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1. Abstract
Animal models have enriched understanding of the physiological basis of metabolic disorders and
advanced identification of genetic risk factors underlying the metabolic syndrome (MetS). Murine
models are especially appropriate for this type of research, and are an excellent resource not only for
identifying candidate genomic regions, but also for illuminating the possible molecular mechanisms
or pathways affected in individual components of MetS. In this review, we briefly discuss findings
from mouse models of metabolic disorders, particularly in light of issues raised by the recent flood
of human genome-wide association studies (GWAS) results. We describe how mouse models are
revealing that genotype interacts with environment in important ways, indicating that the underlying
genetics of MetS is highly context dependant. Further we show that epistasis, imprinting and maternal
effects each contribute to the genetic architecture underlying variation in metabolic traits, and mouse
models provide an opportunity to dissect these aspects of the genetic architecture that are difficult if
not impossible to ascertain in humans. Finally we discuss how knowledge gained from mouse models
can be used in conjunction with comparative genomic methods and bioinformatic resources to inform
human MetS research.
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2. Overview
The metabolic syndrome (MetS) is a suite of conditions, including impaired glucose tolerance,
dyslipidemia, high blood pressure and central obesity that tend to occur in conjunction. This
suite of conditions puts an individual at risk for developing type-2 diabetes (T2D) and
cardiovascular disease (CVD) [1]. As such, the MetS classification is of great epidemiological
interest: T2D has increased in prevalence and currently afflicts ~7% of the US adult population
[2]. Approximately 90% of individuals with T2D are considered overweight, and ~ 70% will
develop cardiovascular disease [2–4]. In the US alone, the prevalence of MetS exceeds 20%,
and it is becoming more and more common in developing countries [5,6]. Many hypotheses
have been proposed to explain this epidemic in terms of environmental factors, for example
the thrifty gene and the sedentary lifestyle hypotheses, which posit that over-consumption of
high caloric foods and inactive lifestyles are major causes of the metabolic disorders that
comprise MetS [7]. Indeed, dietary and lifestyle modification have proven therapeutic [8].
However, it is becoming increasingly evident that some populations are more prone to
metabolic disorders than others and, in general, that women are less prone than men of the
same body mass [1,9]. Clearly there is a genetic component to MetS. Yet therapeutic dietary
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and lifestyle guidelines generally do not take into account underlying genetic variation, which
can effect an individual’s response to treatment [10]. Understanding the pathogenesis of the
metabolic disorders comprising MetS is an enormous biomedical challenge because
phenotypic variation is caused by complex interactions of many genes of small effects, by
environmental factors, and by the interplay between the two. Thus animal models are
particularly important because both genetic and environmental influences can be controlled
for and monitored in a population of known genetic structure.

2.1 Murine models for human disease
Animal models have enriched understanding of the physiological basis of complex disease and
advanced identification of genetic risk factors. In using animal models, a researcher is able to
plan crosses between animal strains with measurable phenotypic differences and to generate
large numbers of offspring from a single set of founders of known genomic background,
overcoming the confounding factor of genetic heterogeneity present in human studies. In
genetic mapping studies, this increases the power to detect quantitative trait loci (QTL) having
small effects, those that are most likely to underlie complex disease and that are difficult to
identify in human studies. Additionally, because phenotypes are ascertained in a controlled
environment, animal models allow for detailed analysis of the architecture of gene-by-
environment interactions, which for both practical and ethical reasons is not possible in human
studies. Once a QTL has been identified in an animal model, fine-scale mapping of the genomic
region can break a locus down into the quantitative trait genes (QTG) or the quantitative trait
nucleotides (QTN) responsible for the QTL effect [11]. When an animal’s DNA sequence has
been identified, the human homolog can be isolated by DNA hybridization or by homology
alignment to the human genome, and research can be conducted to determine if variation in
the candidate sequence is associated with variation in the same phenotype in humans. Finally,
returning to the animal model to obtain experimental proof through expression or intervention
analysis can determine if and how the variants identified contribute to the disease.

