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ABSTRACT
Background: Leukocyte telomere length is associated with dis-
eases of aging, but there is limited knowledge of diet and lifestyle
determinants.
Objective: The objective was to examine cross-sectionally the as-
sociation between diet, body composition, and lifestyle factors on
leukocyte telomere length in women.
Design: Leukocyte telomere length was measured by quantitative
polymerase chain reaction in 2284 female participants from the
Nurses’ Health Study, who were selected as controls for an inves-
tigation of biological predictors of cancer. Diet, lifestyle, and an-
thropometric data were assessed by questionnaire.
Results: After multivariate adjustment, dietary fiber intake was
positively associated with telomere length (z score), specifically
cereal fiber, with an increase of 0.19 units between the lowest and
highest quintiles (P = 0.007, P for trend = 0.03). Although total fat
intake was not associated with telomere length, polyunsaturated
fatty acid intake (20.26 units, quintile 5 compared with quintile
1: P = 0.002, P for trend = 0.02), specifically linoleic acid intake,
was inversely associated with telomere length after multivariate
adjustment (20.32 units; P = 0.001, P for trend = 0.05). Waist
circumference was inversely associated with telomere length
[0.15-unit difference in z score in a comparison of the highest
(�32 in, 81.28 cm) with the lowest (�28 in, 71.12 cm) category
(P = 0.01, P for trend = 0.02) in the multivariate model]. We found
no association between telomere length and smoking, physical ac-
tivity, or postmenopausal hormone use.
Conclusion: Although the strength of the associations was modest
in this population of middle- and older-age women, our results
support the hypothesis that body composition and dietary factors
are related to leukocyte telomere length, which is a potential bio-
marker of chronic disease risk. Am J Clin Nutr 2010;91:1273–
80.

INTRODUCTION

Telomeres are critical in maintaining the structural integrity of
the genome and in protecting chromosomes from degradation and
end-to-end fusion (1). They undergo erosion with each cycle of
replication, and this shortening may trigger cellular senescence or
apoptosis (2, 3), a process that is accelerated by oxidative stress
and inflammation both in vitro (2–8) and in vivo (9–12). Telomere
length progressively shortens with age in various mitotic tissues
and cell types (2, 13–17). Leukocyte telomere length (LTL) may
serve as a potential biomarker of biological age, reflecting the
cumulative burden of oxidative stress and inflammation (18).

A growing body of epidemiologic and clinical data suggest
that accelerated telomere attrition is associated with diseases of
aging (19–21), including an increased risk of bladder cancer (22,
23), osteoporosis (24), coronary heart disease, diabetes, and heart
failure (12, 25–32). Telomere length is a complex trait that is
shaped by a combination of genetic, epigenetic, and environ-
mental determinants (33–36); however, the range of factors that
influence telomere dynamics is not fully established. Of the
biological factors, a growing body of evidence suggest that
heredity plays an important role. Several genes influence telo-
mere length (37–39), and the reported heritability ranges from
36% to 90% (40, 41). Furthermore, genome-wide linkage studies
provide evidence of linkage to autosomal regions (40, 41). En-
vironmental and lifestyle factors may also play a key role, and
shortened telomere length has been associated with, psycho-
logical stress (11), low physical activity levels (42), and equivocal
data on the effects of body size (43, 44), smoking (43, 45), and
socioeconomic status (46, 47) have been reported. However, to
date, limited studies have investigated the relative importance of
dietary intake on LTL (48, 49). Given that telomere shortening is
accelerated by oxidative stress and inflammation and that diet
affects both of these processes, the objective of our study was to
determine the potential relation between dietary factors and LTL
and also to further examine the importance of other lifestyle
factors. Although this was a cross-sectional study, and therefore
exploratory in nature, we hypothesized that 1) a diet high in fruit
and vegetables and rich in dietary fiber and whole grains would
be associated with longer LTL because these dietary factors
exert antioxidant and antiinflammatory effects, and 2) a diet high
in polyunsaturated and trans fatty acids, which are associated
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with inflammation and oxidative stress, may accelerate the bi-
ological aging process and be associated with shorter LTL.

