgery: restrictive, malabsorptive, and a
combination of the two. Restrictive bariatric surgeries are based on a reduction of the stomach
size to increase satiety and subsequently reduce food intake. Vertical banded gastroplasty
(VBG) staples the stomach vertically using a synthetic material sutured around the stomach
[44]. Laparoscopic adjustable gastric banding (GB), currently the most common restrictive
bariatric procedure, consists of a constricting silicone band that is 10–12 mm in diameter,
inserted laparoscopically. This band contains a volume-adjustable compartment on its inner
surface connected to a subcutaneous port device. The size of the band is controlled by saline
infusion to this port [9,45]. The size of the proximal gastric pouch is about 20–30 ml (Fig. 1a).
GB results in about 40.7–54.2% excess weight loss [4].

Malabsorptive surgeries are based on the principle of bypassing certain portions of the intestine
so that food is not absorbed. Strictly, malabsorptive procedures include jejunoileal bypass (JIB)
and biliopancreatic diversion (BPD); however, these surgeries currently are not frequently
performed due to several undesirable side effects, such as severe macronutrient and vitamin
deficiencies. The most commonly performed bariatric procedure in the US is Rouxen-Y GBP
[1], which is a combination malabsorptive–restrictive surgery. GBP surgery entails division
of the stomach into a small proximal pouch that holds about 20–30 ml and a larger distal portion
that is bypassed. The small pouch is then anastomosed to the distal part of the ileum (alimentary
limb). The remaining larger portion of the stomach, the duodenum, and the jejunum are
reattached to the distal part of the ileum (below the gastroileal anastomosis) to allow for
excretion of gastrointestinal and pancreatic juices (biliopancreatic limb; Fig. 1b) [9,45,46].
GBP results in about 56.7–66.5% excess weight loss [4].

Effect of Weight Loss on T2DM Control
Diet-Induced Weight Loss—T2DM is often associated with overweight and/or obesity and
two thirds of patients with T2DM have a body mass index (BMI) of 27 kg/m2 or greater [47].
Although patients with T2DM often require a combination of medications, oral and insulin;
the cornerstone of treatment is weight loss. There are many short-term studies showing
improvement of T2DM control by diet or diet and exercise, with or without pharmacological
treatment [48-52]. Both caloric restriction and the weight loss itself account for the major
ameliorating effects of dietary intervention on T2DM [53,54]. However, diet-induced weight
loss is often of short duration and is usually followed by weight regain [3].
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Surgical Weight Loss: Clinical Outcome in T2DM—In contrast, bariatric surgery
results in weight loss of great magnitude (up to 33% weight reduction) sustained over time
[55]. In addition to its substantial weight loss effect, bariatric surgery has been shown to result
in T2DM remission. A meta-analysis in 2004 reported that GBP resulted in remission of T2DM
in 83.7% of its cases, while GB produced T2DM remission in 47.9% of patients [4]. Many
studies report decreases in fasting glucose, insulin, hemoglobin A1c (HbA1c), markers of
insulin resistance, and medication usage as a result of surgery (Table 1). Although the
spectacular effect of malabsorptive procedures such as GBP or BPD on T2DM remission is
well known, some studies have also reported positive results on the effects of GB on remission
of T2DM [56,57]. A recent randomized clinical trial showed dramatic effects of GB, reporting
73% T2DM remission (defined as HbA1c levels <6.2%, fasting glucose <126 mg/dl, and
cessation of T2DM medication usage) at 2 years [5]. These remarkable results on T2DM
remission after surgical weight loss may have a broad clinical impact, on both the quality of
life for patients, who often are required to take multiple medications for T2DM and related
conditions, and also on the cost of health care.

Potential Mechanisms for T2DM Remission after GBP
Changes in Incretins

Many studies have examined changes in gastrointestinal hormones, including incretins, after
surgery, in relation to both glucose homeostasis and satiety effects. The major longitudinal
studies that have studied incretin levels after bariatric surgery are summarized in Table 2. Early
studies showed increased fasting and postprandial enteroglucagon (a previously used marker
for GLP-1) levels after both GBP and JIB [58,59]. In 1998, a cross-sectional study by Naslund
et al. [60] reported dramatic increases in GIP and GLP-1 levels in JIB patients 20 years
postoperatively compared to nonoperated obese and lean control patients.