Mouse models are especially appropriate for this type of research, and mouse studies have
made major contributions to our knowledge of complex disease etiology [12]. This is, in part,
because mice have relatively short gestation times and are relatively cheaper to breed and
maintain than other mammalian models. In addition, mouse development and physiology is
very well characterized and dense panels of polymorphic genetic markers are readily available.
The initial sequence of the mouse genome was released in 2002 and, as of July 2007, is
considered “essentially complete” with NCBI build 37 [13]. The only other species’ genome
that is considered “complete” is human [14]. Mouse–human chromosomal homology is well
characterized and syntenic maps are available allowing for easy translation of linkage maps
between the species. The Jackson Laboratories house the world’s largest repository of inbred
laboratory mouse strains and genetically engineered mouse stocks, including a large subset
used in research of MetS components: T2D, obesity, hypertension, and cardiovascular disease
[15]. Online resources are freely available for mouse queries, ranging from biology to genomic
sequence to expression, providing valuable information for study design and potential
generation of new mouse models that recapitulate the pathology of human diseases (see Table
1). In many instances mouse models represent monogenic changes with major effects for a
disease, despite the fact that a common disease is generally the result of contributions from
multiple genes. To circumvent this problem, different teams have worked with mice to combine
recombinant congenic strains with multiple contributing genes for a disease. Consequently,
existing mouse models have evolved to better approximate human disease models, and have
become ideal tools for the genetic dissection of complex traits.
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2.2 The search for a murine model of metabolic syndrome
The physiological features of MetS components vary across species and MetS is not well
defined in mouse models. For example, absolute criteria for defining extreme blood serum
levels in mice do not exist, and mice transport most of their cholesterol in high density
lipoprotein cholesterol (HDLC) rather than in low-density lipoprotein cholesterol (LDLC) as
humans do [1]. Mouse models for diabetes are generally resistant to many of the complications
common to humans, e.g. diabetic neuropathy, nephropathy and retinopathy. When such
complications do occur in mice, they do not reflect all the characteristics seen in human
pathology [16–18]. Further, mice do not express certain genes affecting development of
diabetic complications in humans, such as cholesterol ester transport protein [15]. Moreover,
despite humans and mice sharing most of the same transcription factors, there are significant
differences in the targets with which they bind [19]. These dissimilarities reflect genus-specific
metabolic differences resulting from 65–85 million years of divergent evolution to fill different
ecological niches [13,20]. Nevertheless, mouse models have expanded our understanding of
MetS pathophysiology and have highlighted genomic regions that are fruitful candidates for
further study.

Most candidate genomic regions are identified in mice by crossing two phenotypically distinct
inbred strains, within each of which animals are genetically identical, and then intercrossing
the resulting F1 hybrid offspring to create an F2 generation where all possible combinations of
genotypes (homozygotes for each parental allele and the heterozygote) have the potential to
be represented at each locus. This method facilitates QTL mapping and when matings are
carried out to the F10 generation or beyond to create an advanced intercross line (AIL),
resolution improves due to the accumulation of recombination over generations (e.g. an F10
generation has approximately 5 times the recombination of an F2 generation). For example,
Ehrich et al. (2005) identified several QTL affecting serum glucose and insulin levels in an
F16 AIL of LG/J x SM/J (Wustl:LG,SM-G16) [21], and recently Fawcett et al. (2009) fine-
mapped QTL contributing to obesity and organ weights using a combined F9/F10 population
(Wustl:LG,SM-G19 and Wustl:LG,SM-G10) [22]. A key advantage of using inbred crosses
and AILs is that the architecture of genetic by environment interactions can be fully explored,
and this is discussed further in Section 4.

Another common method for identifying candidate genomic regions is the use of recombinant
inbred lines (RIL), which are produced by brother-sister mating F2 intercross offspring for at
least 20 generations. At this point all individuals are genetically identical and homozygous
across the genome with a unique mosaic of fixed random alleles from the original parental
genomes. Cheverud et al. (2004) demonstrated genetic independence of some diabetes and
obesity related traits in a study of genetic correlations among LGXSM RILs [23]. Recently,
Koutnikova et al. (2009) identified a QTL for hypertension in a BXD RILs, and subsequent
association studies confirmed the human syntenic region’s involvement in both systolic and
diastolic blood pressure [24]. An advantage of using RILs is that results are replicable because
the panel needs only to be genotyped once, yet the strains can be phenotyped across time by a
diverse group of researchers.

The Jackson Laboratories provide catalogs of commonly used laboratory mouse models for
T2D, obesity and cardiovascular research. As of this writing, 53 strains are used frequently to
model T2D and obesity, and 48 to model diabetes without obesity. Approximately 250 mouse
strains are used in CVD research, including 27 to model hypertension, 57 to model
hypercholesterolemia, and 17 to model hypertriglyceremia
(www.jaxmice.org/research/index/html). C57BL/6J features prominently in each of these
research areas due to its physiological sensitivity to experimental diets, and much recent
research has utilized this strain to explore MetS components [25–28]. Additionally, there are
10 strains that display a suite of characteristics resembling MetS. For example, studies indicate
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that low-density lipoprotein receptor-deficient mice, B6.129S7-Ldlrtm1Her/J, may be a good
model of dietary induced MetS [5,29–33]. Leiter (2009) discusses how one could go about
selecting a mouse model when designing a T2D and/or MetS study [15].

