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The success of an infectious disease to invade a population is strongly controlled by the
population’s specific connectivity structure. Here, a network model is presented as an aid in
understanding the role of social behaviour and heterogeneous connectivity in determining the
spatio-temporal patterns of disease dynamics. We explore the controversial origins of long-
term recurrent oscillations believed to be characteristic of diseases that have a period of
temporary immunity after infection. In particular, we focus on sexually transmitted diseases
such as syphilis, where this controversy is currently under review. Although temporary
immunity plays a key role, it is found that, in realistic small-world networks, the social and
sexual behaviour of individuals also has a great influence in generating long-term cycles. The
model generates circular waves of infection with unusual spatial dynamics that depend on
focal areas that act as pacemakers in the population. Eradication of the disease can be
efficiently achieved by eliminating the pacemakers with a targeted vaccination scheme. A
simple difference equation model is derived, which captures the infection dynamics of the
network model and gives insights into their origins and their eradication through
vaccination. Illustrative videos may be found in the electronic supplementary material.
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1. INTRODUCTION

Developing strategies for controlling the dynamics
of epidemics as they spread through complex popu-
lation networks is now an issue of great concern
(e.g. Hethcote & Yorke 1984; Anderson & May 1991;
Wasserheit & Aral 1996; Earn et al. 2000; Eames &
Keeling 2002; Grenfell et al. 2002; Eubank et al. 2004;
Keeling & Eames 2005; Riley 2007; Stone et al.
2007; Olinky et al. 2008). Future progress depends
on gaining a better theoretical understanding of the
spatial dynamics of disease spread, including the
effects of a population’s social contact structure and
its network topology (see Lloyd & May 2001; Eames &
Keeling 2002; Eubank et al. 2004; Keeling & Eames
2005; Riley 2007). Here, we show how these factors
control epidemic spread and, in the process, formulate
a novel aggregated targeted vaccination scheme.

We are particularly interested in diseases that
confer temporary immunity to individuals after recov-
ery from infection. This is typical for diseases such as
pertussis, influenza and human respiratory syncytial
virus, and some sexually transmitted diseases (STDs)
such as syphilis. In terms of population dynamics, the
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temporary immunity is understood to give rise to
recurrent epidemic oscillations (see Levin et al. 1989)
that can have a period of several years for pertussis
(Rohani et al. 1999) and certain strains of influenza
(Ferguson et al. 2003), to decadal oscillations in the
case of syphilis (see St Louis & Wasserheit 1998;
Grassly et al. 2005). In simple terms, the epidemic
cycles arise because of a delayed susceptible–infectious–
recovered–susceptible (‘SIRS’) process in which
susceptible individuals become infected, recover with
temporary immunity, but then eventually return to
the susceptible pool after a time delay when immunity
wears off. The loss of immunity allows the susceptibles
in the population to gradually build up until sufficient
in number to fuel the next disease outbreak.

Here, we demonstrate our findings using two models
and taking the disease of syphilis as a representative
example. Syphilis is an STD caused by the bacterium
Treponema pallidum. It has often been called ‘the great
imitator’ because so many of the signs and symptoms
are indistinguishable from those of other diseases. For
yet unknown reasons, syphilis still poses an epidemic
threat. For example, health officials reported over
36 000 cases of syphilis in 2006 in the USA. Lately,
there is an even stronger desire than ever to eliminate
the syphilis threat, since, even though it is a curable
disease, it increases the chances of HIV infection. There
doi:10.1098/rsif.2008.0343
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is an estimated two- to fivefold increased risk of
acquiring HIV if exposed to that infection when syphilis
is present. Numerous myths, tales and literature are
tied to syphilis; many of them are spurred by the
relation of syphilis to some of the greatest geniuses and
their careers, as described in Hayden (2003). Another
curiosity relates to the many different names this
disease has received over the years of its known
existence. For example, it had a series of ‘national
names’ (e.g. the ‘French disease’ in Italy and Germany,
and the ‘Italian disease’ in France). These national
names are due to the disease often being present among
invading armies or sea crews, due to the high incidence
of unprotected sexual contact with prostitutes. This
may suggest that, indeed, a few ‘short-cut links’ in a
small-world model represent short-route connections
to far regions.

Grassly et al. (2005) suggested that the almost
decadal oscillations seen in long-term syphilis datasets
from theUSA stem from the temporary immunity of this
disease. Their argument is supported by the fact that
gonorrhoea, which lacks temporary immunity, fails to
show the same cycles in long-term datasets. This view,
however, is controversial and the CDC (Douglas 2005)
has countered that trends in the US syphilis epidemiol-
ogy follow parallel changes in population-wide high-risk
sexual behaviour (see also St Louis &Wasserheit 1998).
Most probably, it is the combined presence of temporary
immunity and social behaviour that is responsible for
the recurrentwaves of syphilis epidemics. Themodelling
approach described here makes it possible to investigate
and assess the impact of these different but important
factors. Indeed, our work demonstrates that both these
factors have a crucial influence on the periodicity of
syphilis outbursts.

Complex networks (or graphs) provide an important
means for investigating the effects of social behaviour in
population models of disease spread. Individuals are
represented as nodes of a graph and edges are placed
between any two individuals should there be an
infection route between them (see Eames & Keeling
2002; Keeling & Eames 2005; Riley 2007). A random
Erdos–Renyi network is formed if there is an equal
probability q of a connection between any two indi-
viduals (Newman 2003). A regular and tightly clus-
tered network structure is obtained if an individual is
able to infect only his/her nearest neighbours. The
random and clustered-regular graphs might be
considered as two endpoints of a spectrum. Watts &
Strogatz (1998) developed a scheme that allows the
construction of networks that interpolate anywhere
between these two endpoints. This is achieved by
introducing a proportion of p random ‘short cuts’
between nodes in a regular graph. Only relatively few
short cuts are required (p!0.1) to create ‘small-world’
networks that have the often realistic qualities of both a
high degree of clustering and, at the same time,
relatively high overall network connectivity introduced
by long-range connections (i.e. via short cuts).

