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Abstract
Gene-environment interactions are of interest in genetic association studies for several reasons.
Firstly, the power to detect genetic effects may be substantially decreased if those effects differ
according to environmental exposure, and if no account is taken of this interaction with
environmental exposure in the analysis. Secondly, such interactions may indicate a phenomenon
of genuine biological interest (whereby a particular genetic effect only operates in the presence of
an environmental trigger, or vice versa), understanding of which can lead us to a greater
understanding of possible mechanisms and pathways in disease progression. Here I discuss the
testing and estimation of gene-environment interactions via the case/pseudocontrol and related
approaches. As originally proposed, the case/pseudocontrol approach applies to case/parent trios
with no missing genotype data. I discuss some recent extensions that allow larger pedigree
structures with some missing genotype data, and present computer simulations to compare the
performance of several competing approaches.
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Introduction
Complex genetic diseases are, by definition, believed to result from the interplay of
numerous different genetic and environmental factors. Interactions between such factors
could account for the relatively modest successes in the detection of disease-predisposing
genetic variants for common, complex diseases [1]. If genetic and environmental factors
interact to cause disease susceptibility, the power to detect such effects, even in the current
generation of large-scale, well-powered, genome-wide studies [2], may be compromised
unless one stratifies by, or in some other way takes account of, the other factor(s) involved.
For this reason, there is a growing interest in modeling gene-gene and gene-environment
interactions, both in candidate gene and genome-wide studies. An additional motivation for
investigation of interactions is a belief that these represent a phenomenon of biological
interest, the elucidation of which may help uncover possible mechanisms and pathways in
disease progression.

From a statistical point of view, interaction simply signifies departure from a linear model
describing how two predictors (x1 and x2, say) predict an outcome variable (y, say). This is
perhaps most easily understood when y represents some quantitative trait (such as height, for
example) and x1 and x2 are binary indicator variables representing the presence or absence
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of some predictive factors. If the data is well fitted by a linear model y=μ+β1x1+β2x2
(where β1 and β2 are regression coefficients, representing the effects due to variables and x1,
x2, and μ is some baseline mean trait value that is expected in the absence of either factor)
then the variables x1 and x2 are said to not interact with regards to predicting y. If, on the
other hand, the data is better represented by a model that includes additional terms, such as
y=μ+β1x1+β2x2+β3x1x2, then we say that x1 and x2 interact. More complex linear models
may be postulated when the predictor variables take on several different levels or are
measured on a quantitative scale and/or the outcome variable is qualitative or dichotomous
(such as indicating presence/absence of disease). For a disease outcome and case/control
data, the usual approach is to model the log odds of disease ln[p/(1−p)] (where p represents
the probability of an individual becoming diseased) as a linear function of the relevant
predictor variables [3]. For example, we might model the log odds as ln[p/
(1−p)]=β0+βex1+βgx2+βgex1x2 , where x1 and x2 are binary indicator variables representing
presence or absence of environmental and genetic exposures respectively, βe and βg are
regression coefficients representing the environmental and genetic main effects, and βge
represents a gene-environment interaction term [4].

The concept of interaction as departure from a linear model for the main effects of two
variables is visualised pictorially in Figure 1. Expected trait values are shown for two
different levels of a binary environmental exposure (‘low’ or ‘high’) and a three level
genotype (such as might occur at a single nucleotide polymorphism). Figure 1A shows a
situation where the genetic and environmental variables do not interact with regards to
prediction of the trait: at each genetic level the effect of changing environment is to shift the
trait mean by a constant amount, while at each level of the environment, the shift in trait
mean between the different genotypes also remains constant. Figure 1 B-D on the other hand
show varying types of interaction: in Figure 1B the difference in trait mean between the
different genotypes is seen to be much greater when environment is ‘high’ than when
environment is ‘low’, and, equivalently, the effect on the trait mean of moving from the
‘low’ to the ‘high’ environment is seen to be stronger for individuals with genotype g3 than
for those with g1. In Figure 1C this pattern is taken to the extreme in that there is no effect
of genotype on trait at all in the ‘low’ environment. In Figure 1D the effect of genotype on
trait is seen to be reversed in the ‘low’ environment as compared to the ‘high’ environment,
sometimes referred to as a crossover model.