3. Murine models of metabolic disorders
Figure 1 shows the number of unique genes found associated with one or more components of
MetS for humans, for mice, and for their intersection. These numbers were ascertained for
mouse by utilizing the “Phenotype/Human Disease” section of the advanced search for “Genes/
Markers” and conditioning on “Gene” through the Mouse Genome Informatics database. For
human, these numbers were obtained through the “Entrez Gene” database at the National
Center for Biotechnology Information website. Both databases were queried on October 10,
2009 with keywords: “obesity”, “type-2 diabetes”, “insulin resistance”, “impaired glucose
tolerance”, “hypertension”, “dislipidemia”, “cholesterol”, “triglycerides”, and “free-fatty
acids”. Supplemental Table 1 provides the gene names for the three full sets of these genes.
Table 2 presents a list of the 28 genes out of the 512 that intersect in which mutations in both
human and mouse orthologs are associated with phenotypes diagnostic of the risk factors of
MetS in humans.

This illustrates that mouse models generally do not point to the same genes affecting the same
phenotype in the same way in humans. Rather, their power lies in that they can aid in
identification of genes acting in the same pathway and/or physiological system. As such, mouse
models are an excellent resource not only for identifying candidate genomic regions, but also
for illuminating the possible molecular mechanisms or pathways affected in individual
components of metabolic disease. For example, the leptin pathway was first characterized in
studies of the ob [34] and db [35] genes in mice. Subsequent studies in leptin (LEP)[36] and
the leptin receptor (LEPR)[37] in humans revealed mutations in these genes underlie obesity
[38]. Additionally, characterization of the melanocortin-AGRP pathway in studies of the mouse
agouti gene[39] led to the discovery of mutations in MC4R, shown to similarly affect body fat
content in mice and humans [40]. Recently, the T2D susceptibility gene sortilin-related domain
containing receptor1 (SORCS1) was identified in humans based on candidate status from
mouse studies [41], joining the ranks of calpain-10 (CAPN10) [42], peroxisome proliferator-
activated receptor γ (PPARG), and transcription factor 7-like 2 (TCF7L2) [43] as genes that
confer diabetes risk. Kraja et al. (2008) constructed gene networks for both humans and mouse
models and identified 859 mouse genes with a corresponding human counterpart in one or
more MetS components [44]. Further analysis of the interconnection of these genes in
pathways, especially those affecting multiple disease components, could prove effective in
identifying new genetic associations with MetS in humans.

In the following sections we briefly review QTL findings from mouse models of disease
components of MetS, particularly in light of issues raised by the recent flood of human genome-
wide association studies (GWAS) results. We also discuss how such mouse models have
illuminated gene-by-environment interactions contributing to metabolic disease. Finally, we
reflect on how these findings can be used in conjunction with genomic and bioinformatic
resources to inform future study design.

3.1 Obesity
The overall prevalence of the MetS has increased in parallel with increases in obesity. The
prevalence rate of obesity has increased steadily among US adults (>20 years of age) since
1960 from 13.3 to 32.1 percent [3]. Twin studies reveal estimates of broad sense heritability
of BMI to be up to 70% in both children and adults, and admixture mapping shows that obesity
is highly correlated with an individual’s relative percentages of ethnic ancestries [7,45]. Mouse
models have aided in identification of major variants in single genes underlying the obese
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phenotype in humans, for example proopiomelanocortin (POMC) [46], and the LEP [36],
LEPR [37], and MC4R [47] genes discussed above. Genome-wide linkage analysis and
positional cloning have identified several other genes contributing to obesity in human
populations, for example CAPN10, also associated with T2D [42], and PPARG [43],
ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) [48], also associated with T2D,
as well as solute carrier family 6 (SLC6A14) [49], and glutamate decarboxylase 2 (GAD2)
[50].

GWAS have successfully identified novel loci associated with obesity, for example the fat
mass and obesity associated gene (FTO) [51], catenin beta-like 1 (CTNNBL1) [52], and
fibrillin 2 (FBN2) [53]. More recent GWAS have found novel chromosomal loci in addition
to replicating previous obesity associations with genes such as FTO, MC4R [54] and brain-
derived neurotrophic factor (BDNF) [55]. The office of population genomics at the National
Human Genome Research Institute has made available a hand-curated catalog of published
human genome-wide association studies (www.genome.gov/gwastudies) [56]. As of this
writing, there are 19 unique GWAS reported loci associated with obesity.

