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In various polarized cells, positions of nuclei are often off-center. However, extrinsic signals

regulating nuclear off-centering and its biologic roles remain to be elucidated. In Caenorhabditis

elegans, polarity of the EMS cell undergoing asymmetric division is regulated by the MOM-2 ⁄
Wnt and MES-1 signals from its posterior neighbor P2 cell. We show that after divisions of

different cells including EMS, the nuclei of the posterior but not anterior daughter cells are

anchored to the posterior cell cortex via centrosomes. We also show that this nuclear anchoring

is regulated by components of the Wnt pathway and SRC-1 that functions in MES-1 signaling.

To understand the biologic roles of nuclear anchoring, we analyzed its effects on asymmetric

nuclear localization of POP-1 ⁄TCF that is also regulated by Wnt and Src signaling. We found

that in mom-2 mutants where the nuclear anchoring and POP-1 asymmetry is partially inhibited,

the proximity of the nucleus to the cell cortex correlated with POP-1 asymmetry. Furthermore,

in mutants of mom-2, the defect in the anchoring is clearly correlated with that of asymmetric

fate determination. These results suggest that the asymmetric nuclear anchoring functions in

asymmetric division by enhancing POP-1 asymmetry.

Introduction

Asymmetric division is a fundamental way to produce
cellular diversity. For cells to divide asymmetrically,
they must be polarized by extrinsic and ⁄ or intrinsic
cues. Then, the cell polarity enforces asymmetric
localization of cell fate determinants. Asymmetric seg-
regation of the localized determinants is achieved by
proper orientation of the spindle along the axis of the
polarity (Gönczy 2008; Siller & Doe 2009). In
Caenorhabditis elegans (C. elegans), asymmetric division
is one of the important processes for establishing the
body plan. Asymmetries of many divisions along the
anteroposterior axis are regulated by a Wnt pathway
called Wnt ⁄b-catenin asymmetry pathway (Mizumoto
& Sawa 2007b). For example, the embryonic EMS
cell is polarized by the MOM-2 ⁄ Wnt signal from its
posterior neighbor, the P2 cell. This triggers the Wnt

effector DSH-2 ⁄ Dishevelled and WRM-1 ⁄b-catenin
to be localized to the posterior and anterior cell cor-
tex, respectively (Walston et al. 2004), (Nakamura
et al. 2005). At telophase, when the nuclear mem-
brane is reformed, WRM-1 starts to localize preferen-
tially to the posterior nucleus (Nakamura et al. 2005)
where it promotes nuclear export of POP-1 ⁄ TCF
(Lo et al. 2004; Mizumoto & Sawa 2007b), creating
reciprocal asymmetry of nuclear WRM-1 and POP-
1. The asymmetry of POP-1 localization (POP-1
asymmetry) results in its distinct transcription activities
and asymmetric cell fate decision in the daughter cells
(MS and E) (Phillips & Kimble 2009). It was also
reported that SRC-1 ⁄ Src tyrosine kinase cooperates
with Wnt signaling in the regulation of POP-1 asym-
metry and the orientation of the mitotic spindle dur-
ing the EMS division (Thorpe et al. 1997; Schlesinger
et al. 1999; Bei et al. 2002). However, how Wnt and
Src signaling control asymmetric WRM-1 ⁄b-catenin
and POP-1 ⁄TCF nuclear localization remains to be
elucidated.

In this study, we found that during telophase of
the EMS division, the posterior but not anterior cen-
trosomes moved toward the cell cortex and were
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attached to it just after the division to anchor the E
nucleus to the cell periphery (nuclear anchoring) in a
manner dependent on Wnt and Src signaling. In
mom-2 ⁄ wnt mutants, in which the asymmetric nuclear
anchoring was partially disrupted, POP-1 asymmetry
was more strongly affected in embryos with E nuclei
located far from the cortex than compared to those
with E nuclei located close to the cortex. Therefore,
our results suggest a novel role for the positioning of
nuclei in the regulation of asymmetric division.