GLP-1—The changes in GLP-1 levels after bariatric surgery have been extensively studied in
the last 10 years. Several studies showed either no change [61-64] or an increase [65,66] in
fasting GLP-1 levels after malabsorptive surgeries, although one longitudinal study recently
reported a decrease in fasting GLP-1 levels in obese patients 2 years after GBP [67].

The postprandial GLP-1 response after bariatric surgery, in contrast, has been more consistent,
with all studies reporting unanimously an increase of GLP-1 levels during an oral glucose
tolerance test (OGTT) or mixed test meal after GBP or BPD in obese subjects [65,68-70], as
well as in patients with T2DM after BPD [66] or GBP [62,64]. The GLP-1 increase occurs as
early as 2 days after GBP [71] and persists at 6 months and 1 year [72]. Purely restrictive
procedures do not result in an increase of GLP-1 [65,73-75].

GIP—Fewer studies have reported the effects of bariatric surgery on GIP levels. Additionally,
the results have not been as consistent as those reported for GLP-1. Many studies have observed
a reduction [66,76] or no change [62,64] in fasting GIP levels after BPD or GBP. No studies
to date have reported and increase in fasting GIP after surgery. Stimulated GIP levels decreased
after a test meal in obese patients 2 weeks after JIB [77] or after GBP and BPD [66,76]. In our
own study in patients with T2DM, GIP levels increased during an OGTT 1 month after GBP
[62,64], an effect that did not persist over time [72]. This is in agreement with several cross-
sectional studies reporting increased postprandial GIP levels after GBP or JIB [60,77,78], 6
months to 20 years after surgery. Overall, the variability in GIP levels in these studies may be
due to the time after surgery, T2DM status and the overall metabolic control of these patients.
Nevertheless, despite this variability, the literature suggests that these effects are distinct from
those of purely restrictive surgeries, as studies have reported no effect on GIP after VBG or
GB [65,73,75].
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In addition to the increase of meal- or glucose-stimulated GLP-1 and GIP levels occurring after
bypass procedures, we have shown that the incretin effect on insulin secretion, impaired in
patients with T2DM, returns to the level of controls 1 month after the surgery [64]. The
normalization of the incretin effect, in patients with recently diagnosed T2DM (less than 5
years) persists at 1 year after surgery [72].

Other Changes in Glucose Homeostasis after Bariatric Surgery: Hepatic Glucose Production
There are very few studies that have reported the effect of bariatric surgery on hepatic glucose
production (HGP). One recent cross-sectional study observed earlier suppression of HGP
during an oral glucose load (as measured by glucose appearance using isotope-labeled glucose
tracers) in GBP patients 1–4 years after surgery [74]. Another prospective study using similar
methods reported decreased endogenous glucose production 1 year after GBP [79].

Patients with T2DM have hyperglucagonemia which improves with diet-induced weight loss
[80,81]. Additionally, glucagon levels are suppressed after administration with a GLP-1 analog
[82]. With weight loss and the increase of GLP-1 observed after GBP, a decrease of glucagon
levels following GBP surgery is expected. This has been shown in one cross-sectional study,
where GBP patients exhibited decreased glucagon levels 180 min after a test meal compared
to nonoperated BMI-matched control subjects [73]. In contrast, we [62] and others [78] have
observed an increase of glucagon levels after GBP. The reasons for this are unclear.