SUBJECTS AND METHODS

The study population comprised 2284 female participants
from the Nurses’ Health Study who were selected as control
subjects in nested case-control studies of biological predictors of
breast, skin and endometrial cancer (50, 51). The Nurses’ Health
Study is a prospective cohort investigation involving 121,700
female US nurses who were 30–55 y of age at baseline in 1976.
Information about health and disease is assessed biennially,
and dietary information was obtained every 4 y through self-
administered questionnaires (52, 53). From 1989 to 1990, a blood
sample was requested from all participants and was provided by
32,826 women. Women who provided blood samples were
similar to those who did not (54), and the controls who partic-
ipated in the current study were randomly selected by using
a risk-set sampling (55) at a ratio of 1:1 to 1:3. Controls were
matched to cases on age, menopausal status, blood collection
variables (time of day, season, year of blood collection, and
fasting status), and recent (,3 mo) postmenopausal hormone use
from the subgroup of participants who were free of diagnosed
cancer at the time cancer was diagnosed in the cases. We did not
include cancer cases in our analyses because case status may be
related to telomere length and also to specific lifestyle charac-
teristics that predict cancer and, thus, lead to biased results from
the oversampling of women with cancer.

Anthropometric, lifestyle, self-reported blood pressure
measurements, and dietary data were derived from the ques-
tionnaire administered in 1990, with missing information
substituted from previous questionnaires. Body mass index
(BMI) was calculated as weight (in kg) divided by the square of
the height (in m). Average nutrient intakes were computed by
using a validated semiquantitative food-frequency questionnaire
(52, 53, 56). Physical activity, expressed in terms of metabolic
equivalent task (MET) hours, was assessed by using a previously
validated questionnaire (57).

Measurement of LTL

A quantitative real-time polymerase chain reaction method
was used to measure relative telomere length in genomic DNA
extracted from peripheral blood leukocytes (50), and the ratio of
telomere repeat copy number to a single gene copy number (T:S)
was determined as previously described (50). Each sample was
analyzed in triplicate, and the relative telomere length was
calculated as the exponentiated T:S ratio. CVs of the telomere and
single-gene assay ranged from 0.57% to 3.07% and 0.56% to
2.07%, respectively. The CVs for the exponentiated T:S ratio of
quality control samples ranged from 14% to 16% (50, 51).

Statistical analyses

Control subjects were derived from 3 ongoing nested case-
control studies examining the relation between LTL and skin,
breast, and endometrial cancer (50, 51). Given the interrun
differences in assessment of relative LTL, we derived the log
relative telomere length for each set of controls separately after
deleting extremes (1%). We then derived a z score for each set of
controls, and, after excluding participants with missing co-

variates, the z scores were pooled for all subsequent analyses
(n = 2284).

We calculated age-adjusted participant demographic and
lifestyle characteristics and age- and energy- adjusted nutrient
intake data across quintiles of the LTL z score. Spearman’s age-
adjusted partial correlation coefficients were derived to examine
the correlation of LTL with all variables. To evaluate the asso-
ciations between diet and lifestyle variables and LTL we used 2
multivariable linear regression models with robust variance es-
timates (52). In model 1 we adjusted for age (5-y categories) and
smoking status (never, past, nonsmoker with unknown past
history, current smoker, and unknown), and in model 2 we ad-
ditionally adjusted for postmenopausal hormone use (never, past
,5 y, past �5 y, current ,5 y, and current �5 y), physical
activity (quintiles), and BMI (in kg/m2: ,25, 25–29, 30–34, and
�35). We also included total energy intake and energy-adjusted
protein, individual fatty acids [polyunsaturated (PUFA), satu-
rated, trans, and monounsaturated], cereal fiber (for carbohy-
drate analysis protein was removed from the model) in model 2.
We calculated P trends across categories by including the in-
dependent variable as a continuous predictor in the regression
models.

To assess the joint and independent effects of PUFAs and age,
we created categorical interaction variables by cross-classifying
tertiles of PUFA and age (Figure 1). Statistical analyses were
conducted by using SAS software (version 9; SAS Institute,
Cary, NC). All P values are 2-tailed.