Results

The posterior nucleus is anchored to the cell

cortex by centrosomes just after the EMS division

To analyze microtubule organization during and after
the asymmetric EMS division, we performed the 4D
live imaging of green fluorescent protein (GFP)::
b-tubulin and GFP::c-tubulin during the division
(Fig. 1). When the cell entered mitosis, the axis of
centrosomes rotated from left–right to anteroposterior
orientations, as reported previously (Hyman & White
1987). At late telophase, we found that the posterior
but not the anterior centrosomes elongated along the
anteroposterior axis with its posterior end reaching to
the posterior cortex (Fig. 1a; 2:40, Fig. 1b,c; 2:00).
Within 1 min after centrosome duplication that
occurs soon after the completion of the division, at
least one of the duplicated centrosomes in the poster-
ior daughter E cell were always attached to the cell
boundary between the E and P2 cells (P2 ⁄ E bound-
ary) and were sandwiched between the E nucleus and
the cell cortex (Fig. 1 and Table 1). The centrosomes
and the nucleus remained attached to the cortex until
approximately 10 min after the division. In contrast,
such cortical attachment was rarely (3%) observed for
the centrosomes in the anterior MS daughter (Fig. 1
and Table 1). The peripheral positioning of nuclei
but not centrosomes was reported previously in some
embryonic cells including the E cell (Schierenberg
1987; Goldstein 1995). To know whether the centro-
some–nucleus interaction is required for the periph-
eral positioning of the E cell nucleus, we observed
embryos with a mutation in the zyg-12 gene that
encodes a protein with a KASH domain and is
required for the attachments of centrosomes to
nuclear membrane (Malone et al. 2003). When we
shifted zyg-12 temperature-sensitive mutants to the
restrictive temperature just before the EMS division,
the posterior nucleus appeared to be attached to the
elongated centrosome at late telophase, but dissociated

from the centrosome before its attachment to the cor-
tex (100% n = 14, Fig. 1c). In addition, a tempera-
ture up-shift of zyg-12(ts) mutants after the
establishment of the centrosome–cortex attachment
caused detachment of the E nucleus from the cell
cortex (data not shown). These results suggest that
the E cell nucleus is continuously anchored to the
P2 ⁄ E boundary via the centrosome–nucleus interac-
tion (hereafter called the nuclear anchoring).

Attachments of nuclei to the cell cortex in various

posterior daughter cells

We also analyzed positions of nuclei and centrosomes
in some other embryonic and postembryonic cells
shown in Fig. 2a just after their birth to find that they
also attached to the posterior cell cortex with varying
degrees in most posterior but not anterior daughter
cells we examined (Fig. 2) except for the daughters of
ABar that divides nearly along the left–right axis
(Thorpe et al. 1997). In the posterior sister cells,
whenever we observed cortical attachments of nuclei,
their centrosomes were observed between the nuclei
and the cell cortex (data not shown). This strong cor-
relation suggests that the nuclei are anchored to the
cortex by centrosomes also in these cells.

Wnt and Src signaling regulate the nuclear

anchoring via centrosomes

It was reported previously that the proximity of the E
cell nucleus to the P2 ⁄ E boundary requires the P2 cell
which is on the posterior side of E (Schierenberg 1987;
Goldstein 1995), suggesting that signals from the P2
cell regulate the nuclear anchoring. It is known that the
P2 cell sends at least two signals to EMS to regulate its
asymmetric division (Thorpe et al. 1997; Bei et al.
2002). They are mediated by MOM-2 ⁄ Wnt and a
transmembrane protein MES-1 that functions through
the Wnt ⁄b-catenin asymmetry pathway and SRC-1
tyrosine kinase, respectively. Therefore, we analyzed
the functions of these signaling pathways in the anchor-
ing of the E nucleus to the cortex and found the attach-
ment defect in mutants or RNA interference (RNAi)
embryos of SRC-1 or of some Wnt signaling compo-
nents (MOM-2, MOM-5 ⁄ Frizzled, MIG-14 ⁄ Wntless,
DSH-2;MIG-5 ⁄ Dsh, GSK-3 ⁄ Gsk3b) [MIG-14 and
Wntless are required for the secretion of Wnts
(Coudreuse & Korswagen 2007)] (Fig. 3 and Table 1).
The defect was not observed by RNAi of more down-
stream components of Wnt signaling (APR-1 ⁄ APC,
WRM-1, and POP-1). Similar effects of mom-2 and
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src-1 were also observed for the nuclear anchoring in
ABalp and ABprp (Table 1). These results suggest that
both Wnt and Src signaling regulate the nuclear
anchoring to the cell cortex via centrosome. However,

