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Abstract

A concise asymmetric total synthesis of (—)-vindoline (1) is detailed based on a tandem intramolecular
[4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole inspired by the natural product structure, in
which the tether linking the initiating dienophile and oxadiazole bears a chiral substituent that controls
the facial selectivity of the initiating Diels—Alder reaction and sets absolute stereochemistry of the
remaining six stereocenters in the cascade cycloadduct. This key reaction introduces three rings and
four C—C bonds central to the pentacyclic ring system setting all six stereocenters and introducing
essentially all the functionality found in the natural product in a single step. Implementation of the
approach also required the development of a unique ring expansion reaction to provide a 6-membered
ring suitably functionalized for introduction of the A8.7-double bond found in the core structure of
vindoline and defined our use of a protected hydroxymethyl group as the substituent used to control
the stereochemical course of the cycloaddition cascade.

Vindoline (1),1+2 a major alkaloid of Cantharanthus roseus, constitutes the more complex
lower half of vinblastine (2)2~° and serves as both a biosynthetic3:4 and synthetic8:7 precursor
to this important natural product (Figure 1). We recently reported the development of a concise
total synthesis of (—)- and ent-(+)- vindoline8~10 enlisting an intramolecular tandem [4+2]/[3
+2] cycloaddition cascade of 1,3,4-oxadiazoles11 with resolution of a key intermediate, its
extension to the preparation of a series of related natural products including vindorosine, 10
12 and the subsequent development of a biomimetic Fe(l11)-promoted coupling with
catharanthine for their single step incorporation into total syntheses of vinblastine and related
natural products.6f Herein, we report the development of an asymmetric total synthesis of (-)-
vindoline based on an additional implementation of the tandem [4+2]/[3+2] cycloaddition
reaction in which the tether linking the initiating dienophile and oxadiazole bears a chiral
substituent that sets absolute stereochemistry of the remaining six stereocenters in the cascade
cycloadduct. Relative to our earlier work,10 the dienophile linking tether was reduced in length
by one carbon permitting the effective control of the facial selectivity of the initiating Diels—
Alder reaction and subsequent transmission of the attached substituent stereochemistry
throughout the newly constructed pentacyclic ring system that was not observed in our studies
with a four atom tether to the initiating dienophile.10 Moreover, this insured that the initiating
Diels—Alder reaction could be conducted under milder conditions than previously observed.
11 The approach required that the activating acyl chain carbonyl now reside in the dipolarophile
tether and that the [4+2] cycloaddition afford a fused 5-membered versus 6-membered ring. A
subsequent, unique ring expansion reaction was developed to provide a 6-membered ring
suitably functionalized for introduction of the A 8:”-double bond found in the core structure of
vindoline and defined our use of a protected hydroxymethyl group as the substituent used to
control the stereochemical course of the cycloaddition cascade.
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The most important question addressed in initial studies was the stereochemical fate of the key
cycloaddition cascade. Accordingly, substrate 13 was prepared and examined in detail.
Although 13 lacks the aryl methoxy substituent required for the synthesis of vindoline, it was
judged to be an ideal surrogate for examination of the key cycloaddition reaction. The side
chain chirality was set using aspartic acid as the starting material (Scheme 1, both enantiomers
prepared, natural enantiomer series shown). Teoc protection of o-HoN-Asp(OBn)-OH
(TeocOSu, quant.) followed by mixed anhydride formation (i-BuOCOCI, NMM, DME, —15 °
C) and reduction (NaBHg4, H»O) provided the alcohol 5 (91%), which was protected as its
MOM ether 6 (MOMCI, i-ProNEt, CH,Cly, 84%). Benzyl ester hydrogenolysis (H,, 10% Pd/
C, THF), coupling of the crude carboxylic acid with N,O-dimethylhydroxylamine (EDCI,
DMAP, i-ProNEt, CH,Cl,, 94% from 6), and reaction of the Weinreb amide 7 with EtMgBr
(3 equiv, 3 equiv of CeClz, THF, 0 °C, 1 h, quant.)3 cleanly provided the ethyl ketone 8.

Wittig olefination of 8 with Ph3P=CHOBN provided a 1:1 mixture of the separable (E) and
(2) enol ethers 9. Teoc deprotection (BuyNF) and treatment of the liberated amine with
carbonyldiimidazole (CDI) afforded 10 (86%, two steps) that was converted to the oxadiazole
precursor 12 by treatment with methyl oxalylhydrazidel# in the presence of HOACc (78%) and
cyclization of 11 to form the corresponding oxadiazole (TsCl, EtsN, CH,Cl,, 94%). Coupling
of 12 with (1-methylindol-3-yl)-2-acetic acid provided the substrate 13 with which the initial
examination of the cycloaddition cascade was conducted.

Cyclization of 13 proceeded effectively providing essentially or predominantly asingle cascade
cyloaddition diastereomer 14 in superb conversions (72%, xylene, 145-150 °C, 10 h) and only
small amounts (0-13%) of a second diastereomer were detected, Scheme 2. The temperature
required to initiate the cycloaddition cascade is lower (145 vs 180 °C) and the reaction time
required for complete reaction is shorter (10 vs 24 h) than those observed with substrates
bearing a longer dienophile tether.10

Diastereoselective reductive cleavage of the oxido bridge was effected by treatment with
NaCNBH3 (2 equiv, 20% HOAc-i-PrOH, 0-25 °C, 40 min, 94%) in a reaction that proceeds
by acid-catalyzed generation of an acyliminium ion flanked by two quaternary centers that is
reduced by hydride addition to the less hindered convex face, and provided 15 whose structure
and stereochemistry were confirmed in a single crystal X-ray structure determination.1>
Following initial studies characterizing the cascade cycloaddition reaction of 13, it proved most
convenient to run the cycloaddition and subsequent reductive oxido bridge cleavage without
the intermediate purification of 14, which proved sensitive to silica gel exposure, providing
15 directly in good overall conversions (57-70% for two steps).