The difficulties in biological interpretation of statistical interaction are well-known [5-7] and
result partly from the fact that statistical interaction is not invariant to transformations of
scale of the outcome variable. For example, simply taking a monotonic transformation
trait→ trait3/50000 can convert the diagram in Figure 1A to the one shown in Figure 1B.
Therefore, two variables which do not interact with regards to how they predict trait as
measured on the original scale, may well interact with regards to how they predict
trait3/50000. This complicates biological interpretation of statistical interaction, unless the
required scale of measurement is ‘obvious’ (so that we know there is only one particular
scale in which we are interested) or unless an interaction term would be required on every
scale (as would be the case in Figure 1C).

In spite of difficulties in interpretation, consideration of interaction terms may be warranted
on the grounds of increasing power, given that the trait will generally be modeled on some
particular scale, and interaction effects on that scale may well exist. Inclusion of interaction
terms also allows improved predictive value of a model. Kraft et al. [4] showed that if the
focus of a study is the detection of genetic effects, an appealing procedure is to fit a model
that includes main effects and interactions and conduct a joint test for marginal (genetic
main effect) association and gene-environment interaction (i.e. perform a test of association
allowing for interaction). In the context of the linear model ln[p/
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(1−p)]=β0+βex1+βgx2+βgex1x2, this joint test is a 2 df test of βg=βge=0. Although not
universally most powerful, the joint test is nearly optimal over a wide range of plausible
penetrance models.

Family-based association studies are a popular alternative to case/control studies for the
detection of genetic effects. Although limited by sample size (since families are generally
harder to collect than unrelated cases and controls), families have some advantages over
case/control samples, allowing the construction of tests that are generally robust to
population stratification [8], and the examination of potentially more interesting effects such
as those due to maternal genotype and/or imprinting [9-12]. A popular design is to collect
cases and their parents, who may be analysed using methods based on the transmission of
alleles from heterozygous parents to affected offspring [13]. A more general method, that
allows the fitting of linear regression models similar to those used in case/control studies, is
the case/pseudocontrol approach [12,14], which conditions on the observed parental
genotypes and constructs sets of matched ‘controls’ for the affected offspring from the
untransmitted parental genotypes. This approach builds on previous methods for testing and
estimation of genotype relative risks at a single locus [15,16] by extending these methods to
allow for haplotype associations, gene-gene and gene-environment interactions, maternal
genotype and parent-of-origin effects. In this approach, any environmental variables
posessed by the case are copied over to the pseudocontrols, with the result that we cannot
assess main effects of environment, but we can assess genetic effects and gene-environment
interactions. As originally proposed, the case/pseudocontrol approach deals with missing
data (such as unknown haplotype configurations due to phase uncertainty) through a
complex conditioning argument [12,14], similar to the ‘conditioning on sufficient’ statistic
approach used in the FBAT [17,18] program. A more efficient approach is to model the full
likelihood (rather than the likelihood conditional on parental genotypes) and to account for
missing data through use of missing data likelihood [8] or multiple imputation [19]
approaches. Extensions to nuclear families with more than one affected offspring, and to
larger pedigrees, can be derived either by conditioning on the identity-by-descent of alleles
of related individuals [20] [8] or by use of an empirical variance estimate [20] that is robust
to genotype correlations among related individuals.