While GWAS have successfully identified some obesogenic genes, these genes account for a
very small percentage of the overall heritable variation of obesity in humans. For example FTO
variants reported explain only ~1% of the heritability of BMI, despite having been identified
as an obesogenic gene in multiple ethnic populations [51,57], and despite obesity’s high
heritability [45]. This is a common result in GWAS of complex traits and the paucity of results
is due to a lack of power to detect genes of small effect. Indeed, the The Wellcome Trust Case
Control Consortium recently demonstrated that enormous sample sizes are required to have
adequate power to detect genomic regions having even large disease effects [58]. This is partly
because GWAS were designed with the common disease–common variant hypothesis in mind
[59–61]. While the method is successful at identifying associations between common
phenotypes and common allelic variants in homogeneous populations, GWAS lack of power
is reflective of humans’ heterogeneity in both genotypic and environmental influences.
McCarthy et al. (2008) provide a good review of issues related to GWAS [62]. Although obesity
is a common disease, the alleles underlying the phenotype are many and relatively rare, and
most will not pass the stringent multiple testing criteria necessary to claim association, hence
the “missing” heritability. The same holds true for other metabolic disorders: T2D, CVD and
hypertension. Thus a candidate gene approach, where candidates are identified independently
in mouse models, can be used to protect genomic regions from strict thresholds and increase
the power of these studies.

There have been a great many studies of the genetics of obesity and body weight in mice,
spanning over a century [63], and mice have proven to be excellent models for complementing
our understanding of the biology of obesity in humans. Several papers provide good reviews
of single mutant mouse models of obesity [64–66]. However, polygenic obesity is the most
common pattern of inheritance, and the most relevant in terms of modeling a component of
MetS. A total of 536 records are produced when one searches the term “obesity” in the “Mouse
Phenotypes and Models of Human Disease” section of the “Genes and Markers” query form
in the Mouse Genome Informatics Database (Accessed October 9, 2009) [67]. Of these records,
172 are for genes identified in studies of major mutants and transgenics, and 326 are for QTL
that have been mapped in many different inbred strain crosses, each segregating for its own
unique set of obesity QTL. Most of these QTL were identified in F2 populations and Brockmann
and Bevova (2002) provide a good review [68] of the most common strains used in these
crosses. Wuschke et al. (2007) report results of a meta-analysis of QTL associated with obesity
in mice, wherein they compiled a list of candidate regions comprised of 162 non-redundant
QTL for body weight and 117 QTL for adiposity (measured as fatpad weight) [69].
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The largest number of obesity and body size QTL mapped in any single cross is in the LG/J x
SM/J advanced intercross line [21–23,70–76]. LG/J and SM/J differ genetically for a number
of MetS related phenotypic traits, described in Ehrich et al. (2003), and genome-wide scans in
the F2 generation identified eight QTL for adiposity (Adip1–Adip8)[71,72]. Fine-mapping
efforts, which combined the F2/F3 generations, confirmed seven of these eight original QTL
(Adip1–Adip6 and Adip8), and found eleven more loci affecting adiposity (Adip9–Adip20)
[70]. Further mapping of the F9/F10 generations of the LG/J x SM/J AIL identified 31 adiposity
QTL, 13 of which replicated from previous generations [22]. Additional mapping efforts in
the F16 LG/J x SM/J AIL are ongoing, and preliminary results not only replicate previously
identified adiposity QTL, but also identify novel locations at high resolution because the
genetic map is 8 times that of the original F2 map due to accumulated recombination (Cheverud
et al. in preparation).

3.2 Type-2 diabetes
Like obesity, T2D is highly heritable, ranging from ~50–90% in twin studies, and disease
incidence varies with an individuals’ percent ethnic ancestry [77,78]. Linkage analysis and
positional cloning have led to identification of monogenic forms of T2D, generally through
studies of relevant phenotypes such as pancreatic β-cell function, for example the ATP-binding
cassette (ABCC8) [79], insulin resistance, for example insulin-degrading enzyme (IDE) [80],
and obesity, for example PPARG [81]. However, most cases of T2D do not exhibit Mendelian
inheritance and GWAS attempt to identify common variants through hypothesis-free testing
[82]. As of this writing, there are 30 unique GWAS reported loci associated with T2D [56].

A total of 212 QTL are associated with “type 2 diabetes” in the Mouse Genome Informatics
Database (Accessed October 9, 2009) [67]. Of these, 56 QTL are also retrieved when “obesity”
is queried, demonstrating the strong genetic association between these two components of
MetS. Clee and Attie (2007) provide an excellent review of the genetic and physiological
background of various mouse strains used to model T2D and its co-morbidities such as obesity
[78].