because all these components required for the anchor-
ing are also known to regulate spindle orientation in
EMS (Thorpe et al. 1997; Schlesinger et al. 1999;
Bei et al. 2002), the defect in centrosome–cortex
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Figure 1 The nucleus of posterior daughter cell is anchored to the cell cortex by centrosomes after an asymmetric division. (a, b)

Time-lapse images of the same embryos expressing GFP::b-tubulin (a) or GFP::c-tubulin (b) in the focal planes in which the center

of anterior or posterior centrosomes was clearly observed as indicated in the top of the panels. The numbers on the left indicate the

amount of time (minutes : seconds) after furrowing onset. Asterisks indicate the center of the anterior or posterior nuclei. Arrow-

heads indicate the positions of centrosomes. Both centrosomes collapsed and duplicated around 4:00. Some of the duplicated cen-

trosomes were out of focus in the images after 5:20. In (b), the boundaries of the MS and E cells are outlined by dotted lines in

the left and center panels, respectively. The right panels show the magnified images of the middle panels around the posterior side

of the E cell with its boundary to the P2 cell outlined by dotted lines. (c) Merged differential interference contrast (DIC) and GFP

images of wild-type or zyg-12(ts) embryos expressing GFP::c-tubulin at 6 min after furrowing onset. The right panels show the

magnified images of the left panels around the posterior side of the E cell with their boundaries to the P2 outlined by dotted lines.

Arrowheads and asterisks indicate the positions of centrosomes and center of the nuclei in the E cell, respectively. Bars, 5 lm.
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attachment in these mutants might be the secondary
consequences of the spindle orientation defect. To
exclude this possibility, we analyzed correlations
between these phenotypes by observing spindle orien-
tation at the onset of cytokinesis and then, 320 s later,
the centrosome–cortex attachment in live mom-
2(RNAi) and src-1(RNAi) embryos. To quantify spindle
orientation in intact embryos in three dimensions, as
shown in Fig. 4a,b, we measured the angle (/) of the
spindle relative to the anteroposterior axis and calcu-
lated another angle (h) of the spindle relative to the
focal plane from distances (x, y and z) between centro-
somes along the three body axes. In control wild-type
embryos, EMS spindle orientation plots were concen-
trated in a small area (i.e. normal range, indicated by
the yellow box in Fig. 4c) with limited variability
and was slightly tilted toward the right. In mom-
2 ⁄ Wnt(RNAi) or src-1(RNAi) embryos, spindle orien-
tation was often plotted outside of the normal range,
consistent with the orientation defects reported previ-
ously (Schlesinger et al. 1999; Bei et al. 2002). In four
of seven mom-2 and three of 11 src-1 embryos among
those that were defective in the anchoring of E nuclei
(red circles in Fig. 4c), spindle orientation was plotted
in the normal range, indicating that the anchoring
defect was not caused by abnormal spindle orientation
at least in these embryos, although the anchoring defect

in the remaining embryos (red circles outside of the
yellow area) might be caused or influenced by the
orientation defect. These results strongly suggest that
the anchoring of E nucleus is regulated by Wnt and
Src signaling independently of their roles in spindle
orientation.