Other Changes in Glucose Homeostasis after Bariatric Surgery: Insulin Resistance and
Secretion

One major characteristic of T2DM is insulin resistance, normally manifesting in a reduced
insulin-mediated glucose uptake. Many studies have shown a decrease of insulin resistance
after bariatric surgery, determined either by homeostasis model assessment for insulin
resistance (HOMA-IR) [83,84], quantitative insulin sensitivity check index [85], intravenous
glucose tolerance test (IVGTT) [68,86], or by the gold standard measurement of insulin
sensitivity, the euglycemic–hyperinsulinemic clamp [66,87,88]. This effect seems to occur
rapidly after surgery and often prior to substantial weight loss [85-87]. In longer studies,
however, insulin sensitivity appears to be related to the degree of weight loss [57,89]. Recent
comparisons of GBP and GB have shown no significant difference on insulin resistance
between the two interventions [83,84], suggesting that caloric restriction and weight loss
following surgery, rather than the nature of the procedure, is a major factor in the improvement
of insulin sensitivity after bariatric surgery. However, GLP-1 [26,29] may improve insulin
sensitivity, but its role and that of other gut peptides such as peptide YY (PYY) [90,91] and
ghrelin [92] in increasing insulin sensitivity, above and beyond caloric restriction and weight
loss, require further study.

T2DM is also characterized by a defect in early-phase insulin secretion after oral stimulus and/
or first-phase insulin secretion during IV glucose challenge [93]. The biphasic insulin response
to a rapid IV glucose challenge is abnormal in T2DM; the first-phase insulin secretion, seen
over the first 10 min, is absent [94].

Commonly used tools to assess insulin secretion in patients include IVGTT and insulin
response to glucose. Weight loss by dietary restriction improves insulin secretion, possibly by
decreasing glucose and free fatty acid toxicity to the β-cell [50,95]. Surgical weight loss has
been shown to restore first-phase insulin secretion in obese subjects with T2DM [85,96] as
measured by IVGTT. This is also demonstrated in patients with impaired glucose tolerance,
as shown by frequently sampled intravenous glucose tolerance test (FSIVGTT) [97] or insulin
response to arginine [98]. Infusion of the GLP-1 or a GLP-1 analog increased first-phase insulin
secretion in patients with T2DM [99] and in normoglycemic subjects [100]; the increase of
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postprandial incretins after malabsorptive surgeries may participate in the improvement of
insulin secretion, although this has not been extensively studied. Nevertheless, the insulin
secretory capacity of patients with T2DM is highly variable [101,102]. Accordingly, the effects
of weight loss on insulin secretion will be mainly dependent upon the β-cell capacity and the
degree of hyperglycemia [103].

Mechanisms of Increased Incretins After GBP
There are several proposed mechanisms for the increase in incretin levels after GBP, although
to date none have been clearly established, and the results of many studies often conflict with
one another.

Weight Loss
In 2001, Verdich et al. [104] reported a 9.2% increase in meal-stimulated GLP-1 area under
the curve (AUC) over 3 h after a 6-month dietary weight loss program (~20-kg weight loss) in
a group of obese nondiabetic patients. However, we recently showed that GLP-1 levels during
an OGTT did not change significantly after a 10-kg diet-induced weight loss in obese subjects
with T2DM [62]. The reasons for these discrepancies could be attributable to the difference in
weight loss amount and/or T2DM status. Additionally, we found that an equivalent weight loss
1 month after GBP increased GLP-1 AUC during a 3-h OGTT by >300% [62]. These data
suggest that it is unlikely that weight loss contributes to increased incretin levels; the surgical
nature of GBP appears to play a much greater role in this increase than weight loss per se.