While C57BL/6 is the most commonly used and, hence best characterized, mouse strain used
in T2D research, results generated, whether “T2D-susceptible” or “T2D-resistant”, are
contingent on the strain it is being compared with, because it shows intermediate glucose and
insulin levels compared with other strains [15]. Mice do not get diabetes per se therefore it is
important to understand both the physiology and the genetic background of the inbred strains
when evaluating a mouse model of T2D. The LG/J and SM/J have been well characterized
with respect to T2D related traits and compared with SM/J, LG/J animals have lower basal
glucose levels and respond better to a glucose challenge [72]. Strains from a set of LGXSM
RILs show variation in development of hyperglycemia and hyperinsulinemia [83].
Additionally, ninety-one QTL mapping to 39 unique genomic locations were identified for
obesity, glucose response, and serum glucose and insulin levels in an LGXSM RIL [23].
Cheverud et al. (2004) found discordance among the loci affecting obesity, insulin and glucose,
suggesting there are genotypes that are protective for T2D in the presence of obesity [84].
While obesity is a major risk factor for T2D, approximately 20% of individuals with T2D are
not obese [82], and Cheverud et al.’s results suggest it is possible to dissect the relationship
between these two components of MetS. Ongoing research using an LG/J x SM/J F16 AIL is
mapping QTL for serum glucose and insulin levels as well as response to a glucose challenge.
Preliminary results identify 70 QTL mapping to 64 unique genomic locations (Lawson et al.,
in preparation).
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3.3 Cardiovascular disease
CVD has a multifactorial etiology involving metabolic, neuro-endocrine and genetic
interactions [85]. It shares many common risk factors with obesity and T2D, including
dyslipidemia and elevated blood pressure, and it is the leading cause of death in the United
States [86]. Heritability estimates for risk factors of CVD are variable among studies across
populations dependent on whether they are twin studies or family based studies. For example
estimates range from 20–66% for diastolic blood pressure, from 8–72% for fasting total
cholesterol, from 21–79% for fasting HDLC, from 31–68% for fasting LDLC, and from 19–
72% for fasting triglycerides [87]. After the leptin and the leptin receptor pathways were
characterized in mouse models, studies in human families have found >600 mutations in the
LDLR gene [88], and mutations in genes in the LDL and LDLR pathways, such as
apolipoprotein B (APOB) [89] and the ATP-binding cassette (ABCG5) [90] account for a large
majority of monogenetic dyslipidemia [91]. However, as with obesity and T2D, single genes
with large effects account for a small minority of cases of CVD, and most of the genes
underlying CVD remain unknown. As of this writing, there are 114 unique GWAS reported
loci associated with the CVD domains of total cholesterol, HDLC, LDLC, triglycerides, blood
pressure and systolic blood pressure [56].

A total of 340 QTL are associated with “cholesterol”, “triglycerides” and “blood pressure” in
the Mouse Genome Informatics Database (Accessed October 9, 2009) [67]. Of these, 99 are
also associated with obesity, 34 with diabetes and 18 with all three components of MetS. Mouse
models have significantly contributed to our knowledge of CVD and, despite being
characteristically resistant to CVD per se, many genetically altered strains respond to high-
cholesterol feeding with CVD pathologies [92]. The body of literature on this topic is rich: a
search of PubMed for “mouse models” and “cardiovascular disease” limited to the last five
years yields 4,672 results (www.ncbi.nlm.nih.gov/sites/entrez; Accessed October 17, 2009),
entire books are dedicated to the role of the laboratory mouse in CVD research [93], and the
Jackson Laboratories currently offer 250 mouse strains appropriate for CVD studies. Again
the most commonly referenced strain is C57BL/6 [1,27,94], and the Mouse Phenome Database
provides complete blood serum lipid profiles as well as atherosclerotic phenotypes
characterized for this strain [95]. The LG/J and SM/J strains have also been well characterized
with respect to CVD related traits. Compared with SM/J, LG/J animals have higher cholesterol
and free fatty acid levels [72]. Ongoing research using an LG/J x SM/J F16 AIL is mapping
QTL for variation in cholesterol, free fatty acid and triglyceride levels, and their variation in
response to dietary fat. Preliminary results identify 25 trait-specific QTL mapping to 24 unique
genomic locations (Lawson et al., in preparation).