FIGURE 1. Joint associations of age, ,60 y (A; n = 922) compared with
�60 y (B; n = 1362), and polyunsaturated fatty acids on telomere length in
the Nurses’ Health Study. The median intakes of polyunsaturated fatty acids
were 7.4, 9.0, 10.3, 11.8, and 14.1 g/d for quintiles 1–5, respectively.
Multivariable linear regression was performed, with adjustment for age,
smoking, postmenopausal hormone use, BMI, physical activity, and
intakes of polyunsaturated fatty acids, saturated fatty acids, trans fatty
acids, monounsaturated fatty acids, energy, cereal fiber, and protein. P for
interaction = 0.07. T:S, ratio of telomere repeat copy number to a single gene
copy number.
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RESULTS

Age was inversely correlated with LTL (r = 20.11, P ,
0.0001). Subjects in the lowest quintile of LTL had a higher
BMI, higher total fat intake (specifically from monounsaturated
fatty acids and PUFAs), and a lower fiber intake, specifically
from cereal fiber and whole grains (Table 1). The strongest
age-adjusted Spearman correlations were for body composi-
tion (BMI: r = 20.06, P = 0.009; waist: r = 20.06, P = 0.01),
total fat intake, polyunsaturated fatty acids and linoleic acid (all
r = 20.06, P = 0.004), and fiber, specifically cereal fiber (r =
0.06, P = 0.004).

Compared with women in the lowest category of waist cir-
cumference (�28 in, 71.12 cm), women in the top category of
waist circumference (�32 in, 81.28 cm) had a 20.15-unit dif-
ference in z score (P for trend = 0.02). In analyses stratified by
age, increased waist circumference in the younger age group
was negatively associated with LTL (20.27 change in z score in
the group aged,60 y, P for trend = 0.05;20.07 in the older age
group, P for trend = 0.12). The highest compared with lowest
BMI category (�35 compared with ,25) was also negatively
associated with LTL (P = 0.03) (Table 2).

Total fat intake was only inversely associated with LTL after
adjustment for age and smoking, but this association did not
remain statistically significant after multivariate adjustment.
However, results from analyses of individual fatty acid intake
suggest that a higher PUFA intake (20.26 z score units, P for
trend =0.02), specifically linoleic acid intake, was inversely
associated with LTL in the multivariate model (20.32 z score
unit difference, P for trend = 0.05; Table 3). As shown in
Figure 1, LTL was lowest among the older women in the
highest category of PUFA intake (P = 0.004, P for interaction =
0.07).

In contrast with PUFAs, dietary fiber intake was positively
associated with LTL, specifically cereal fiber, with an increase of
0.19 z score units between the highest and lowest quintiles
(quintile 5 compared with quintile 1: P for trend = 0.03), and
this was in part explained by whole-grain intake. In our analyses
of other factors, there was a trend toward a relation between
increased vitamin E intake and LTL, but it was not statistically
significant. No significant associations were observed for vita-
min D intake, fruit and vegetable intake, smoking, physical
activity, or postmenopausal hormone use.

TABLE 1

Characteristics of the 2284 women (controls) who participated in the Nurses’ Health Study by quintile of telomere length1

Quintile of z score
P for

trend1 2 3 4 5

Age (y) 59.3 6 6.4 59.7 6 6.3 59.2 6 6.5 58.1 6 6.5 58.0 6 6.9 —

Postmenopausal (%) 87.6 6 0.32 85.9 6 0.32 88.2 6 0.31 87.7 6 0.35 87.2 6 0.37 0.82