The roles of the nuclear anchoring in asymmetric

division

The roles of the peripheral positioning of nucleus
have not been analyzed previously in C. elegans.
Because the nuclear anchoring in the E cell results in
asymmetric nuclear positioning between the MS and
E sister cells, we thought that the nuclear anchoring
might influence other asymmetries between the sister
cells, i.e., POP-1 asymmetry and ⁄or the difference of
cell fates. We first examined correlations between the
nuclear anchoring and POP-1 asymmetry using the
temperature-sensitive mutants of zyg-12 ⁄KASH. In
these experiments, in live embryos, we visually
judged the attachment and the proximity of E nuclei
to the P2 ⁄ E boundary at approximately 3 min after
the completion of the division and immediately fixed
and stained them for c-tubulin and POP-1 ⁄ TCF
(Fig. S2). The proximity was confirmed after staining
by measuring the distance between nuclei and the
posterior cortex. In zyg-12 mutants, although the
nuclear anchoring completely failed, POP-1 asymme-
try was similar to the wild-type level (Fig. 5a,c,e),
indicating that the nuclear anchoring is not essential
for POP-1 asymmetry that is mainly regulated by
Wnt signaling. Next, we examined the possible
functions of the nuclear anchoring in the mom-
2 ⁄ Wnt(null) sensitized background, because mom-
2(null) mutants were not completely defective in
asymmetric cell fate determination (83% defective
n = 30) and POP-1 asymmetry (Fig. 5d). Firstly, we
compared the POP-1 asymmetry between mom-2
mutants with and without the cortical attachment of
nuclei in the E cell (white versus gray + blue circles
in Fig. 5d and the left two bars in Fig. 5f), but we
could not detect significant effects even in the mom-2
background. We noticed, however, that the animals
whose E nuclei are close to the cell cortex (white +
gray circles in Fig. 5d) showed significantly higher
POP-1 asymmetry compared to those with nuclear
positions far from the cell cortex (blue circles in
Fig. 5d), as shown in Fig. 5b and the right two bars
in Fig. 5f. These results suggest that the proximity
between the nucleus and the cell cortex is important
to potentiate POP-1 asymmetry in the background

Table 1 Nuclear anchoring in Wnt and Src knockdown

embryos

Cell Genotype

%

Cen0

%

Cen1

%

Cen2 n P-value

E WT 0 29 71 41 NA

E mom-2(RNAi) 17 44 39 18 0.007

E src-1(RNAi) 80 20 0 15 <0.0001

E mom-5(RNAi) 50 40 10 10 <0.0001

E dsh-2;mig-5

(RNAi)

70 20 10 10 <0.0001

E gsk-3(RNAi) 100 0 0 8 <0.0001

E mig-14(or78) 60 31 9 45 <0.0001

E wrm-1(RNAi) 0 33 67 9 1.0

E apr-1(RNAi) 0 17 83 6 1.0

E pop-1(RNAi) 0 62 38 8 0.11

ABalp WT 0 49 51 35 NA

ABalp mom-2(RNAi) 31 46 23 13 0.004

ABalp src-1(RNAi) 100 0 0 11 <0.0001

ABprp WT 0 21 79 14 NA

ABprp mom-2(RNAi) 56 11 33 9 0.005

ABprp src-1(RNAi) 100 0 0 7 <0.0001

Cen0, Cen1 and Cen2 phenotypes are described in Fig. 2a.

P-values were calculated by Fisher’s exact test.
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sensitized by the mom-2(null) mutation. The nuclear
attachment to the cortex by itself may not be impor-
tant, but the nuclear anchoring is required to keep
the nucleus in the proximity to the cortex.