3.4 Hypertension
Hypertension is the most common CVD risk factor, with an approximate 27% world-wide
prevalence [96]. Estimates of heritable variation vary, as discussed above, and while some
genes associated with hypertension have shown Mendelian patterns of inheritance, for example
mineralocorticoid (NR3C2) [97] and PPARG (also associated with obesity and T2D)[98],
relatively fewer causal genes than other risk factors have been identified. As of this writing,
there are 23 unique GWAS reported loci associated with hypertension [56]. Cowly (2006)
provides a good review of the genetic analysis of the etiology of hypertension [99].

Historically, the rat has been the preferred rodent model for the genetics of hypertension,
however the mouse is beginning to take a prominent role with the development of equipment
capable of measuring blood pressure in small animals [100]. Recently, a QTL associated with
blood pressure was identified in a mouse BXD RIL panel, and this candidate genomic region
was used to identify the gene ureidopropionase (UPB1). Subsequent analysis in humans
revealed the syntenic region to be a determinant of both systolic and diastolic blood pressure
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[24]. A total of 33 QTL are associated with “hypertension” in the Mouse Genome Informatics
Database (Accessed October 9, 2009) [67]. Of these, 9 are also associated with obesity, 3 with
diabetes, and 7 with CVD. Three QTL, Bpq21–Bpq23, are associated with all four components
of MetS. These three loci were identified in the males of an F2 generation NZO/HILtJ x C3H/
HeJ intercross [101]. However, a previous analysis of the F2 progeny of this same intercross
found no relation between blood pressure and other MetS components [102]. Supplementary
Table 2 lists the mouse QTL identified for each of the metabolic disorders discussed above.

4. Metabolic syndrome components: gene-by-gene and gene-by-
environment interactions

The genetic effects of most of these individual QTL discussed above are predominantly
additive, where the combined phenotypic effects of two alleles at a locus is equal to the sum
of their individual effects, and dominance deviations, where the heterozygote phenotype at a
locus deviates from the midpoint of the two homozygotes, i.e. due to interaction between alleles
at the same locus, also occur quite frequently. However, mouse-based QTL studies of MetS
components are uncovering a more complex genetic architecture, wherein QTL effects are
modified by diet and by sex [23,103]. Further, other characteristics such as epistasis [22,70],
imprinting [104], and maternal effects [105], each of which are difficult to ascertain in human
populations, are being illuminated through mouse models.

4.1 Gene-by-diet and gene-by-sex effects
Characterizing variation in response to diet is essential for testing hypotheses of the
environmental contribution to metabolic disorders and to understanding the etiology of MetS.
This is a challenging endeavor in studies of human populations because it is difficult to control
and/or record diet over time. Some human population studies have successfully examined gene-
by-environmental interactions [106–108], but typically, gene-by-environmental interactions
are regarded as nuisance factors, despite the fact that they may underlie the increasing
worldwide prevalence of MetS. Hence mouse models can be used to elucidate gene-by-
environmental effects that can be further extrapolated to humans. Svenson et al. (2007) present
results of a study assessing response to a high-fat diet in 43 inbred strains for 10 traits, including
blood serum levels and body composition including weight and adiposity [109]. The Mouse
Phenome Database [95] has compiled an inventory of high-fat diet intervention studies,
including sex effects where applicable.

A number of QTL have been found in crosses between inbred strains fed a high-fat diet
[110–115], some of which showed sex-specificity [68,111,112,115]. While these studies are
valuable in characterizing response to a high-fat environment, most do not examine this
response relative to a low-fat diet. As such, the context dependence of genetic by environmental
interactions is missed. Cheverud et al. have taken advantage of the genotypic and phenotypic
differences between LG/J and SM/J to identify genetic variation in dietary response for multiple
MetS component traits (obesity (adiposity), glucose tolerance, and serum insulin, glucose,
cholesterol, free fatty acid, and triglyceride levels) both in the LGXSM RIL panel [84] and in
the F16 LG/J x SM/J AIL, dividing litters into high- and low-fat diet treatments [21]. Of the 91
QTL mapped in the RIL, 34% were only observed in individuals fed a high-fat diet and, for
58% of the traits examined, having the LG/J allele led to higher values. Eight sex-specific QTL
were found, and in general females showed a greater genetic response to high-fat diet for
obesity related traits, whereas males showed a greater response in fasting glucose levels [23].
Ongoing QTL mapping efforts in the F16 LG/J x SM/J AIL for these same MetS component
traits confirm that genotype interacts with environment in important ways, indicating that the
underlying genetics of MetS is highly context dependant (Cheverud et al., in preparation;
Lawson et al., in preparation).
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4.2 Epistasis
Epistasis occurs when the interaction among the alleles at two or more loci cause a phenotypic
effect. In humans, epistasis between genetic variants of PPARG2 and proprotein convertase
subtilisin/kexin (PCSK1) effects individual susceptibility to insulin resistance [116].
Additionally, the contribution of the apolipoprotein epsilon locus (ApoE) to serum cholesterol
levels is mediated by an individual’s genotype at the LDLR locus [117]. However, in general,
studies of the contribution of epistasis to components of MetS in humans are under-represented
in the literature. Mouse models of MetS components are revealing that epistatic interactions
among QTL are commonplace, and that even QTL having small individual effects contribute
considerably to epistatic interactions [101,118–121]. Recently, Fawcett et al. (2009) found that
epistasis contributed significantly to genetic variation in fatpad (8.1%) and body weight
(12.3%) in an analysis of a combined F9/F10 LG/J x SM/J AIL [22]. Sometimes, an individual
QTL will interact with many others. For example, Brockman et al. (2000)found a QTL,
Lepq1, on chromosome 14, interacting with seven other QTL associated with adiposity in an
F2 DU6i x DBA/2 intercross [118]. Cheverud et al. (2001) found that Adip8, on chromosome
18, interacted with all seven other adiposity QTL identified in a LG/J x SM/J intercross [71].
These results point to QTL that may contain major regulators of the genetic pathways
underlying MetS.