HRT use (%) 64.7 6 0.48 62.3 6 0.49 65.2 6 0.48 61.8 6 0.48 64.4 6 0.48 0.96

BMI (kg/m2) 26.0 6 4.9 25.7 6 4.8 25.4 6 4.6 25.3 6 4.5 25.3 6 4.3 0.005

Waist (cm) 80.3 6 11.5 80.0 6 10.8 79.3 6 10.3 78.7 6 9.9 78.7 6 10.1 0.009

Hip (cm) 101.9 6 10.2 101.4 6 9.8 100.8 6 9.8 101.1 6 8.9 100.8 6 9.5 0.1

Waist:hip ratio 0.79 6 0.12 0.79 6 0.10 0.79 6 0.08 0.78 6 0.06 0.78 6 0.12 0.14

Weight (kg) 70.2 6 13.9 68.9 6 13.1 68.3 6 13.2 67.4 6 12.6 68.2 6 11.2 0.004

Height (cm) 164.1 6 5.6 163.6 6 5.8 163.8 6 6.0 163.3 6 5.9 164.1 6 5.8 0.59

Alcohol (g/d) 6.1 6 10.5 6.4 6 10.2 6.1 6 9.2 6.4 6 11.2 6.4 6 9.7 0.59

Energy intake (kcal/d) 1795 6 494 1774 6 492 1771 6 488 1789 6 507 1774 6 474 0.62

Total fatty acids (g/d) 56.2 6 10.3 56.0 6 11.6 54.6 6 10.2 55.6 6 10.3 54.1 6 11.1 0.003

Saturated fatty acids (g/d) 18.8 6 4.4 18.7 6 4.4 18.5 6 4.5 18.6 6 4.1 18.4 6 4.5 0.11

Monounsaturated fatty acids (g/d) 21.5 6 4.8 21.5 6 5.0 20.7 6 4.3 21.4 6 4.8 20.6 6 4.9 0.006

Polyunsaturated fatty acids (g/d) 10.9 6 2.9 10.9 6 3.7 10.5 6 2.8 10.7 6 2.8 10.2 6 2.8 0.0008

trans Fatty acids (g/d) 2.6 6 1.0 2.7 6 1.0 2.5 6 0.93 2.6 6 0.94 2.5 6 1.0 0.05

Omega-3, marine (g/d) 0.25 6 0.19 0.26 6 0.34 0.25 6 0.26 0.25 6 0.25 0.25 6 0.21 0.96

Linolenic acid (g/d) 0.90 6 0.30 0.94 6 0.40 0.90 6 0.33 0.90 6 0.30 0.88 6 0.29 0.13

Linoleic acid (g/d) 9.4 6 2.7 9.4 6 3.1 9.0 6 2.5 9.2 6 2.7 8.8 6 2.6 0.0009

Protein (g/d) 75.9 6 13.3 75.4 6 13.7 75.1 6 12.9 76.1 6 12.8 76.8 6 13.1 0.19

Carbohydrates (g/d) 200.1 6 30.7 199.6 6 35.2 203.4 6 33.2 201.0 6 30.9 204.0 6 33.1 0.06

Fiber (g/d) 18.5 6 5.3 18.5 6 6.1 18.8 6 5.6 18.6 6 5.2 19.3 6 5.7 0.03

Cereal fiber (g/d) 5.0 6 2.7 5.5 6 4.0 5.5 6 3.5 5.5 6 3.2 5.7 6 3.3 0.006

Whole grains (g/d) 19.9 6 16.8 21.2 6 18.6 21.2 6 15.0 21.5 6 15.8 22.6 6 17.5 0.01

Fruit and vegetable intake 6.0 6 2.5 5.7 6 2.4 5.9 6 2.4 5.8 6 2.6 6.0 6 2.4 0.77

Vitamin E (IU/ d) 78.7 6 179.9 84.3 6 192.6 82.3 6 175.8 104.7 6 211.6 93.9 6 190.3 0.07

Vitamin C (mg/d) 319.0 6 349.6 310.1 6 336.7 340.6 6 392.1 368.5 6 414.8 324.9 6 344.2 0.24

Vitamin D (IU/d) 332.1 6 220.6 350.8 6 259.7 365.7 6 252.3 374.0 6 309.6 367.9 6 242.9 0.01

Multivitamin users (%) 34.2 6 0.47 37.6 6 0.49 39.6 6 0.49 43.6 6 0.50 37.7 6 0.49 0.09

Physical activity (METs/wk) 19.8 6 20.9 20.2 6 21.8 19.9 6 20.0 19.2 6 21.6 19.6 6 20.7 0.69

Smoking status

Never smoker (%) 45.9 6 0.50 45.2 6 0.50 48.4 6 0.50 48.4 6 0.50 46.8 6 0.50 0.49