Results and Discussion
Table 1 shows the results of simulations of case/parent trios to assess the performance of
several different methods for testing and estimation of haplotype effects that influence, in
conjunction with a binary environmental exposure, a disease outcome. Under the null, all
methods give correct type 1 error rates of approximately 5%. Correct type 1 error rates are
also seen when testing for gene-environment interaction if the data is generated under a
main effects model (so that no interaction effects exist). Regardless of the true disease
model, all methods are found to give unbiased parameter estimation and correct 95%
confidence interval coverage when both main genetic (haplotype) effects and haplotype-
environment interactions are included in the regression analysis (i.e. a ‘joint analysis’ is
performed) although note that the 95% confidence interval coverage for the MI-TDT
method is slightly over-conservative (i.e. greater than 95%). When a ‘marginal analysis’
(including only haplotype effects in the regression model) is performed, unbiased parameter
estimation is seen when the marginal model is in fact correct (e.g. under null and main
effects models). For models where a gene-environment interaction term exists, so that the
marginal analysis model is misspecified, the value of the parameter estimate exp(βg) (which
equals the relative risk for the 2-2 haplotype) is seen to be biased towards the (unmodeled)
value of the interaction term exp(βge).
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In all situations, the three methods (MI-TDT, Unphased, Unph-Pa) that try to estimate or
reconstruct missing haplotype data show considerably higher power than the case/
pseudocontrol approach implemented in the pseudocc program, which uses only families
and pseudocontrols in which the haplotype configurations can be reconstructed with
certainty. Power is also higher for a specific test of the effect of haplotype 2-2 (a 1df test, or
a 2df test if tested jointly together with a haplotype environment-interaction) than for a 3df
(or 6df if tested jointly together with haplotype-environment interactions) test of any
difference in risk conferred by the four possible haplotypes. This is not unexpected, given
the fewer degrees of freedom in the haplotype specific test. In practice, this higher power
would only be achievable if we had reason to believe a priori that it is haplotype 2-2 that
confers the differential disease risk, and so wish to test only this specific haplotype.

Our results illustrate the observation by Kraft et al. [4] that performing a joint test of
genotype and genotype interaction can be a powerful strategy for detection of genetic factors
predisposing to disease. When gene-environment interaction effects exist, the joint test has
higher power than either a marginal test (in which only genetic effects are included in the
regression model) or a test of the gene-environment interaction term alone. When gene-
environment interaction effects do not exist, the joint test loses only a little power compared
to the optimal (in this situation) marginal test of genetic effects only.

In the simulations presented here, the power of the three approaches (MI-TDT, Unphased,
Unph-Pa) that try to estimate or reconstruct missing data appears to be very similar and, on
this basis, there is little to choose between them. However, these simulations were
conducted assuming that the data arise from a homogeneous population. In the presence of
population stratification, the performance (and in particular the type 1 error) of the methods
considered here is likely to vary considerably. The ‘additional conditioning event’ approach
implemented in pseudocc, like the conditioning on sufficient statistic approach implemented
in FBAT [17,18], should provide complete robustness to population stratification, but, as we
have seen, this comes at the expense of power. A locally optimal approach that also provides
complete robustness to population stratification has been proposed by Allen and Satten [21];
however this too loses power [8] when there is a strong genetic effect and a high proportion
of missing data. The missing data likelihood approach implemented in Unphased,
particularly when parental association parameters are modeled, can considerably improve
the power at the expense of only a small increase in type 1 error [8] when there is missing
genotype data and population stratification.

The multiple imputation approach used here provides only partial protection from
population stratification [19]. However, it does have some advantages over the missing data
likelihood approach in terms of its flexibility. In the multiple imputation approach, once
multiple ‘complete’ imputed data sets have been constructed, we are free to fit whatever
models we wish via analysis in a standard statistical package such as Stata or R (using
methods from the multiple imputation literature [22,23] to combine estimates across the
different multiple imputed data sets, and to perform tests). This allows us to fit models and
perform tests that have not been implemented in specialised genetic analysis packages, such
as the joint test of genotype main effect and gene-environment interaction, or the 3df test of
haplotype interaction, neither of which are currently implemented in the Unphased software.

A danger of methods that reconstruct missing data probablistically is that one is tempted to
treat the reconstructed data as it it were actually observed. Unless the uncertainty in the
reconstructed missing data is appropriately allowed for in the analysis, one runs the risk of
overestimating the amount of information actually available in the observed sample [24],
resulting in an inflation of type 1 error and anti-conservative confidence intervals. Standard
statistical theory, bourne out by our simulations, predicts that inference based on a proper
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missing data likelihood, as is used in the Unphased software, should appropriately allow for
the uncertainty in haplotype reconstruction. Similarly, multiple imputation under the
alternative hypothesis, using an IP (imputation/posterior sampling) algorithm [25] to sample
the full Bayesian posterior distribution of haplotype data given the observed genotype and
phenotype data, as is used in the MI-TDT software [19], should appropriately allow for any
uncertainty in haplotype reconstruction (uncertainty given the complete-data model
parameters, as well as uncertainty about these unknown model parameters). This is achieved
through the generation of multiple reconstructed (imputed) complete data sets in which
uncertainty is reflected through multiple alternative (differing) reconstructions (as output
from the IP algorithm, essentially a Gibbs sampler), which must then be combined
appropriately to provide the final inference [22].