4.3 Imprinting
Our knowledge of the influence of epigenetic factors, cell-specific heritable changes in gene
expression occurring in the absence of DNA mutation, on metabolism is limited. However, the
various disease components comprising MetS show non-Mendelian features, such as some
discordance in twins, male and female differences in prevalence, and individual variation in
both healthy and disease states, each of which are consistent with epigenetic mechanisms
[122]. Genomic imprinting can be generally defined as the unequal expression of maternally
and paternally derived copies of a gene, and it is becoming apparent that imprinting is an
important aspect of the genetic architecture of many complex traits, including growth and
metabolism [123]. More than 80 imprinted genes have been identified in humans and mice
[124], and genome-wide bioinformatic analyses have trained algorithms with imprinting
signatures, such as methylation and histone modification, to predict that several hundred genes
are likely to be imprinted across the genome [125,126]. QTL mapping can also identify
imprinted loci [104,127,128], and loci with imprinting effects on obesity have been mapped
in human populations [129]. Using an F16 population of LG/J x SM/J AIL fed both high- and
low-fat diet treatments, we have mapped genome-wide imprinting values for various MetS
component traits (adiposity, serum lipid levels of cholesterol, free fatty acids, and triglycerides,
serum insulin and glucose, and glucose tolerance). The imprinting genotypic value is defined
as half the difference between the reciprocal heterozygotes, LS and SL, where the first allele
is derived from the father and the second from the mother (Cheverud et al., in preparation;
Lawson et al., in preparation).

In this study, one thousand two animals were partitioned by sex and fed low- (247 males; 254
females) and high- (253 males; 248 females) fat diets. Animals were scored at 1,402 autosomal
SNPs using the Illumina Golden Gate Assay. Details of the pedigree and of the phenotyping
and genotyping process are described in Ehrich et al., (2005) [21]. Additive, dominance, and
imprinting scores were estimated at each marker and additional markers were imputed at 1 cM
intervals. Analyses were performed using the SAS PROC mixed model with additive,
dominance, and imprinting genotypic scores, their interactions with sex, diet, and with sex by
diet as the fixed effects and with family, family by sex, diet and by sex and diet interactions
as the random effects. Figure 2 shows the genotypic means for a significant QTL found on
chromosome 8 for glucose tolerance, measured as the area under the curve (AUC) calculated
from results of an intra-peritoneal glucose tolerance test performed at 10 weeks of age. This
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QTL has significant additive effects in the full population, and significant additive and
imprinting effects when the QTL is deconstructed into sex-by-diet cohort. In males fed a high-
fat diet, there is paternal imprinting whereby individuals inheriting the SM/J allele from their
father have a relatively poor response to glucose stress. The implications of this result are two-
fold: genomic imprinting is not only a dynamic contributor to variation, but also an effect that
is highly context dependent. These results support previous findings that imprinting patterns
are labile [104,130] and not consistent across all genotypes and environments. Further, if sex-
by-diet cohorts are not considered individually, the imprinting effect is washed out in the full
population. Such context goes unmeasured in human GWAS and by not being considered,
results are missing an important aspect of the genetic architecture underlying variation in
metabolic traits.