Past smoker (%) 43.5 6 0.50 41.8 6 0.49 40.4 6 0.49 39.6 6 0.49 42.8 6 0.50 0.63

Current smoker (%) 10.1 6 0.30 12.6 6 0.33 10.5 6 0.31 11.8 6 0.32 10.0 6 0.30 0.76

Pack-years 12.5 6 19.5 12.6 6 18.2 12.1 6 19.2 11.0 6 17.2 11.7 6 17.4 0.25

1 All values (except age) are age-adjusted means 6 SDs. HRT, hormone replacement therapy; METs, metabolic equivalent tasks.
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The relative effects of many dietary and anthropometric
measures on LTL are summarized in Figure 2. These data
suggest that the relative magnitude of the association of body
composition and diet on LTL are similar; a difference of 0.24
SDs between the average T:S ratio when the extremes of BMI
categories were compared and similar effects when the highest
and lowest quintiles of PUFA intake were compared.

DISCUSSION

In this cross-sectional study, waist circumference and poly-
unsaturated fatty acid intake were inversely associated with LTL,
whereas a diet high in fiber, specifically cereal fiber, was posi-
tively associated with longer LTL. Although the strength of the

associations was modest, our results support the hypothesis that
body composition and dietary factors are related to LTL in
women, a potential mediator of chronic disease risk.

Accelerated telomere attrition is not only associated with
diseases of aging (12, 19–32), but telomere shortening may more
accurately predict the biological aging process than the chro-
nological age (2). To date, few studies have examined lifestyle
determinants of LTL (42–47), and to our knowledge even fewer
studies have investigated the relative effect of diet on LTL in
humans (48, 49, 63). Our finding that dietary factors and other
lifestyle factors are associated with LTL may in part explain
potential pathways by which diet and body composition affect the
risk of developing type 2 diabetes, cardiovascular disease, and
some cancers (58–62).

We observed an inverse association between waist circum-
ference, BMI, and the waist:hip ratio and LTL after adjusting for
age and smoking; however, after adjustment for many known
lifestyle factors, this relation only remained significant for waist
circumference (Table 2). Previous data on the effects of body
composition on LTL have been equivocal (43, 44), with one study
showing that women with a BMI . 30 had shorter telomeres
than those with a BMI , 20 after adjustment for age, but this
relation did not remain significant after further adjustment for
smoking (43). In the Cardiovascular Health Study, associations
between BMI and LTL were observed only in overweight men
(BMI . 27) and not in women (BMI . 25) (29). Biologically,
an inverse relation between obesity and LTL is plausible given
that accumulating adiposity increases oxidative stress and causes
deregulation of inflammatory cytokines (64). Compared with
genomic DNA, the G-rich telomeric sequence is not only a po-
tential target for acute oxidative damage, but telomeric DNA is
relatively less capable of DNA repair, resulting in accelerated
telomere loss during the cell cycle and subsequent replicative
senescence (4)

TABLE 3

Dietary determinants of telomere length (change in z score) in 2284 women from the Nurses’ Health Study1

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
P for

trendMean 6 SE P Mean 6 SE P Mean 6 SE P Mean 6 SE P Mean 6 SE P

Energy intake (kcal/d) 0.01 6 0.07 Ref 20.01 6 0.07 0.71 20.02 6 0.07 0.59 0.03 6 0.08 0.88 0.02 6 0.07 0.93 0.76

Total fatty acids (g/d) 0.10 6 0.08 Ref 0.05 6 0.07 0.42 20.02 6 0.07 0.07 20.06 6 0.07 0.02 20.01 6 0.07 0.12 0.05

Total protein (g/d) 20.03 6 0.08 Ref 0.01 6 0.08 0.55 20.04 6 0.07 0.94 0.07 6 0.08 0.15 0.02 6 0.07 0.49 0.34

Carbohydrate (g/d) 20.01 6 0.08 Ref 0.03 6 0.07 0.56 0.00009 6 0.07 0.84 0.008 6 0.08 0.79 0.007 6 0.09 0.82 0.88

Fiber (g/d) 20.006 6 0.07 Ref 20.10 6 0.08 0.21 20.03 6 0.07 0.68 0.007 6 0.08 0.87 0.12 6 0.08 0.11 0.03