Gut Exposure to Nutrients
Rapid Hindgut Delivery Hypothesis—One proposed hypothesis regarding the
mechanisms of increased incretins following GBP is the rapid exposure of the lower small
intestine to nutrients. Several groups have examined this hypothesis. In 2005, Strader et al.
[105] reported the effects of ileal interposition (IT) in high-fat-fed obese nondiabetic Long-
Evans rats. This procedure, where a segment of the ileum is relocated to the proximal small
intestine, was able to specifically assess the effect of rapid ileal exposure without any other
gastric restriction or intestinal rerouting. IT increased plasma GLP-1 levels during an OGTT
3 weeks after surgery compared to sham-operated rats. However, the surgery did not affect
glucose or insulin levels, which were difficult to assess in these nondiabetic rats with essentially
normal glucose levels. A study in a model of nonobese diabetic Goto-Kakizaki (GK) rats
showed that glucose tolerance improved during an OGTT 30 days after IT [106]. Plasma GLP-1
levels during the first 15 min of the OGTT, measured 45 days after IT, were significantly
increased compared to sham-operated controls. The same group later demonstrated an
improvement in glucose tolerance with a decreased glucose AUC during an OGTT in GK rats
45 days after IT compared to sham-operated or nonoperated rats [107]. The authors also
reported increased insulin levels during the OGTT with increased insulin sensitivity 5 months
after IT compared to control groups. There was no effect of IT on glucose-stimulated GLP-1
levels (as measured by GLP-1 AUC) by 6 months postsurgery, although IT rats exhibited a
prolonged GLP-1 response during the OGTT and increased proglucagon mRNA expression in
the ileum compared to those of the sham-operated or nonoperated controls.

Recently, one group examined the clinical effects of IT in remission of T2DM [6]. In this study,
IT to the proximal jejunum followed by a sleeve gastrectomy was performed on 39 T2DM
patients with a presurgery BMI of 30.1 kg/m2. Seven months after surgery, patients lost an
average of 22% of their presurgery body weight (postsurgery BMI 24.9 kg/m2) and showed
significantly decreased HbA1c (by 28%), fasting (by 44.6%) and postprandial glucose (by
45.3%) levels, and HOMA-IR (by 50%). Incretin levels were not reported in this study.
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Foregut Exclusion Hypothesis—A second proposed hypothesis regarding the
mechanisms of increased incretin levels after GBP is the exclusion of the foregut from nutrient
exposure. This concept was first proposed when Hickey et al. [108] observed in a cross-
sectional study that glucose tolerance and insulin sensitivity in a group of patients who had
undergone GBP were significantly improved compared to a group of weight-matched
(postsurgery) controls. In 2004, Rubino and Marescaux [109] reported the effects of a
gastrojejunal bypass (GJB) procedure on glucose homeostasis in diabetic GK rats. Fasting
glucose was significantly decreased over the 32-week period following GJB, and glucose
tolerance was improved (AUC during a 3-h OGTT) 1 week after GJB compared to sham-
operated controls. Insulin sensitivity was also improved (as measured by glucose disappearance
during an insulin tolerance test) 20 weeks after surgery in GJB rats compared to controls. In
addition, there was an increase in fasting GIP levels in GJB rats 2 weeks postsurgery compared
to preoperative levels [109]. These observations were made in the absence of any significant
difference in body-weight change or food intake between the GJB and the sham-operated
controls.

In an effort to distinguish foregut exclusion from rapid hindgut exposure in the T2DM-related
effects after GBP, Rubino et al. [110] designed a study where GK rats received either a
duodenal-jejunal bypass surgery (DJB) or a gastrojejunostomy (GJ) to allow for rapid ileal
exposure to nutrients without foregut bypass. DJB rats showed improved oral glucose tolerance
(as measured by decreased glucose AUC during an OGTT) compared to both GJ and sham-
operated control rats 10 days after surgery. In addition, a subsequent reoperation where the GJ
was converted to a DJB significantly improved glucose tolerance compared to before the
conversion procedure. In contrast to the effects observed in GK diabetic rats, DJB performed
on normoglycemic Wistar rats resulted in a significant decrease in glucose tolerance compared
to sham-operated control Wistar rats. The authors concluded that there may be a factor present
in the proximal intestine that contributes to the T2DM phenotype, and bypass of this portion
of the small intestine may ameliorate T2DM. However, this procedure may disrupt glucose
homeostasis in nondiabetic conditions. Incretin levels, incidentally, were not reported in this
study. A recent study compared the effects of IT and DJB on glucose, insulin, and GLP-1 levels
in GK rats [111]. This study reported similar effects between DJB and IT on improved tolerance
(as measured by glucose AUC during an OGTT) 4 weeks postsurgery. Mean GLP-1 levels 30
min after an oral glucose load were lower in the DJB group compared to the IT group by 1
week after surgery, but both surgery groups exhibited higher GLP-1 levels compared to sham-
operated controls by 4 weeks after surgery. These results suggest that both foregut exclusion
and rapid hindgut exposure equally improve glucose tolerance; both principles may be key
players in T2DM remission after GBP. However, these effects on glucose tolerance may be
mediated through different mechanisms. Rapid hindgut exposure to nutrients may be related
to increased GLP-1 levels after surgery, while duodenal exclusion may mediate some of its
effects independent of changes in GLP-1.