When considering the population dynamics of STDs,
it is important to take into account that some
individuals spread the disease to a much greater extent
than others. In this way, social behaviour and sexual
J. R. Soc. Interface (2009)
promiscuity govern the heterogeneity of the contact
structure in the population. This contrasts with
standard mean-field differential equation models,
which are based on the assumption of a ‘randomly
mixing’ population and lack a heterogeneous contact
structure. However, there is no unanimous agreement
on how the contact structure of the network should be
fixed. Barbási & Albert (1999) and Liljeros et al. (2001)
have argued that ‘scale-free’ networks, whose nodes
have a power-law connectivity distribution, are the
most appropriate for STDs. Lloyd &May (2001), on the
other hand, suggest that such a formulation is
unnecessarily exaggerated. Here, we follow Eames &
Keeling (2002) and Keeling & Eames (2005), who
suggest that small-world networks are reasonable
approximations of sexual networks in restricted com-
munities (e.g. an active neighbourhood of single
people in a central city). This choice is discussed in
more detail shortly.

The paper is structured as follows. First, we describe
the SIRS network model and its spatio-temporal
dynamics, when formulated for diseases with tempor-
ary immunity. For representative parameters, the
model exhibits expanding circular waves of infection,
some of which are generated by unusual ‘pacemaker
centres’. The pacemakers are studied in detail, and
their important role suggests a practical disease control
strategy based on targeted vaccination. We show that
by vaccinating or quarantining the regions around
pacemaker centres, the disease can be eradicated. The
vaccination scheme is tested on various more realistic
modifications of the basic model. We then formulate a
simple difference equation model that captures some of
the main features of the heterogeneous network. The
results obtained from both models support the claim
that both the temporary immunity and the social
structure/behaviour have equal responsibility for the
existence of periodicity in the disease outbursts.
2. THE NETWORK SIRS MODEL

The network model is based on a two-dimensional
lattice of individuals (or nodes). Each node on the
lattice is occupied and connected to k-nearest neigh-
bours oriented in each of four directions (north, south,
east and west, with diagonal connections excluded).
That is, each node is initially connected to KZ4k
nearest neighbours, with kZ3 unless otherwise
specified. The horizontal and the vertical edges of the
lattice are ‘glued’ together creating a 2-torus. Then,
with a probability p, each of the KZ4kZ12 nearest
neighbours of each of the edges in the lattice is
randomly rewired to an arbitrary node, not permitting
duplications. These rewired connections, or short cuts
(Watts & Strogatz 1998; Kuperman & Abramson
2001), may extend to far regions of the network.

The parameter p controls the population’s connec-
tivity structure. pZ0 corresponds to nearest-neighbour
contacts only, and where clustering is at its maximum.
Small p in the range of 0!p!0.1 corresponds to a
small-world network (each individual has a certain
amount of nearest-neighbour contactsCa small pro-
portion of distant contacts, short cuts). Large pO0.4
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Figure 1. Spatial SIRS model simulation illustrating disease
dynamics and aggregated vaccination. Parameters (as in
Kuperman & Abramson 2001): kZ3; tIZ4; tRZ9; pZ0.02;
and qZ0.2. (a) tZ10. Circular waves of infected individuals
(red) spread through a population of susceptible (white) and
recovered/immune (green) individuals located in a 200!200
lattice. (b) tZ40. Data analysis has identified two periodically
reappearing pacemaker centres (red rings) of infected
individuals. (c) tZ90. Aggregated vaccination of all individ-
uals (blue) located in proximity to the pacemaker centres—
constituting only 18% of the entire population. (d ) tZ100.
The disease rapidly brought to extinction (all red infectives
eliminated) in the absence of other pacemaker centres. For
further illustration, see video 1 in the electronic supple-
mentary material.
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Figure 2. Model simulation of syphilis dynamics (2.1): white,
susceptibles; red, infected; green, recovered; kZ3, tIZ6
months, tRZ4–8 years, pZ0.065, qZ0.36, 4Z0.2 per year,
and mZ0.02 per year. (a) Three pacemakers are seen at time
tZ25 (12.5 years). (b) Pacemaker areas are vaccinated with a
random spread of 86% of each pacemaker area on average, at
tZ41 (20.5 years), resulting in vaccinating 14.5% of the
population. (c) Disease eradication at tZ58 (29 years).
(d ) Time series of the proportion of infectives per 0.5 year.
The period of oscillation is Tz10 years. The vaccination time
is indicated by an open circle, after which the disease
undergoes another smaller peak and reaches complete
extinction within less than one period of the disease (8.5
years). For further illustration, see video 2 in the electronic
supplementary material.
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is qualitatively equivalent to a randomly mixing
population with minimal clustering (Kuperman &
Abramson 2001). As p is the probability of a short
cut, it may be viewed as an index of population
mobility. Alternatively, it may be interpreted as an
index of social behaviour such as sexual promiscuity
in the case of STDs, given the manner in which it
controls the overall network connectivity and cluster-
ing (Watts & Strogatz 1998).

Disease dynamics follow the classical SIRS formu-
lation (e.g. Anderson & May 1991; Kuperman &
Abramson 2001; Eames & Keeling 2002; Murray 2002;
Grassly et al. 2005), with susceptible individuals (S )
having a probability q of becoming infected when linked
to an infected individual (I ). Infected individuals
eventually recover from the disease after a fixed time
period,tI, andare conferred temporary immunity.After a
time period of tR time units, immunity wears off and
recovered individuals (R) return once again to the
susceptible pool (S ) closing the SIRS loop.

This is implemented on the network using a two-
dimensional cellular automata (CA), SIRS spatial
model. At time t, an individual at the (i, j )th location
of the lattice has the state xi, j(t), which is S, I or R.
The model is based on the following transition rules:

xi;jðtÞ2S/
xi;jðtC1Þ2 I ; with prob: 1Kð1KqÞk

i;j
inf
ðtÞðtÞ;

xi;jðtC1Þ2S; otherwise;

(

ð2:1Þ

xi;jðt0Þ2 I/xi;jðt0C1Þ2 I///xi;jðt0CtIÞ2R

/xi;jðt0CtIC1Þ2R///xi;jðt0Ct0Þ2S:

Infections are transmitted to susceptible individuals
with a probability q, if they are connected to an
infective via a nearest neighbour or a short cut. Thus,
the probability that a susceptible at place (i, j ) and at a

time t becomes infected is 1Kð1KqÞk
i;j
inf
ðtÞ, where ki;jinfðtÞ

is the total number of infectious contacts of this
individual at the time t; 1%i%N and 1%j%M. In
(2.1), t0 is assumed to be the time at which an
individual at position (i, j ) first becomes infectious, tI
is the number of time steps an individual remains
infectious, tR is the number of time steps an individual
stays in the recovered class and t0ZtICtR. The
proportion of S(t), I(t) and R(t) individuals are
calculated over the lattice and their dynamics are
followed as a function of time.