We further analyzed the correlations between
abnormal nuclear anchoring and cell fate defects in
src-1(RNAi), mom-2(or309) and mig-14(or78) ⁄ Wntless
mutants. We observed the nuclear anchoring pheno-
type of live embryos and subsequently analyzed the
asymmetry of cell fates by observing differentiation of
gut produced from the E cell by its autofluorescence.
As reported previously (Bei et al. 2002), src-1(RNAi),
animals show normal gut differentiation (100%
n = 15), although 80% of them had the anchoring
defect (Table 1), confirming that the nuclear anchoring
is not important in the background with full mom-2
activity. However, in mom-2 ⁄ Wnt or mig-14 ⁄ Wntless
mutants, all the embryos with defective anchoring did

not produce gut (10 of 30 and 27 of 45 total embryos
in mom-2 and mig-14, respectively), whereas only some
embryos with normal anchoring showed gut differ-
entiation (25% n = 20 and 28% n = 18 in mom-2 and
mig-14, respectively). These results indicate that asym-
metric nuclear anchoring is involved in asymmetric cell
fates determination at least when the Wnt signal is
abrogated.

Discussion

According to Hertwig’s rules described in Wilson’s
(1925) textbook, the nucleus tends to take up a posi-
tion at the center of a cell. In fission yeast, nuclear
centering is achieved by the active microtubule-
dependent pushing force (Toda et al. 1983; Umesono
et al. 1983; Tran et al. 2001; Daga et al. 2006). In
polarized cells, however, nuclear positions are often
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Figure 2 The nuclear anchoring in various cells. (a) The positions of nuclei and centrosomes in indicated embryonic daughter

cells were observed at 320 s after furrowing onset (approximately 2.5 min after the completion of the divisions) of their mother

cells (See also Fig. S1in Supporting Information). For postembryonic T and V5 cells, nuclei were observed at late telophase or just

after the division. In each daughter cell pair, the upper and lower rows in the table indicate anterior and posterior daughter cells,

respectively. Cen0, Cen1 and Cen2 indicate that zero, one and two centrosomes, respectively, were observed to be attached to

the cortex as schematically described at the bottom of the table. In all cases, centrosomes were attached to nuclei. Nuclei were

anchored to the cortex in Cen1 and Cen2. (b) Left and right are images of the same embryos in the focal planes with focuses on

the anterior and posterior daughter cells, respectively. Cell boundaries are outlined by dotted lines. Asterisks and arrowheads indi-

cate the center of the nuclei and the positions of centrosomes, respectively. Bars, 5 lm.
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displaced from the center by nuclear migration and
anchoring. For example, in migrating neuronal cells
derived from mammalian forebrain, forward move-
ment of nuclei is preceded by that of centrosomes
(Metin et al. 2008). The nuclear migration and
anchoring events in a variety of organisms involve
the protein complexes containing KASH and SUN
family proteins which bridge inner and outer nuclear
membrane and transfer forces from the cytoplasm to
the nucleus (Starr 2009). For example, in the Dro-
sophila eye disc, the nuclei of photoreceptor cells are
positioned near the apical surface via centrosome
through the function of a KASH protein Klarsicht
(Patterson et al. 2004). Similarly, we showed, in
C. elegans, that the nucleus is anchored by the cen-
trosomes to the cell cortex in a ZYG-12 ⁄KASH-
dependent manner. This process in C. elegans has two

unique features, which have not been reported in
other systems. First, nuclear anchoring occurs asym-
metrically only in the posterior daughter cells after
asymmetric divisions. Second, the anchoring is regu-
lated by Wnt and Src signaling at least in the embry-
onic EMS, ABal and ABpr divisions. Considering the
observations that the nuclear anchoring was observed
in many other embryonic and postembryonic divi-
sions and that DSH-2 ⁄ Dishevelled is localized to the
posterior cortex where the nuclei are anchored in the
T.p and V5.p cells as in the EMS cell (Walston et al.
2004; Mizumoto & Sawa 2007a), Wnts may regulate
nuclear anchoring throughout the C. elegans develop-
ment. In other organisms as in C. elegans, Wnt
and ⁄ or Src signaling might regulate nuclear position-
ing or anchoring in polarized cells.