Still, others report no effect of foregut exclusion or rapid ileal exposure to nutrients during
GBP on changes in incretin levels, despite the improvement in glucose tolerance. A study by
Pacheco et al. [112] also found that duodenal-jejunal exclusion in GK rats, similar to the
procedure described in Rubino et al. [61], decreased fasting glucose and glucose levels during
an OGTT by 1 week after surgery compared to nonoperated control GK rats. There was no
effect of the procedure on glucose-stimulated GLP-1 or GIP levels compared to controls;
however, there was a significant decrease in glucagon and leptin levels following the glucose
load 1 week after surgery. The authors suggested that the rapid improvement of glucose
homeostasis observed by duodenal-jejunal bypass might be mediated by the decrease in leptin
levels, which may stimulate insulin secretion, although no changes in glucose-stimulated
insulin levels after surgery was observed.
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Gut motility–Gastric Emptying—The gastrointestinal tract is increasingly regarded as an
important organ in glucose homeostasis, and both gut motility and gastric emptying may play
an important role in postprandial glucose control [13]. Few groups, however, have reported
the effect of GBP on gut motility and gastric emptying, and results have varied among studies.
Horowitz et al. [113] reported in a 1986 cross-sectional study that gastric emptying of solids
was slower in GBP patients compared to nonoperated control patients; however, gastric
emptying of liquids was faster in GBP patients. Naslund and Beckman [114] later reported in
a longitudinal study reduced pouch emptying at 2 months after GBP. Similarly, a small number
of studies are available on gut motility after bariatric surgery. Kotler et al. [115] showed
increased intestinal transit time and increased enteroglucagon levels after various types of
gastric surgery in weight-losing subjects compared to postsurgery weight-stable subjects. A
recent study demonstrated accelerated gastric emptying and shortened intestinal transit time
in morbidly obese subjects 6 weeks after GBP. This was accompanied by an increased
postprandial GLP-1 response, which was significantly correlated with the gastric-emptying
response after surgery [69].

Other Proposed Mechanisms of T2DM Resolution After GBP (Ghrelin, Peptide
YY, Leptin)

In addition to incretins, there are also a number of other hormones that are altered after GBP
which may be integral in the maintenance of glucose homeostasis.

Ghrelin is a hormone produced by the stomach and may play a role in short- and long-term
energy balance. Administration of ghrelin or its analogs stimulates food intake [116,117], and
ghrelin levels vary as a function of BMI and weight change. Obese individuals have lower
circulating ghrelin levels. Weight loss by diet increases ghrelin levels, increasing food intake
[118,119]. In contrast, ghrelin levels do not rise after GBP in spite of considerable weight loss
[118,120-123], which may influence caloric intake and subsequently glucose homeostasis.
Additionally, recent studies have proposed other roles for ghrelin related to T2DM. Ghrelin
has been shown to inhibit insulin secretion in humans [124,125], and a recent study
demonstrated that genetic knockout of ghrelin in lean mice reduced fasting glucose levels and
endogenous glucose production and increased glucose-stimulated insulin levels compared to
wild-type mice [92]. In diabetic ob/ob mice, ghrelin deletion reduced fasting glucose and
fasting insulin and improved glucose tolerance [92].