It is common in the multiple imputation literature to use a relatively small number (e.g.
3-10) of imputed data sets to perform this final step. In the genetic context described here,
and in previous investigations [19,26], the use of 10 imputed data sets appeared to be
adequate, provided the level of missing data was not too large (up to about 30% genotypes
missing). As pointed out by Nicolae et al. [24], the amount of information in an incomplete
data set depends not only on the relationship between the observed and missing data, but on
the hypothesis and test statistic being evaluated. Investigation of the sensitivity of the
multiple imputation procedure to the number of imputed data sets generated, as well as to
the use of different hypothesis tests, would be an interesting topic for further investigation.
In theory, the use of larger numbers of imputed data sets should provide inferences that are
better calibrated [22] as well as providing a better reflection of the inherent uncertainty in
the haplotype reconstruction.

Methods
Simulations were conducted to examine the performance of several different family-based
methods for testing and estimation of haplotype effects that influence, in conjunction with a
binary environmental exposure, a disease outcome. In each case, 1000 case/parent trios were
simulated under a model that assumed disease risk could be influenced by a two-marker
haplotype acting in conjunction with a possible environmental exposure. The two genetic
markers were both diallelic, leading to four possible haplotypes, denoted 1-1, 1-2, 2-1, 2-2
(here i-j denotes the occurrence of allele i at locus 1 in coupling with allele j at locus 2).
Four different disease models were considered: 1) a null model in which there were no
genetic effects but the environmental exposure (assumed to be at 30% frequency in the
population) multiplied the offspring disease risk by a factor of two; 2) a main effects model
in which the environmental exposure multiplied the offspring disease risk by two and each
2-2 haplotype multiplied the offspring disease risk by 1.5; 3) a pure interaction model in
which each 2-2 haplotype multiplied the offspring disease risk by 1.5 only in the presence of
the environmental trigger; and 4) a model in which main effects of both genotype and
environment and their interaction all contributed to disease risk. In each case, 15% of
genotypes in the parents and offspring were randomly set to be missing, in addition to
missing data generated in the form of undeterminable phase (haplotype) resolutions.

The methods evaluated were: 1) the case/pseudocontrol approach [14] as implemented in the
Stata program pseudocc (part of the genassoc [27] package); 2) the multiple imputation
approach [19] implemented in the MI-TDT program; and 3) the missing data likelihood-
based approach [8] implemented in Unphased program. The case/pseudocontrol approach
deals with the missing data through use of an additional conditioning event [14] that means
we only use families and pseudocontrols for which the haplotype configuration is inferrable;
in addition the implementation in pseudocc only uses families in which there are no missing
genotypes. The multiple imputation approach uses an iterative procedure to repeatedly fill in
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the missing data (missing genotypes or phase resolutions) as described in [19]. In order to
allow the fitting of gene-environment interaction effects, imputation here was performed
within classes defined by the offspring's environmental exposure. This resulted in the
generation of ten complete data sets that were then analysed using the Stata program mim
[28] in order to combine estimates and construct tests [22,23]. The likelihood approach
implemented in Unphased deals with missing data through direct maximisation of a full
missing data likelihood, modeling genetic association parameters separately in parents and
offspring [8]. The default is to assume that there is no genetic association in the parents; we
also considered use of the -parentrisk (-pa) option in Unphased, in which association
parameters are estimated (separately) in the parents as well as in the offspring.

For each disease model, 1000 simulation replicates were used to examine the bias (the
difference between the true and the expected values of the relative risks and log relative
risks) for the genetic main effects and gene-environment interactions, the coverage of the
95% confidence intervals for these parameters (which, if a method is working correctly,
should equal 95%) and the powers and type 1 errors i.e. the probability of declaring a
significant result (at the 5% significance level) when the null hypothesis is false (for power)
or true (for type 1 error).
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Figure 1.
Visualisation of non-interaction and interaction models for the joint effects of genotype and
environment on a quantitative trait. A. A non-interaction model. B. An interaction model. C.
An extreme interaction model. D. A crossover interaction model.
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