To help fix ideas, we focus on two representative
parameter settings, which are as follows.

(i) Parameters used in a general theoretical model
taken from Kuperman & Abramson (2001). The
infectious period is fixed at tIZ4 time units and
a recovery period of tRZ9 time units (see simul-
ations in figure 1 and in video 1 in the electronic
supplementary material).

(ii) Parameters associated with syphilis epidemics as
based closely on the study of Grassly et al. (2005;
see simulations in figure 2 and in video 2 in the
electronic supplementary material). In the latter
J. R. Soc. Interface (2009)
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case, tIZ1 time unit, which is taken to corre-
spond to half a year. The recovery time varies
randomly and uniformly in the range tR2{8, 9,
10,., 16} time units corresponding to a period
of 4–8 years of immunity.

To add realism, several other features were also
incorporated. In some simulations, a birth–death
process was introduced at rate m. That is, a proportion
of m new nodes were introduced every year as well as
deleted every year to mimic the birth–death process.
This requires updating the network structure appro-
priately to allow for the new and removed nodes. In
figure 2, mZ0.01 per half-year time step, which is
equivalent to a rate of mZ0.02 per year. Provision was
made for the possibility that a proportion 4 of
individuals fail to gain immunity after infection (similar
to Grassly et al. 2005). Thus, 4Z0 corresponds to all
nodes passing through an SIRS loop, while 4Z1
corresponds to all nodes exhibiting SIS dynamics (no
individual can acquire immunity). Figure 2 shows a
proportion of 4Z0.2 of the population (20%) gaining no
immunity per year.

The reproductive number R0, i.e. the average
number of secondary infections resulting from a single
infected individual, is of great importance and controls
the dynamical behaviour of syphilis. In our simulations,
R0 is kept in the range of 1.5–3, as considered to be
realistic (CDC 1997–to date; Grassly et al. 2005). For
the network model with K-nearest neighbours (2.1),
R0zqKtI (e.g. Keeling & Grenfell 2000). We chose a
range of values for the probability of infection, q, but
considered qx0.3–0.4 (e.g. as in figure 2) to be a
reasonable estimate, while tI is approximately half a
year (similarly to Grassly et al. 2005). Thus, in order to
maintainR0 in a realistic regime, the average number of
contacts per node, K, must be high and lie somewhere
between KZ7 and 20. In the work presented here, we
chose either KZ8 or 12, as further supported by the
analysis performed on the difference equation model
(see §3). Note that, although this number of contacts
might appear to be large, it is close to half of the number
of the contacts assumed in mean-field models (e.g.
as in Grassly et al. 2005). The latter models also
must keep overall promiscuity rates high to achieve
a realistic R0.

Eames & Keeling (2002) and Keeling & Eames
(2005) advocate a small-world network SIR/SIS model
for an STD rather than a scale-free network. These
authors compare the results of two population network
models: first, with a fixed number of connections per
node on a regular network (k-regular) and, second, with
a variable number of connections per node on a small-
world network. It is important to emphasize that these
two network models have basic differences: the
k-regular model is a homogeneous, ordered, regular
model with only nearest-neighbour connections (in
addition to having exactly k links per node); the second
model has a varying number of links per node and its
main feature is that it is a small-world network (as most
of the assigned links are nearest neighbours and only a
few are far links, i.e. short cuts). Our network model
presented here is constructed slightly differently, but is
J. R. Soc. Interface (2009)
essentially similar to the Eames and Keeling network
model being a small-world network and having a
variable number of contacts per node.
2.1. Recurrent circular waves and pacemaker
centres

We have found that, in the small-world regime, models
of type (2.1) exhibit concentric waves, which corre-
spond to periodic oscillations similar to those seen in
the time series of syphilis data. Some of these waves are
recurrent in time and spatial position, and hence give
rise to unusual pacemaker centres. Indeed, numerical
simulations show that, for 0.001!p!0.12, the model
(2.1) exhibits spatial oscillations with expanding
circular waves of infection travelling through the lattice
(figure 1a). Some of these waves are recurrent, both
spatially and temporally. The latter are generated by
pacemakers (figures 1b and 2a) that form at connec-
tivity centres—localized areas denser in short cuts. The
waves grow in size about the pacemakers as the
infection spreads radially. When infected individuals
recover, the interior of the growing wave boundary
becomes a fresh pool of susceptible individuals. At the
end of the cycle, a distant infectee short cuts through
the network to reinfect the wave’s focal pacemaker,
enabling it to perpetuate. The cycle allows recurrent
spatial waves to propagate with a fixed period, T. For
the syphilis parameters (see figure legend 2), Tz10
years, as observed in US syphilis datasets (see CDC
1997–to date; Girvan et al. 2002). Similar spatial wave
patterns had been observed in a number of biological
contexts including epidemiology (Grenfell et al. 2001),
ecology (Blasius et al. 1999), neural networks (Lewis &
Rinzel 2000) and theoretical studies of excitable
systems (Greenberg & Hastings 1978).

We refer to a ‘pacemaker’ as a recurring concentric
wave in the two-dimensional population space. New
infectees are introduced via short cuts to the centre of
this wave every period of the disease dynamics, thereby
allowing the pacemaker centre to persist. The physical
coordinates of the pacemaker centre remain at the same
location of the lattice for very long time periods, while
the disease keeps returning to this centre.