Cereal fiber (g/d) 20.08 6 0.07 Ref 0.03 6 0.08 0.11 20.003 6 0.07 0.22 20.02 6 0.08 0.40 0.11 6 0.08 0.007 0.03

Whole grains (g/d) 20.08 6 0.07 Ref 0.02 6 0.07 0.19 20.04 6 0.07 0.65 0.04 6 0.08 0.11 0.08 6 0.08 0.04 0.46

Vitamin E (IU/d) 20.10 6 0.08 Ref 20.02 6 0.07 0.25 0.05 6 0.07 0.05 0.06 6 0.08 0.04 0.03 6 0.07 0.06 0.49

Saturated fatty acids (g/d) 20.008 6 0.09 Ref 20.04 6 0.08 0.62 20.005 6 0.08 0.98 0.004 6 0.07 0.89 0.08 6 0.08 0.38 0.29

Polyunsaturated

fatty acids (g/d)

0.15 6 0.08 Ref 20.04 6 0.07 0.02 20.04 6 0.07 0.01 0.06 6 0.08 0.28 20.11 6 0.08 0.002 0.02

Monounsaturated

fatty acids (g/d)

0.04 6 0.09 Ref 0.05 6 0.08 0.88 20.02 6 0.07 0.48 20.02 6 0.08 0.56 20.03 6 0.08 0.49 0.42

trans Fatty acids (g/d) 0.02 6 0.08 Ref 20.02 6 0.07 0.52 20.01 6 0.08 0.63 0.02 6 0.07 0.95 0.03 6 0.08 0.94 0.70

Linolenic acid (g/d) 20.03 6 0.08 Ref 0.07 6 0.08 0.18 20.08 6 0.08 0.51 0.01 6 0.07 0.60 0.10 6 0.08 0.1 0.23

Linoleic acid (g/d) 0.19 6 0.08 Ref 0.02 6 0.07 0.03 20.04 6 0.07 0.007 0.04 6 0.08 0.09 20.13 6 0.08 0.001 0.046

Vitamin D (IU) 20.03 6 0.08 Ref 0.03 6 0.07 0.45 20.05 6 0.07 0.74 0.03 6 0.07 0.40 0.04 6 0.07 0.38 0.11

Fruit and vegetables (g/d) 0.01 6 0.07 Ref 0.05 6 0.07 0.60 20.02 6 0.08 0.68 20.04 6 0.08 0.54 0.03 6 0.08 0.83 0.75

1 n = 2284. Multivariable linear regression with adjustment for age, smoking, postmenopausal hormone use, BMI, physical activity, and intakes of

polyunsaturated fatty acids, saturated fatty acids, trans fatty acids, monounsaturated fatty acids, energy, cereal fiber, and protein (for carbohydrate analyses,

protein was removed from model). Ref, reference.

FIGURE 2. Relative effect of body composition and dietary factors on
telomere length (change in z score) in the Nurses’ Health Study (comparison
of quintile 5 with quintile 1). Multivariable linear regression was performed,
with adjustment for age, smoking, postmenopausal hormone use, BMI,
physical activity, and intakes of polyunsaturated fatty acids, saturated fatty
acids, trans fatty acids, monounsaturated fatty acids, energy, cereal fiber, and
protein. n = 2284, except for waist (n = 1837) and waist:hip ratio (n = 1830).
PUFA, polyunsaturated fatty acids.
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To date, there are limited data on the influence of dietary
factors on LTL; however, in a recent pilot study, adoption of
a healthy lifestyle was associated with an increase in telomerase
activity in peripheral blood mononuclear cells—an important
finding because telomerase activity is normally low or un-
detectable in most adult somatic cells (48). The study involved
following a 3-mo comprehensive lifestyle change, including
dietary change (low-fat, high-plant based), moderate aerobic
exercise, stress management, and supplementation with soy,
selenium, fish oil, and vitamin C; this intervention resulted in
significant reductions in BMI and blood pressure and decreases in
LDL cholesterol and psychological stress (48). Although these
findings are important, it is difficult to disentangle the relative
importance of the individual factors in modifying telomerase
activity or to determine whether changes were due specifically to
the interventions or to the changes in the clinical characteristics
that resulted from the interventions.