PYY is cosecreted with GLP-1 from intestinal L cells in response to food intake. PYY3-36 has
been shown to decrease food intake in humans [126] and regulates body weight in rodents
[127]. Cross-sectional [74,128] and longitudinal [69,129] studies have reported increased PYY
levels after GBP, which may partially explain the reduced caloric intake and improved glucose
homeostasis after surgery. A study in our laboratory recently found increased PYY3-36 levels
1 month after GBP; this effect was not observed after a matched weight loss achieved with
dietary restriction (Oliván et al. in review). Similar to ghrelin, there are recent studies that have
suggested more direct effects of PYY on insulin sensitivity [90]; however, the role of PYY
independent of food intake still needs to be confirmed.

Leptin, which is secreted from the adipose tissue, is also involved with food intake and long-
term energy regulation [130,131]. However, in contrast to ghrelin, leptin levels are generally
higher in obese individuals. Several studies showed a reduction of leptin levels after GBP
[123,128,132], some of which indicated this reduction was correlative with weight or BMI
[128,132]. Some studies, however, have shown reduction in leptin levels which were not
correlated with weight and fat mass loss [108,133], suggesting an increase in leptin sensitivity
after GBP; this may play a role in glucose homeostasis. A recent study in GK rats showed
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decreased leptin levels 1 week after duodenal exclusion surgery compared to nonoperated GK
rats [112].

These hormones may act in concert with the incretins, or one hormone may potentiate the action
of another, although the currently available data implicating these hormones in T2DM
remission after surgery are minimal and controversial. There is a need for more carefully
designed clinical trials, beyond descriptive studies, that will confirm these hormonal changes
and determine whether or not they play a role in T2DM-related changes after GBP.

Conclusions
It is well-documented that T2DM remission occurs after bariatric surgery. First and foremost,
the effect of caloric restriction and subsequent weight loss clearly plays an important role in
this remission. This is evident by the restoration of glucose tolerance, decreased HbA1c levels,
and improvement of insulin sensitivity by all categories of bariatric surgery. Alterations in the
small intestinal anatomy after GBP may also be integral in T2DM control. Foregut exclusion
or rapid delivery of food to the hindgut may be responsible for increased incretin levels, which
can promote insulin secretion and also possibly increase insulin sensitivity. GLP-1 appears to
be consistently increased after GBP, and these changes are often related to improvement of
glucose homeostasis. The role of GIP and how it changes after GBP are less clear and require
further research. There also may be changes in ghrelin, PYY, and gastric emptying that occur
as a result gastrointestinal tract rerouting after GBP, although these findings in relation to
T2DM remission necessitate more investigation. Figure 2 shows a schematic of the potential
mechanisms by which T2DM is resolved after bariatric surgery, based on the existing literature.

Future Directions
Despite the research available, there are significant limitations in the previous studies. A large
number of the studies that have examined hormonal changes in relation to glucose homeostasis
after surgery have been conducted in nondiabetic subjects. The role of T2DM status and
duration needs to be addressed in terms of the effectiveness of bariatric surgery. Long-term
studies are needed to test not only the impact of T2DM remission on cardiovascular outcome
but also the metabolic consequences of elevated incretin levels on hypoglycemia after GBP
surgery.

Mechanistic studies to elucidate the role of caloric restriction versus weight loss, the role of
the vagus nerve on gut peptide release, and the duodenal exclusion versus ileal exposure to
nutrients are necessary. The mechanisms by which appetite is reduced after GBP or with GB
will also need to be studied, as decreased calorie intake is a major component of weight loss.
Finally, although most patients benefit from bariatric surgery with sustained weight loss, some
patients regain the weight lost initially after surgery [134]. Understanding the predictors and
the mechanisms of failure after bariatric surgery will be an important factor in better patient
selection for bariatric surgery.