These pacemakers follow a pattern-formation
mechanism. We observe that there is a minimal
necessary amount of short cuts needed for the creation
of a pacemaker centre. In addition, within the small-
world range, a pacemaker wave region has more short
cuts than a non-pacemaker wave region. The initiation
of a pacemaker also requires that the infection is able to
spread in both the horizontal and the vertical direc-
tions. That is, the development of the infection from an
initial state should progress in the two directions
spanning a plane (i.e. in an X or an L shape). This
condition follows the rule that heterogeneities are
needed for the creation of spirals in excitable media
(see Greenberg & Hastings 1978). For these reasons,
having an aggregation of short cuts in a small region
enhances the likelihood of creating a pacemaker. On the
other hand, having too large an aggregation of short
cuts in a localized area of the lattice results in the
opposite effect—disease extinction will occur in this
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localized area due to a synchronization effect (see Earn
et al. (1998) and below).

The patterns of waves observed from the spatio-
temporal simulations of the network model have a
twofold importance. First, they lead to a better
understanding of the disease spread. The periodicity
of the waves is an outcome of both the small-world
structure and the temporary immunity: the reinfection
at the centre of the wave after a certain amount of
time is due to the intrinsic time delay introduced by
the temporary immunity. (Without the time delay tR
(i.e. tRZ0), or if the contribution of the SIS loop is
too large (fO0.2), oscillations cannot occur.) On the
other hand, that reinfection occurs at the centre of
the wave is a direct outcome of the small-world
structure. Second, the wave patterns have importance
in that they suggest a novel spatial vaccination scheme,
as described in §2.2.
2.2. A targeted vaccination scheme

The centrality of the pacemaker centres suggests a
practical control strategy. We have found that, by
vaccinating or quarantining the regions surrounding
the pacemakers, the disease can be usually brought to a
complete extinction within one period of the disease
(in some cases, depending on the refinement of the
vaccination algorithm and specific parameter values,
two vaccination pulses are required). Thus, rather than
the conventional scheme of immunizing approximately
more than 85 per cent of the population to achieve herd
immunity (Anderson & May 1991), it is only necessary
to vaccinate groups enclosing the pacemakers. This
requires vaccination of some 10–30% of the population
(depending on the specific application and algorithm
refinement; approx. 20% in most cases). Figures 1 and 2
show spatial snapshots of an infected population upon
application of the vaccination scheme. In figures 1a,b
and 2a, the characteristic circular waves of infection
(red) are shown. Vaccination around the pacemakers
leads to complete eradication of the disease. Pace-
makers have such a large impact on the spatial
dynamics that they are relatively easy to detect using
a simple threshold algorithm that identifies recurring
aggregations of infected individuals. The algorithm is
based on the observation that pacemakers always
appear (whenever infectives reside in their centre)
approximately at the same spatial location and that
they always exist near a minimum of the infectives’
time series. Hence, the vaccination algorithm is based
on identifying the pacemakers near a minimum of the
infectives’ time series and vaccinating a predefined
region surrounding them (by eliminating this area from
the simulation).

Once a pacemaker is identified, a small region
enclosing the pacemaker is marked out and vaccinated
by effectively removing these nodes from the simulation
(the blue rectangles in figures 1c,d and 2b,c).

For the theoretical values of Kuperman & Abramson
(2001; settings (i)), used in the simulations of figure 1,
the ratio tI/tRZ4/9 is relatively large, hence the
pacemakers are large in size and few in number (usually
1–3). In some cases, the scheme is able to remove all
J. R. Soc. Interface (2009)
pacemakers after one application of vaccinating
approximately 10 per cent of the population. However,
as the ‘pacemakers’ compete with one another, there
are cases where only the main pacemaker(s) is removed
and the secondary pacemaker(s) may appear in the
next period. Eradication then requires a second
application of the vaccination in the area of the
remaining pacemaker(s). As shown in figure 1c,d, in
such cases, it typically requires vaccinating a total of
approximately 20 per cent of all individuals over both
applications to bring the disease to total extinction.

For the same model with syphilis parameters
(settings (ii)), the ratio tI/tR varies in a simulation
within the range {1/8, ., 1/16}. As this ratio is small
and variable, the pacemakers generated are more
numerous (usually 2–5) and smaller in size. With
additional model realism (20% of the population not
gaining any immunity, birth–death process), the pace-
makers ‘tend to become less circular’ in shape
(figure 2a). As a consequence, it is necessary to
vaccinate more areas, although each area is smaller in
size. Nevertheless, the vaccination scheme works well
and generally eradicates the disease in a single
application, requiring vaccination of a relatively low
percentage of individuals (figure 2). It is worth noting
that the vaccination percentage required for the
targeted scheme proposed here is always lower than
would be required with random vaccination.

For the theoretical parameter values (i) based on
Kuperman & Abramson (2001) and used in figure 1, a
random vaccination scheme is successful in eradicating
the disease only after vaccinating at least 80 per cent
of the population, and hence is not that much of
interest. However, for the syphilis parameter values,
the random vaccination threshold is 43 per cent of the
population (this is somewhat similar to the results
presented in Zanette & Kuperman (2002) for an SIR
model). A further gain can be achieved by combining
random vaccination with the above targeted scheme.
This may advantageously reduce the vaccination
threshold to as low as 10–15% of the population for
the syphilis parameters. Instead of vaccinating the
entire area surrounding the pacemaker, it suffices to
randomly vaccinate 60–95% of the area normally
targeted, where the percentage vaccinated grows in
proximity to the target’s centre. Moreover, as in
practice, it is difficult to obtain full coverage
when vaccinating an entire population, or even a
specific targeted group; combining our targeted
vaccination scheme with some randomness adds
realism and effectively lowers vaccination rates. For
example, in figure 2, we vaccinated only an average of
86 per cent of each of the identified areas that enclose
the pacemakers. In more detail, the algorithm vac-
cinates up to 98 per cent in the core of the pacemaker,
where the high clustering of repeatedly infected
individuals resides, and as low as 60 per cent
(randomly chosen) in the outskirts of the pacemaker.
These changes did not reduce the effectiveness of the
vaccination scheme.