4.4 Maternal effects
Maternal effects can be generally defined as the influence of a mother’s phenotype on the
phenotypes of her offspring [131], and human studies indicate that maternal BMI is
significantly associated with MetS in offspring [132,133]. While maternal phenotype is
considered environmental with respect to offspring genotype, there is a genetic basis to
variation in the maternal generation including the mitochondria (that generate energy and are
referred to as the “powerhouse” of the cells), transmitted by mother’s ovum. Because it is
difficult to quantify the genetic and environmental components of maternal phenotype on MetS
in offspring in humans, the mouse has proved invaluable for illuminating this aspect of the
genetic architecture. For example, Wolf et al. (2002) identified maternal effect QTL that
accounted for 31.5% of among litter variance in offspring early growth in a cross-fostered F3
LG/J x SM/J intercross [134]. Jarvis et al. (2005) measured genetic maternal effects on
offspring lipid, obesity and diabetes related traits in reciprocal crosses between C57BL/6J and
10 LGXSM RILs [105]. The authors found that genetic maternal effects accounted for as much
as 10% of the phenotypic variance in offspring at 17 or more weeks after weaning. These results
indicate that variation in metabolic traits not only is dependent on an individual’s own
genotype, but also is independently influenced by the individual’s mother’s genotype.

5. Promise of comparative genomics and bioinformatics
The wealth of information provided by recently available whole-genome sequences promises
to expand our knowledge of MetS. Direct examination of the human syntenic regions for mouse
QTL has already led to identification of QTG for plasma lipids [135–137] and hypertension
[24,138,139]. Bioinformatic tools are developed that can aid this research [140], and several
databases catalog positional information for human disease mutations, including both coding
and non-coding variations [141]. For example, bioinformatic analysis of multiple-species
protein coding sequence alignments finds that heritable human disease-associated mutations
overwhelmingly occur at phylogentically conserved amino acid sites [142–144]. However,
comparative genomic analyses of mammalian molecular evolution have also found evidence
that genes related to some known Mendelian disorders have evolved differently in humans than
in lineages leading to other closely related contemporary mammals [145,146]. Comparison
among primates has identified several instances of a human disease-associated coding variant
corresponding to the wild-type amino acid in the chimpanzee, the macaque, or the reconstructed
ancestral primate genome [147], implying that the protective variant seen in humans is derived.
Thus a non-trivial proportion of disease genetic risk is associated with ancestral alleles [148],
and knowledge of a QTL associated with a disease phenotype in mouse can allow one to use
whole genome multiple-species alignments to reconstruct the evolution of a genomic region
and to make functional predictions, which, in a biomedical context, have obvious therapeutic
implications.
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Comparing multiple species’ genomes has led to the discovery of polymorphisms and
molecules that have been shown to contribute to disease risk. For example, copy number
variants (CNVs), DNA segments that vary in number among individuals, are a recently
identified source of genetic variation in mammals and have been shown to affect gene
expression, presumably through altered gene dosage [149–151]. Recently, CNVs were found
to be highly associated with variation in gene expression levels in mouse adipose tissue, and
QTL for metabolic traits were identified at or near several CNV genes in an F2 C57BL/6J x
C3H/HeJ intercross [152]. Non-coding microRNAs have been shown to affect many biological
processes, including metabolism [153,154], and mouse models have recently been used to
characterize microRNA-dependent regulation of glucose homeostasis and lipid metabolism in
mouse models of obesity and T2D [155,156].

A particularly promising area of research where mouse models are proving invaluable is the
characterization of coding and non-coding DNA sequence in gene networks and regulatory
pathways. Genes do not function singly, or singly affect a trait. A recent experiment that
focused on susceptibility loci for metabolic disease traits to identify gene networks validated
lipoprotein lipase (Lpl), lactamase beta (Lactb), and protein phosphatae 1-like (Ppm1l) as genes
underlying obesity in mice [157]. Some recent bioinformatic approaches have taken advantage
of genes and QTL found through mouse models to identify sequences affecting multiple
components of MetS. Both these methods, experimental and bioinformatic, point to focal
candidates for further analysis in human populations [44,69]. Further, under a comparative
genomics framework, one could examine co-evolution of genes that interact within and
between disease components to identify patterns that could guide future research into the
etiology of MetS. Such an approach should incorporate insights gained from mouse models
about the complexity and the context-dependency of gene-by-environment interactions if it is
to lead to rational treatments and prevention strategies in humans.
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Figure 1.
Venn diagram illustrating the number of unique genes associated with a MetS component for
humans, for mice, and their intersection
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Figure 2.
Genotypic means for a significant QTL for glucose tolerance in an F16 LG/J and SM/J AIL
(Wustl:LG,SM-G16). The QTL has significant additive effects in the full population, and
significant additive and imprinting effects in males fed a high-fat diet. Note the scale is different
in the high-fat fed males to accommodate that cohort’s higher mean values.
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