The current recommendations for bariatric surgery in the US are BMI≥35 kg/m2 with
comorbidities or BMI≥40 kg/m2 without comorbidities. In view of the multiple benefits of the
surgery and the recent report of increased longevity after bariatric surgery [135], these criteria
may need to be revised and surgery be offered at lower BMI. Nevertheless, it is premature to
advocate experimental bariatric procedures to nonobese patients with T2DM. Recent
developments in experimental bariatric surgery such as ileal interposition [6], endoluminal
[136], and minigastric bypass surgery [7] will require more careful research trials before
becoming clinically applicable on a larger scale. It is imperative to clearly understand how
these treatments are improving metabolic conditions such as T2DM.
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T2DM type 2 diabetes mellitusy

GBP gastric bypass surgery

GIP gastric inhibitory peptide-1

GLP-1 glucagon-like peptide-1

DPP-IV dipeptidyl peptidase-IV

HbA1C hemoglobin A1C

VBG vertical banded gastroplasty

GB gastric banding

JIB jejunoileal bypass

BPD biliopancreatic diversion

BMI body mass index

OGTT oral glucose tolerance test

HGP hepatic glucose production

HOMA-IR homeostasis model assessment for insulin resistance

QUICKI quantitative insulin sensitivity check index

IVGTT intravenous glucose tolerance test

PYY peptide YY

IGT impaired glucose tolerance

FSIVGTT frequently sampled intravenous glucose tolerance test

AUC area under the curve

IT ileal interposition

GK Goto-Kakizaki

GJB gastrojejunal bypass

DJB duodenal-jejunal bypass

GJ gastrojejunostomy
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Fig. 1.
Schematic representation of gastric banding (a) and gastric bypass (b). Graphics courtesy of
Packard Children's Hospital, Palo Alto, CA, USA
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Fig. 2.
Proposed model for mechanisms of T2DM remission after GBP based on available studies.
Dashed lines indicate hypothetical links
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Table 1

Resolution of T2DM after bariatric surgery

Reference Surgery type Follow-up duration Diabetes outcome

Pories et al. [137] Greenville gastric bypass (n=101 with T2DM) 1–10 years ↓ FBG, insulin, HbA1c, ↑ insulin
release, glucose disappearance by 1
year

Poulos et al. [138] GBP (n=29 with T2DM) >1 year ↓ FBG, insulin, HbA1c

Sjostrom et al. [55] GBP, GB, or VBG (n=195 with diabetes) 6–24 months ↓ Incidence of diabetes as defined by
↓ FBG and no medication usage

Pontirolli et al. [57] GB (n=46 with T2DM) 1–3 years ↓ FBG, insulin, HbA1c, HOMA-IR,
insulin resistance, glucose tolerance
by 1 year

Schauer et al. [139] GBP (n=191 with T2DM) 20 months ↓ FBG, HbA1c, diabetes medication
usage by 6 months

Polyzogopoulou et al. [85] BPD-GBP (n=12 with T2DM) 3–12 months ↓ FBG, fasting insulin, ↑insulin
sensitivity, AIR by 3 months

Diniz et al. [140] GBP (n=31 with T2DM) 27 months ↓ FBG, HbA1c

Clements et al. [63] GBP (n=20 with T2DM) 2–12 weeks ↓ FBG by 2 weeks

Rubino et al. [61] GBP (n=6 with T2DM) 3 weeks ↓ FBG, insulin

Wickremesekera et al. [86] GBP (n=31 with T2DM) 6 days to 12 months ↓ FBG, ↓ HOMA-IR by 6 days

Guidone et al. [66] BPD (n=10 with T2DM) 4 weeks ↓ FBG, insulin, ↑glucose tolerance,
insulin sensitivity, β-cell glucose
sensitivity

Mari et al. [87] BPD (n=11 with T2DM) 5 months ↑ glucose tolerance, insulin
secretion, insulin sensitivity, β-cell
glucose sensitivity

Morinigo et al. [68] GBP (n=11 with T2DM) 6–12 months ↓ FBG, HbA1c, ↑ HOMA-IR,and
insulin sensitivity

Alexandrides et al. [141] GBP (n=26 with T2DM) 27 months ↓ FBG

Alexandrides et al. [141] BPD-RYGBP (n=111 with T2DM) 2 years ↓ FBG

DePaula et al. [6] Ileal interposition with sleeve gastrectomy (n=23
with T2DM)