To pin down the key pacemakers, we use the
following simple threshold algorithm. We monitored
the total number of infectives as they change in time
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Figure 3. A bifurcation diagram of the proportion of infectives
I for typical syphilis parameter values (as in figure 2) as a
function of short cuts parameter p (DpZ0.002, 4Z0.2, mZ0).
For small p, there is an endemic equilibrium. After a
bifurcation point, the dynamics exhibit a limit cycle with
radius varying with p. The diagram plots the maximum (red)
and minimum (blue) values of I on the cycle. After a second
bifurcation value of p, the disease goes to extinction (due to
synchronization; for further illustration, see video 3 in the
electronic supplementary material).
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over a simulation run. After the first minimum was
reached and the number of infectives just begins to rise
again, we located localized clusters of infectives by
searching for areas in the lattice that contain a few
infectives in a predefined small square (usually areas
of 20!20 lattice points). Usually, the threshold for
the number of infectives clustered in one such square
was set at three. The simulation was then monitored
over another two epidemic cycles and the suprathres-
hold squares just located were checked after each
minimum. If, as before, such a square contains
more than a threshold number of infectives (usually,
set to at least two), for all three minima, the
surrounding area (of approx. 30 nodes per each side
of each infective) is identified as a key pacemaker, and
is vaccinated.

As one of our primary interests in the analysis of the
simulation model was to understand the role of short
cuts, to some extent this came at the cost of allowing for
variability in node degree and studying its implications.
Nevertheless, we found that variability in node degree
is indeed possible and the waves and spatial pacemakers
are still observed. Thus, in one scheme, targeted
vaccination of pacemakers was successful even with a
variation of 2–15 contacts per node (mean 11.4).
However, for more excessive levels of variability,
model simulations generated many small competing
pacemakers rather than the two or three key pace-
makers found for the nearest-neighbour lattice. A large
number of pacemakers can reduce the effectiveness of
the targeted vaccination scheme. In such cases,
vaccinating all pacemakers sometimes resulted in
vaccinating 90 per cent of the population.
2.3. Synchronization and disease extinction

Worthy of comment is the model’s behaviour for larger
values of p, typically pO0.1, outside the small-world
regime, and corresponding to high levels of sexual
promiscuity in the case of STDs. Counter-intuitively,
the epidemic consistently dies out abruptly due to the
appearance of large-scale synchronized epidemics—a
well-known cause of disease extinction (e.g. Earn et al.
1998; Blasius et al. 1999; Kuperman &Abramson 2001).
The synchronization manifests with the formation
of large spatial aggregations of infected individuals.
Upon recovery, these infectives gain temporary immu-
nity for a lengthy time period. Thus, the areas that once
contained aggregations of infectives become exhausted
of susceptibles and there is no possibility for an
epidemic to sustain—it soon dies out.

Although it might at first seem unusual, this has the
implication that, for society at large, grand sexual
promiscuity (large p) has the potential to eliminate
STDs, such as syphilis, altogether after approximately
two decades of consistent behaviour (see figures 3
and 4c, as well as video 3 in the electronic supple-
mentary material, for further illustration). The same
would be true for populations in which individuals
who consistently have few proximate sexual partners
for the correspondingly low R0 would ensure that the
infection-free equilibrium is stable. Intriguingly, the
most conducive conditions for the persistence of such
J. R. Soc. Interface (2009)
STDs appear to be the small-world structure similar to
the varying manifestation of sexual promiscuity seen in
western society over the last centuries.
2.4. Bifurcations in p: the impact of short cuts

The effect of the parameter p, the proportion of short
cuts, on the disease dynamics may be assessed from the
bifurcation diagram in figure 3. The figure plots the
range in the number of infectives (maximum and
minimum values) for any given p, when the model is
run using the standard syphilis parameters. The
following bifurcation scenario takes place: for pZ0,
the disease goes to extinction; for small p!pcZ0.001,
an endemic equilibrium is reached in which there is
a relatively small proportion of infectives 0!I �/1.
Extensive simulations show that this critical value
pcO0 occurs at the point where the clustering co-
efficient begins to descend as p increases (see Watts &
Strogatz 1998). For 0.001!p!0.13 (approx.), there is a
limit cycle of radius depending on p and hence notice-
able oscillations in the number of infectives; for
pT0.13, the disease goes to extinction owing to the
synchronization effect discussed above. The ‘limit-cycle
region’ is the region where pacemaker centres develop
and within it lies the region where the targeted
vaccination scheme works very effectively. This region
is an open strip of p values in the small-world regime.
Note that, for both pZ0 and large p, the disease
rapidly goes to extinction. Thus, despite the period of
temporary immunity built into this model, oscillations
in I vanish for either very small or relatively large
values of p (i.e. outside the small-world regime).
This further demonstrates the importance of social
structure in the formation of the recurrent peaks
observed in the real time series of US syphilis cases.
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3. DIFFERENCE EQUATION MODEL

We formulate the following difference equation model
to help gain insights into the network model’s
dynamics. Let St, It and Rt be the proportion of
susceptible, infective and recovered individuals in a
large population at time t, respectively. Again, let tI be
the time period an individual remains infectious and tR
the period an individual remains immune. If we assume
that tIZ1, as in the case for syphilis, the proportion
of recovered individuals can be described by the sumPt0K1

iZ1 ItKi, and thus

St Z 1K ItK
Xt0K1

iZ1

ItKi; ð3:1Þ

where t0ZtICtR. The model formulation (2.1) is well
known (e.g. Girvan et al. 2002) and is used for our new
difference equation model below (which includes some
spatial information) as follows. We suppose that each
individual has on average K connections including
those to its nearest neighbours as well as short cuts. For
the average individual, denote by K inf K

t the number of
nearest neighbours that are infected at time t and
denote by K inf p

t the number of short-cut links that
point to infected individuals. Then,

K inf K
t Z Itð1KpÞK ; ð3:2Þ

K inf p
t Z ItpK : ð3:3Þ

Now, consider two classes of nodes. The first class is
distinguished by the property that its nodes have no
short-cut connections. Let qK be the probability that
such a node is infected by a nearest neighbour in a given
time step. The probability can be estimated from long-
term simulations. The second class of nodes is
distinguished by the property that all nodes have at
J. R. Soc. Interface (2009)
least one short cut. Let qp be the probability that a
typical node in this class is infected in a given time step.
In practice, qpOqK, owing to the important role short
cuts play in spreading the epidemic through the
network. For example, simulations of the lattice
model (equation (2.1)) under syphilis parameters
show that qpz4qK. For the model parametrized with
the theoretical values taken from Kuperman & Abram-
son (2001), qpz10qK. Incorporating this important
observation in the difference equation leads to the
following model of the SIRS dynamics on a complex
contact network:

ItC1 Z ð1Kð1K qKÞK
inf K
t ð1K qpÞK

inf p
t ÞSt

Z ð1Kð1K qeffÞItKÞSt; ð3:4Þ

where the effective q, or qeff, is defined through the
relation

1K qeff Z ð1K qKÞð1KpÞð1K qpÞp; ð3:5Þ

and where qK!qp/1. Note that equation (3.4)
captures both the time delay dynamics resulting from
the temporary immunity of the disease and the social
effects of the short cuts. Moreover, one sees explicitly
how the effective probability of infection qeff is
composed of the distinct contributions—the nearest
neighbours qK and the short cuts qp.

The dynamics of the model (3.4) depend on p in a
manner that is very similar to the more complex
contact network model (2.1). Figure 4 shows the results
based on setting qKZ0.11 and qpZ0.65. For pZ0, a
small endemic equilibrium is reached (figure 4a); for p
in the small-world range, sustained oscillations arise
(figure 4b); and for large p, the disease is eradicated
(figure 4c) due to a synchronization effect. Comparing
figures 2d and 4b, one can see exactly the same type
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of dynamics with a similar period of approximately
10 years as observed in the syphilis datasets (see CDC
1997–to date; Grassly et al. 2005).
3.1. Stability analysis

The equilibrium solutions of model (3.4) are found by
solving the following equation for I �:

I � Z ð1Kð1K qKÞI
�ð1KpÞK ð1K qpÞI

�pK Þð1K t0I
�Þ: ð3:6Þ

It is easily seen that the infection-free equilibrium I �Z0
is always a solution. A stability analysis (based on the
linearization of equation (3.4)) reveals that the infec-
tion-free equilibrium is stable when the following
inequality holds:

R0 ZKK ½ð1KpÞlnð1K qKÞCp lnð1K qpÞ�

ZKK lnð1K qeffÞ!1: ð3:7Þ

Note that

R0 ZKK lnð1K qeffÞzKqeff : ð3:8Þ
An epidemic outbreak is only possible if the model

parameters are such that the infection-free equilibrium
is unstable (R0O1). It follows from equation (3.7) that,
for the syphilis parameters in the small-world regime,
this can occur only if the average number of contacts,
K, is at least KZ8. Thus, by choosing the parameter
KR8, at least some of the p values correspond to an
unstable infection-free equilibrium, in the range cover-
ing the small-world regime. The instability region of the
infection-free equilibrium grows with p andK, where for
KZ12, for example, the infection-free equilibrium is
never stable for the syphilis parameters. This is
visualized in figure 5a, in which we plot the bifurcation
curve of the infection-free equilibrium as a function of
the parameters K and p. The infection-free equilibrium
J. R. Soc. Interface (2009)
is stable for all values of parameters below the (lower
solid) curve where R0!1 and unstable otherwise since
R0O1. For example, it can be seen that, for K%4, the
infection-free equilibrium is stable in a wide strip of the
parameter plane, containing the small-world regime.

A similar result is obtained by estimating the
reproductive number R0, approximating it as the
average number of secondary infectives produced by a
typical infective individual in a sea of susceptibles. In
the case presented here, where a single node may infect
only those nodes it is linked to, the number of secondary
infections may be approximated as

R0zKðqKð1KpÞCqppÞzKqeff ; ð3:9Þ

provided qk and qp are much less than 1. The above
estimate gives a good approximation of the exact
condition (3.7), as shown in figure 5a (dashed curve).

For most parameter values, the difference equation
(3.4) has a second endemic equilibrium in which I �O0.
The bifurcation curves describing its stability in the
(p, qp) parameter plane are shown in figure 5b, forKZ8
(dashed curve) and KZ12 (solid curve). The curve
indicates a Hopf bifurcation in the (p, qp) plane, where
all other parameters are kept fixed. Appendix A
provides technical details on the calculation of the
curves. The endemic equilibrium exists for all par-
ameter values for which the Hopf bifurcation curve
exists. Below the bifurcation curve, the endemic
equilibrium is stable and is unstable above it, where a
stable limit cycle exists. The stable limit cycle thus
coexists with the two unstable equilibria: infection free
and endemic.

Hence, the bifurcation scenario, for the syphilis
parameter values, for KZ8, is as follows. For
0%p%0.0091, the infection-free equilibrium is stable
and the disease goes extinct; for 0.0091!p(0.079, the
infection-free equilibrium loses its stability and an
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endemic equilibrium is born; for pT0.079, the endemic
equilibrium loses its stability through a Hopf bifur-
cation and a stable limit cycle is born (see the upper
dashed Hopf bifurcation curve in figure 5b). In the case
of KZ12, the infection-free equilibrium is unstable for
all values of p. However, the endemic equilibrium is
stable for 0%p(0.011. When pT0.011, both the
equilibria are unstable and, instead, a stable limit
cycle is observed (see the lower solid Hopf bifurcation
curve in figure 5b).

As in the network model, the disease goes completely
extinct for relatively large p values (for KZ12, pcZ
0.43; for KZ8, pcZ0.87), despite the fact that the
infection-free equilibrium is unstable (figure 4c). The
extinction should be attributed to the synchronization
effect that takes place for these high p values. That is,
the dynamics are such that a large proportion of the
population becomes infected together and proceeds on
to move to the recovered class together. The synchro-
nization requires the initiation of a strong epidemic,
implying that R0 must be greater than unity, which
explains why the infection-free equilibrium is unstable
in this regime. Nevertheless, the disease becomes
extinct due to the synchronization effect.
3.2. Vaccination

A random vaccination scheme may be incorporated
into the difference equation model by replacing St in
equation (3.4) with (1Kv)St. The parameter v is the
proportion of susceptibles vaccinated per time unit.
Denote by ve the threshold proportion of vaccinated
needed for disease extinction. A simple algebraic
expression can be obtained for the extinction threshold
by linearizing equation (3.4) about the infection-free
equilibrium. Then, by using equation (3.7), disease
extinction is reached if

vRve Z 1K
1

R0

: ð3:10Þ

For the parameter values of figures 4 and 5, the
vaccination threshold is veZ0.530. Numerical simul-
ations corroborate the existence of this threshold.