How is the nuclear anchoring achieved? Before the
nuclear anchoring, Wnt and Src signaling is thought
to regulate spindle orientation through the pulling
force from the P2 ⁄ EMS boundary where the G
protein regulator complex (GPR-1 ⁄GPR-2 ⁄ LIN-5)
and DNC-1 ⁄ dynactin localized in Src and Src + Wnt-
dependent manners, respectively (Srinivasan et al.
2003; Tsou et al. 2003; Zhang et al. 2008). Therefore,
it may be that similar mechanisms pull the posterior
centrosome to the cortex. Interestingly, in contrast to
prophase–anaphase when the spindle vigorously oscil-
lated vertically, during the process of centrosome
attachment to the cortex, spindle oscillation became
milder (data not shown) and posterior centrosomes
were slightly elongated toward the P2 ⁄ EMS boundary
(Fig. 1b; 2:00). This may suggest that nature of pulling
force from the posterior cortex is different from that
before anaphase. In addition, the dynactin localization
at the P2 ⁄ EMS boundary disappears before the
telophase of the EMS division (Zhang et al. 2008).
Therefore, the components of force generators and
properties of the force may somehow differ between
spindle orientation and the nuclear anchoring.

The biologic roles of nuclear anchoring still remain
to be understood. In mammalian skeletal muscle
where three to six nuclei are anchored to the post-
synaptic membrane at the neuromuscular junctions
(Sanes & Lichtman 2001), it was suggested that
the nuclear anchoring strengthens communication
between nerve and muscle, because, in the absence of
KASH protein Syne-1 ⁄Syne-2, the morphology of
motor neurons becomes abnormal (Zhang et al.
2007). In the asymmetric division of the EMS cell,
although the nuclear anchoring itself is not required
for POP-1 asymmetry and cell fates in mom-2 ⁄ Wnt
(+) animals, we showed that it has a significant
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influence on POP-1 asymmetry and asymmetric cell
fates in the absence of MOM-2. Because the E cell
nucleus attaches to the P2 ⁄ E boundary, where Src-
dependent tyrosine phosphorylation is enriched even
in mom-2 mutants (Bei et al. 2002), we expect that
the Src signaling may be more efficiently transduced
to create weak POP-1 asymmetry when the nucleus
is anchored in mom-2 mutants (Fig. 6). In any signal-
ing systems, it is plausible to imagine that positioning
of the nucleus near the source of the signals can facil-
itate transduction of the signals. Therefore, nuclear
positioning may play key roles in many signaling sys-
tems including Wnt signaling in other organisms.

Experimental procedures

Strains and alleles

All C. elegans strains used in this study were cultured by standard

methods (Brenner 1974). zyg-12(or577ts) mutants were grown

at 15 �C and their embryos were shifted to 25 �C before

observation. The Bristol strain N2 was used as wild type. The

following integrated transgenic lines were used: GFP-c-tubulin

[unc-119(+) pie-1 promoter::gfp::tbg-1] (Oegema et al. 2001);

GFP-b-tubulin [unc-119(+) pie-1 promoter::gfp::tubulin] (Praitis

et al. 2001); c-tubulin-GFP [pRF4 + tbg-1::gfp] (Bobinnec et al.

2000).

RNA interference

For production of dsRNA, the following cDNAs were used

as templates: yk40c12 (apr-1), yk117f2 (src-1), yk213d6 (wrm-

1), yk233b4 (gsk-3), yk471e5 (mom-5), yk714f1 (mom-2),

yk55h11 (dsh-2), yk216a12 (mig-5) and pMM414 (pop-1)

(Maduro et al. 2002). Embryos were collected 24–40 h

postinjection.