Two previous small cross-sectional studies have examined the
relation between some dietary components and LTL. In a mul-
tiethnic cross-sectional study, the only significant relation be-
tween food groups and LTL was an inverse association between
consumption of processed meat, which was independent of intake
of other food groups (49). In a second study of British women,
serum 25-hydroxyvitamin D was significantly related to LTL
(63).Wewere unable to replicate these findings in our large cross-
sectional study of women.

In our study, the individual fatty acids were more strongly
associated with LTL than with total fat. Specifically, intake of the
n26 PUFA linoleic acid was inversely associated with LTL
(Table 2). Available evidence on the effects of n26 PUFA in-
terventions on cardiovascular disease risk markers suggest that
consumption of �5–10% energy from omega-6 (n26) PUFAs
has the greatest cardiovascular benefit (65). Furthermore, no
association between breast and prostate cancer risk and n26
PUFAs or linoleic acid has been reported (66–69). n26 PUFAs
are involved in a range of biological pathways, and, although
there is evidence suggesting that the mediators formed from
n26 fatty acids may exert proinflammatory and pro-arrhythmic
effects (70) and result in modulation of gene expression (71), the
modest observed effects of n26 PUFAs on LTL may be out-
weighed by the strong inverse association of linoleic acid with
LDL cholesterol and other chronic disease risk biomarkers and
beneficial metabolic processes (65). Our findings merit further
investigation in other studies.

Given that shorter telomeres may represent a potential marker
of the cumulative burden of oxidative stress and inflammation,
our finding that dietary fiber intake is positively associated with
LTL, specifically cereal fiber and whole-grain intake, suggests
that a diet high in plant-based foods may favorably influence
telomere length via antiinflammatory and antioxidant mecha-
nisms. Growing evidence supports the influence of whole grains
and diets high in fruit and vegetables on inflammatory processes
(72–75), and a high intake of plant-based diets and whole grains
is inversely associated with total mortality and risk factors for
chronic disease (76–79). This finding warrants further in-
vestigation, particularly to examine the relative importance of
specific plant bioactivities such as dietary lignans on telomere
biology.

Several previous studies have observed an association between
smoking and telomere length (23, 43). In one study, adjusted

telomere length was lower in women smokers than in nonsmokers
(43) However, in our study and others, smoking status was not
associated with LTL (29, 30, 80, 81)—a surprising finding given
that telomere attrition is accelerated by oxidative stress (4). In
agreement with Nettleton et al (49), we observed no association
between physical activity (active leisure time) and telomere
length. In one previous study, physical activity was associated
with telomere length; however, diet was not included in the
multivariate model (42).

Our study had several limitations. The cross-sectional design
limits causal inference, and there is the possibility of unmeasured
confounding, although we controlled for many lifestyle and
dietary factors previously associated with telomere length. Our
study relies on a single measure of telomere length; therefore, we
cannot examine interindividual variability in telomere length
over longer periods of time, and the lack of serial measurements
may have limited our ability to detect associations. Our telomere
length data were derived from 3 ongoing nested case-control
studies and to pool the data z scores were derived. As a result,
although we were able to show the magnitude of the associa-
tions, we were unable to quantify the T:S ratio or to determine
the approximate age-related changes associated with the various
lifestyle and dietary factors (Figure 2). We only had data
available for healthy, primarily white women; therefore, the
findings may not be generalizable to men or other ethnicities. As
in any observational study, measurement error in self-reported
variables is inevitable; however, misclassification in this pro-
spective study would underestimate the true relation. Although
we attempted to control for any potential confounding variables,
the possibility of residual confounding remains.

In conclusion, we found that waist circumference and poly-
unsaturated fatty acid intake were negatively associated, and
dietary fiber, specifically cereal fiber, was positively associated
with LTL in a large cross-sectional study of middle-aged and
older women. Although the strength of the associations was
modest, our results support the hypothesis that body composition
and dietary factors are related to LTL in women—a potential
mediator of chronic disease risk.
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