As the difference equation does not give any
information regarding spatial patterns, it is impossible
to apply the spatially oriented targeted vaccination
scheme described for the CA model above. However,
targeted vaccination schemes may nevertheless be
explored by differentiating between vaccinating nearest
neighbours and short cuts. This can be achieved by
replacing the term It in equations (3.1) and (3.4) with
the term (1KvK)It for nearest neighbours and (1Kvp)It
for short cuts. The results reveal that the extinction
threshold is very sensitive to, and is lowered dramati-
cally by, the term vp for vaccinating short cuts, while
the term for vaccinating nearest neighbours, vK, has
little influence. Before applying vaccination, the
model’s infection-free equilibrium is never stable for
the syphilis parameters (with KO8). However, tar-
geted vaccination effectively reduces the number of the
actual contacts of the key individuals, thereby reducing
R0!1 in the vaccinated population.
J. R. Soc. Interface (2009)
4. CONCLUSION AND DISCUSSION

Two models for studying the dynamics of diseases with
temporary immunity in complex population networks
have been proposed: a lattice model, which incorporates
spatial information, and a difference equation model,
which allows an analytic approach. The study focuses
on the example of syphilis epidemics, which is a
representative STD targeted to be eliminated in the
USA, although with little success so far. The network
model reveals that diseases with temporary immunity
on a small-world contact network exhibit periodicity
and waves of epidemics, some of which become pace-
maker centres. It is shown that, by eliminating pace-
makers through vaccination, the disease goes to
extinction within one to two periods, where only
approximately 20 per cent of the population requires
vaccination. This is in contrast to standard vaccination
programmes that set out to achieve herd immunity
by vaccinating over 80 per cent of the population.
The difference equation model allows further investi-
gation of the Hopf bifurcation lying at the heart of
the pacemaker phenomena. The two models comp-
lement each other, allowing a more profound view of
the dynamics.

In reality, this control scheme may be implemented
by vaccination, quarantine or a targeted education
plan, depending on the disease and on the means
available for its control. The main advantage of the
vaccination methods proposed here is that they avoid
the usual practice of vaccinating a large proportion of
the population. In addition, vaccination is confined
solely to relatively small and specified areas (figures 1c,d
and 2b,c). In practice, it is always preferable to vaccinate
as small a group as possible, as vaccination always
carries a risk. Hence, it is advantageous to target only
the relevant groups, already at risk. Note, however, that
while other works refer to tracing infected individuals
or the most connected individuals for applying a
targeted vaccination scheme (e.g. Eames & Keeling
2002; Pastor-Satorras & Vespignani 2002; Zanette &
Kuperman 2002), in the method proposed here no
contact tracing is required, the pacemaker waves stem
from the SIRS dynamics and the small-world structure
in a natural and intrinsic way. Hence, these areas are
easily identified as small areas where the infection
appears repeatedly (figures 1 and 2).

In the case of syphilis, a vaccine is under develop-
ment (e.g. Cullen & Cameron 2006), but there are
already concerns regarding its safety. Thus, the model
suggests that, if at all, vaccination of the carefully
targeted centres of the population already at risk (e.g.
in proximity to core groups of active individuals; see
Thomas & Tucker 1996; Eames & Keeling 2002), rather
than the full population, should still have the potential
to result in disease extinction. Moreover, by treating
only those individuals in high-risk pacemaker areas, it
minimizes the application of the vaccination with its
possible risks to the larger population. In the absence of
a vaccine, education, early identification and the
practice of safe sex are the available control measures
(CDC 1997–to date; St Louis & Wasserheit 1998).
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This work addresses the controversy as to whether
syphilis epidemics recur approximately every 10 years
because of the temporary immunity it endows to
infected individuals (Grassly et al. 2005) and its
associated time delay, or because of changing patterns
in social behaviour (CDC 1997–to date; Douglas 2005).
As shown here, both factors are crucial for recurrent
syphilis epidemics. Thus, for example, oscillations
cannot occur outside the small-world regime even in
the presence of strong temporary immunity. For zero or
very small p values (corresponding to none, or a very few
short-cut links), epidemics cannot develop. Moreover,
the analysis performed on the difference equation
model reveals that, if all individuals in a small-world-
type population network have only a few contacts, the
infection-free equilibrium is stable. In addition, at the
other end of the spectrum, it is pointed out that, for
large enough p outside the small-world region (corre-
sponding to many short-cut links), a synchronization
effect occurs whereby epidemics are eradicated owing
to exhaustion of susceptibles. By contrast, a society
whose social behaviour approximates a small-world
network with moderate heterogeneous levels of pro-
miscuity would sustain the periodic recurrences of the
syphilis epidemics approximately every 10 years.

The recent literature indicates another possible
explanation for the syphilis oscillations. It has been
proposed that similar stochastic epidemic oscil-
lations may be an outcome of resonance-like effects
(see McKane & Newman 2005; Risau-Gusman &
Abramson 2007). This intriguing possibility requires
further investigation. Finally, we conjecture that
complete disease extinction is nevertheless achievable
by a targeted vaccination scheme similar to that
presented here. The targeting and vaccination of
key individuals effectively reduces R0 to less than
unity in the vaccinated population, thereby leading to
disease extinction.