7 months ↓ FBG, fasting insulin, HOMA-IR,
HbA1c, ↑ glucose tolerance

DePaula et al. [6] Ileal interposition with diverted sleeve gastrectomy
(n=16 with T2DM)

7 months ↓ FBG, fasting insulin, HOMA-IR,
HbA1c, ↑ glucose tolerance

Briatore et al. [96] BPD (n=9 with T2DM) 1 month ↓ FBG, HOMA-IR, ↑AIR

Dixon et al. [5] GB (n=30 with T2DM) 2 years ↓ FBG, insulin, HOMA-IR, HbA1c

Brancatisano et al. [56] GB (n=78 with T2DM) 1 year ↓ FBG, HbA1c, diabetes medication
usage

T2DM type 2 diabetes mellitus, FBG fasting blood glucose, HbA1c hemoglobin A1c, GBP gastric bypass, GB gastric banding, VBG vertical banded
gastroplasty, HOMA-IR homeostasis model assessment of insulin resistance, BPD biliopancreatic diversion, AIR acute insulin response
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Table 2

Longitudinal studies on the effects of bariatric surgery on incretin levels

Reference Population Surgery type Follow-up duration Outcome

Barry et al. [58] >300 lb, n=12 JIB 3–6 weeks ↑ Fasting EG by 3 weeks
↑ Postprandial EG by 6 weeks

Jorde et al. [77] n=5 JIB 2–6 weeks ↓ Postprandial GIP

Schrumpf et al. [142] n=9 GBP 3–12 months No change in GIP levels at 3 or 12 months

Sirinek et al. [76] n=12 GBP 3–4 months ↓ Fasting, postprandial GIP

Kellum et al. [59] n=9 GBP 11 months ↑ Postprandial EG

Kellum et al. [59] n=7 VBG 11 months No effect on fasting, postprandial EG

Rubino et al. [61] n=9, 6 with T2DM GBP 3 weeks ↓ Fasting GIP in T2DM patients only
No change in fasting GLP-1

Clements et al. [63] n=20 with T2DM GBP 2–12 weeks ↓ Fasting GIP by 6 weeks
No significant effect in fasting GLP-1

Valverde et al. [65] n=19 BPD 1–6 months ↑ Fasting, postprandial GLP-1by 6 months

Valverde et al. [65] n=12 VBG 1–6 months No effect on fasting, postprandial GLP-1

Guidone et al. [66] n=10 with T2DM BPD 1–4 weeks ↓ Fasting, postprandial GIP by 1 week
↑ Fasting, postprandial GLP-1 by 1 week

Morinigo et al. [69] n=9 GBP 6 weeks ↑ Postprandial GLP-1

Morinigo et al. [68] n=34 GBP 6 weeks, 12 months ↑ Postprandial GLP-1 by 6 weeks

Borg et al. [70] IR, n=6 GBP 1–6 months ↑ Postprandial EG, GLP-1 by 6 months

le Roux et al. [71] n=16 GBP 2–42 days ↑ Postprandial GLP-1 by 2 days

Laferrere et al. [64] n=8 with T2DM GBP 1 month ↑ Postprandial GLP-1, GIP
↑ IE

Reinehr et al. [67] n=19 GBP 2 years ↓ Fasting GLP-1

Whitson et al. [143] n=10, 5 with T2DM GBP 6 months ↑ Nonfasted GLP-1 in T2DM only

Laferrere et al. [62] n=9 with T2DM GBP 1 month ↑ Postprandial GLP-1, GIP
↑ IE

Shak et al. [75] n=24 GB 6–12 months No change in GLP-1, GIP

JIB jejunoileal bypass, EG enteroglucagon, GIP gastric inhibitory peptide, VBG vertical banded gastroplasty, T2DM type 2 diabetes mellitus, GBP
gastric bypass, GLP-1 glucagon-like peptide-1, BPD biliopancreatic diversion, IR insulin resistant, IE incretin effect, GB gastric banding
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