The reaction cascade is initiated by [4+2] cycloaddition of the 1,3,4-oxadiazole with the
tethered electron-rich enol ether whose reactivity and regioselectivity are matched to react with
the electron-deficient oxadiazole in an inverse electron demand Diels—Alder reaction (Figure
1). Loss of N5 from the initial cycloadduct provides a carbonyl ylide, which undergoes a
subsequent 1,3-dipolar cycloaddition with the tethered indole.1® The diene and dienophile
substituents reinforce the [4+2] cycloaddition regioselectivity dictated by the linking tether,
the intermediate 1,3-dipole is stabilized by the complementary substitution at the dipole
termini, and the intrinsic regioselectivity of the attached dipolarophile (indole) complements
the [3+2] cycloaddition regioselectivity that is set by its linking chain. The dienophile tether
substituent effectively controls the facial selectivity of the initiating [4+2] cycloaddition
reaction dictating that the protected hydroxylmethyl group at C7 and the C5 ethyl group reside
trans to one another on the newly formed 5-membered ring avoiding a cis pseudodiaxial-1,3-
interaction on the sterically more congested concave face of the transition state leading to the
initial [4+2] cycloadduct. This establishes the absolute stereochemistry at C5, which in turn is
transmitted throughout the cascade cycloadduct where the remaining relative stereochemistry

J Am Chem Soc. Author manuscript; available in PMC 2011 March 24.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Kato et al.

Page 3

is controlled by a combination of the dienophile geometry (C4 and C5 stereochemistry) and
an endo indole [3+2] cycloaddition sterically directed to the face of the 1,3-dipole opposite the
newly formed 5-membered ring.10=12 The minor diastereomer occasionally observed in the
cycloaddition of 13 appears to be derived from endo indole [3+2] cycloaddition on the same
face of the 1,3-dipole as the newly formed 5-membered ring (C2/C11 diastereomer) suggesting
the facial selectivity for the initiating Diels—Alder reaction is >20:1 (detection limits).1’

The substrate 16, required for the synthesis of vindoline and bearing the indole methoxy group
participated in the cycloaddition cascade (130 °C, 8 hand 175 °C, 8 h, xylene) in an analogous
fashion and, although the initial cascade cycloadduct 17 was isolated and characterized, it was
most conveniently subjected to reductive oxido bridge cleavage (NaCNBH3, 10% HOAC/i-
PrOH) prior to purification providing 18 directly (55% for two steps, Scheme 2). The product
18 was converted to the key intermediate 22 by benzyl ether hydrogenolysis (91%), oxidation
of the free alcohol 19 (DMP, pyridine—-CH,Cl,, 0 °C, 3 h, 76%) and diastereoselective ketone
reduction (LiAIH(O'Bu)3, THF, 0 °C, 10 h, 87%, 30:1 dr) from the less hindered convex face
of 20, followed by C4 alcohol 21 acetylation (Ac,0O, DMAP, pyridine, 95%) to provide 22
(Scheme 2). O-Methylation and reductive removal of the lactam carbonyl (MeOTf, 2,6-di-
tbutylpyridine, CH,Cl, 25 °C, 2 h; NaBH4, MeOH, 25 °C, 5 min) followed by MOM ether
deprotection (HCI, MeOH, 25 °C, 16 h) liberated the primary alcohol 24 (85% for two steps
from 22). Oxidation (3 equiv of SO3-Py, 3 equiv of EtgN, CH,Cl,/DMSO, 25 °C, 1-2 h) of
24 provided an unstable a-aminoaldehyde that not only rapidly epimerized, but was found to
be prone to hydrate and enol formation. Moreover, we found that simply exposing the crude
aldehyde to silica gel in the presence of EtsN (1% Et3N/EtOAC) in the course of conventional
purification led to clean conversion to the stable N,O-ketal 25 (85%), equation 1.

CHO —OH

(1)

Formation of the primary tosylate 26 (TsCl, DMAP, Et3N, CH,Cl,, 25 °C, 16 h, 93%) and its
subjection to conditions developed for ring expansion!® (NaOAc, dioxane—H,0, 70 °C)
provided the key 6-membered ring ketone 17 (61%). Although several mechanistic possibilities
can be envisioned for this transformation, some of which proceed through an aziridiniumion,
it is most simply and formally represented as hydrolysis of the N,O-ketal to release a reactive
a-tosyloxymethyl ketone followed by its intramolecular N-alkylation to provide the 6-
membered ketone 17 (equation 2).
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(2)

Diastereoselective reduction of 27 (L-selectride, THF, =78 °C, 0.5 h) provided the penultimate
secondary alcohol 28 (91%, >30:1 dr),12¢ which turn underwent regioselective elimination as
previously described10 to provide vindoline (1) upon Mitsunobu activation in the absence of
added nucleophiles, Scheme 2.1°

Exploration of additional means to effect the key ring expansion reaction, extensions to the
preparation of additional Aspidosperma alkaloids and key vindoline analogues, and their
incorporation (e.g., 24 and 28) into vinblastine analogues are in progress and will be reported
in due course.
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Figure 1.
Natural product and key cycloaddition cascade.
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