Another issue to point out is that it seems most
plausible that the nodes at a centre of the key
pacemakers should be considered superspreaders, as
discussed in Lloyd-Smith et al. (2005). By definition, a
superspreader is ‘any case causing more infections than
would occur in 99 per cent of infectious histories in a
homogeneous population’. Owing to the structure of the
models presented here, it is not possible to count how
many infections are caused by any specific node per
time step. This is because the exact source node of
infection for any individual can never be identified; the
formulation is based on probabilities. However, as
discussed above, we know empirically that nodes with
short cuts are infected at least four times more
frequently than nodes without short cuts (for the
theoretical model, nodes with short cuts are infected
some 10 times more often). Hence, it is plausible that
nodes with short cuts infect at least four times more
than those without short cuts. In the small-world
parameter regime, usually only approximately 10 per
cent or less of the population has short cuts, so those are
the only nodes that have at least four times larger
probability of infecting someone than those who do not
have short cuts (approx. 90% of the population or
more). We have also shown numerically that it is
J. R. Soc. Interface (2009)
sufficient to have a node with two short cuts to create a
key pacemaker. So those individuals have at least eight
times more probability of infecting a linked node, and
they are less than 5 per cent of the population. Hence, it
is most likely that the nodes at the centres of the key
pacemakers are superspreaders, although a more
accurate investigation of this plausibility is left for
future work. It is interesting to note that, in this
small-world framework, the whole structure is linked
by short cuts within the whole population network,
and thus short cuts might serve as a superspreading
mechanism within the network. This is also left for
further investigation.

We thank Dana Torok for helping to develop the targeted
vaccination scheme, and three reviewers for sharing their
insights. We are grateful for the support of the James
S. McDonnell foundation and the Israel Science Foundation.
APPENDIX A. TECHNICAL DETAILS FOR THE
DIFFERENCE EQUATION MODEL

Here, we present the technical details of the stability
analysis performed for the difference equation model
(3.4). Consider the SIRS dynamics. Assume tI is the
amount of time units an individual spends in the
infectious class, and that tR represents the time units
an individual later spends in the recovered class. As for
syphilis tIZ1 (where a time unit represents six
months), the proportion of recovered individuals can
be described by the sum

Pt0K1
iZ1 ItKi . Thus, denoting by

St the proportion of susceptibles in the population at
time t, we obtain

St Z 1K ItK
X

t0K1

iZ1
ItKi ; ðA 1Þ

where t0ZtICtR. Set It to be the proportion of
infectives at time t, denote by K the number of
connections an individual has on average and let p be
the proportion of short-cut links an individual has
among its K connections. Then, denote by K inf K

t the
number of infectious nearest neighbours an individual
node has at time t and byK inf p

t the number of infectious
contacts via short-cut links an individual node has
among its K connections at time t. Then,

K inf K
t Z Itð1KpÞK ; ðA 2Þ

K inf p
t Z ItpK : ðA 3Þ

Set qp as the probability of being infected via a
short-cut link and set qK as the probability of being
infected by a nearest neighbour, where qK!qp!1.
Hence, the SIRS dynamics on a network with
nearest-neighbour and short-cut connections can be
described by

ItC1 Z ð1Kð1K qKÞK
inf K
t ð1K qpÞK

inf p
t ÞSt: ðA 4Þ

The dynamics of (A 4) are at equilibrium for the
solutions, I �, of the equation (A 5)

I � Z ð1Kð1K qK ÞI
�ð1KpÞK ð1K qpÞI

�pK Þð1K t0I
�Þ: ðA 5Þ
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It is easily seen that the infection-free equilibrium
I �Z0 is always a solution and that an endemic
equilibrium I �O0 is a solution for most parameters
relevant for syphilis.

Substituting JtZItKI � and linearizing equation
(A 4) about I �, we obtain

JtC1 Z ð1K qKÞð1KpÞKI � ð1K qpÞpKI �

! R0ð1K t0ÞJt C
Xt0K1

iZ0

ItKi

 !
K
Xt0K1

iZ0

ItKi

Chigher order terms;

where

R0 ZKKðð1KpÞlnð1K qK ÞCp lnð1K qpÞÞ:

Now substitute JtZJ0l
t to obtain the characteristic

polynomial

lt0 Calt0K1 Cblt0K2 C/CblCbZ 0; ðA 6Þ
where

aZð1KqKÞð1KpÞKI � ð1KqpÞpKI � ðR0ðt0I �K1ÞK1ÞC1;

bZ1Kð1KqKÞð1KpÞKI � ð1KqpÞpKI � :

)

ðA7Þ

The stability of the infection-free equilibrium is derived
from substituting I �Z0 and requiring that jljZR0!1.
The stability analysis of the infection-free equilibrium is
presented in the main text (figure 5a). Here, we provide
details regarding the endemic equilibrium stability and
the calculation of the Hopf bifurcation curve(s),
presented in figure 5. This calculation is inspired by a
calculation of the Hopf bifurcation of a mean-field
difference equation model in Girvan et al. (2002).

Assume such a bifurcation exists and substitute
lZeif (as stability changes at jljZ1) into equation
(A 6). Separating the real and imaginary parts, we
obtain two equations

aZKcosðfÞKcot
� ft0

2

�
sinðfÞ;

bZ

2 csc
� ft0

2

�
sin
� f
2

�
sinðfÞ

cos
� fðt0K2Þ

2

�
Kcos

� ft0
2

� :

9>>>>>>>>>=
>>>>>>>>>;

ðA 8Þ

Substituting equations (A 7) into equations (A 8) and
adding equation (A 5) results in a system of three
equations in the seven variables: qK; qp; p;K; I �; t0; and
f. Some of these parameters can be fixed to values
relevant for syphilis: t0Z11; KZ8 or 12; and qKZ0.11.
f can be viewed as the frequency of the periodic
solution emerging at the bifurcation, where the period
of the limit cycle (when it exists) is Tz2p/f. As for the
syphilis parameter values, the period of oscillation
is Tz20 time units, where 1 time unitZ0.5 yearZ
six months, we fix fZ0.3. Now, with these fixed
parameter values, we use the Newton method to solve
equations (A 8) and (A 5), using the syphilis parameter
values as the initial guess, once for KZ8 (dashed curve
in figure 5b) and once for KZ12 (solid curve in
J. R. Soc. Interface (2009)
figure 5b). The results are plotted in the ( p, q) plane
(figure 5b). In figure 5b, the two bifurcation curves (one
for KZ8 (dashed) and one for KZ12 (solid)) are
presented, where below each curve an endemic equili-
brium I �O0 is stable. At the bifurcation curve, the
equilibrium loses its stability and a stable limit cycle is
born so that, above the curve, a stable limit cycle
coexists with two repelling (unstable) equilibria: the
infection free and an endemic.
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