Microscopy and analysis of living embryos

All the embryos were dissected from gravid hermaphrodites in

egg salt buffer (Edgar 1995). For most experiments, the embryos
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Figure 4 The nuclear anchoring and spindle orientation are independently regulated by Wnt and Src signaling. (a, b) Calculation

of mitotic spindle orientation, using three-dimensional coordinate geometry. When embryos are mounted on glass slides, they are

usually mounted so that their L–R axis corresponds to the z-axis. Spindle orientation was determined using Cartesian coordinate
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were mounted on 5% agarose pads under coverslips and sealed

with Vaseline. Embryos were observed at room temperature

with a Plan-Apochromat 100· 1.4 NA oil immersion lens by

using a CSU10 spinning-disc confocal system (Yokogawa Elec-

tric Corp., Tokyo, Japan) mounted on an AxioPlan2 microscope

(Carl Zeiss, Inc, Oberkochen, Germany). The specimens were
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Figure 5 The nuclear anchoring potentiates POP-1 asymmetry. (a, b) Examples of wild-type, zyg-12(ts) and mom-2(or309)

embryos at 7:00 relative to furrowing onset stained for POP-1 and c-tubulin. Red bars indicate the positions of sister nuclei. Cell

boundaries of the E cell are outlined with white dotted lines except for the P3 ⁄ E boundary with yellow dotted lines. Black dotted

lines below the images indicate samples in (c) and (d) corresponding to the embryos in (a) and (b), respectively. (c, d) Ratios of

POP-1 asymmetry between the MS and E nuclei (A–P ratio) in wild-type (green squares) and zyg-12(ts) embryos (pink squares) in

(c), and mom-2(or309) embryos in (d) were plotted over the distances between the posterior edge of nuclei and the P3 ⁄ E boundary.

In (d), white, gray and blue circles indicate that the nuclei were attached to the P3 ⁄ E boundary, close to but not anchored to it

and far from it, respectively, judged by visual observation by DIC microscopy at 6 min from furrowing onset before fixation. The

distances shown in the panel were measured after staining. The staining procedure might cause slight shifts of nuclear positions, so

that the distances were variable among embryos with the normal nuclear anchoring (white circles), although the distances were still

shorter compared to embryos without the nuclear anchoring. (e, f) Average A–P ratios of POP-1 asymmetry in wild type, zyg-

12(ts), mom-2(or309) mutants calculated from the data in (c) and (d). Error bars indicate the standard error of mean (SEM) at 95%

confidence. P-values were calculated by Mann–Whitney U-test. Significant differences were not detected in comparisons between

wild type and zyg-12 mutants (e), and those between mom-2 mutants with (white circle in d) and without (gray + blue circles in

d) nuclear attachment to the P3 ⁄ E boundary (left two bars in f). mom-2 mutants with their E nuclei attached or close to the cortex

(white + gray circles in d) showed significantly higher POP-1 asymmetry than those (blue circles in d) with their nuclei far from

the cortex (right two bars in f). White bars, 5 lm.
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illuminated with a diode-pumped solid state 488-nm laser

(HPU50100, 20 mW; Furukawa Electronic, Tokyo, Japan).

Images were acquired with an Orca ER12-bit cooled CCD

camera (Hamamatsu Photonics, Hamamatsu, Japan), and the

acquisition system was controlled by IP lab software (2 · 2

binning; Scanalytics, Inc, Rockville, MD, USA). Acquired

images were processed with the IP Lab software and Adobe

Photoshop (Adobe Systems, San Jose, CA, USA). In the anal-

ysis of the effects of the nuclear anchoring on cell fate asym-

metry, we judged nuclear attachment by differential

interference contrast (DIC) microscopy at room temperature

and then incubated the slides at 15 �C over night and

observed the autofluorescence of gut granules.

Immunostaining and quantification of POP-1

protein levels

For staining of c-tubulin and POP-1, embryos at 7 min after

furrowing onset (approximately 3 min after the completion of

the division) of the EMS cells were freeze-cracked, and slides

were fixed in )20 �C methanol for 5 min and rehydrated

2 min each through 95%, 90%, 75%, 50% and 30% methanol

series diluted in phosphate buffered saline supplemented with

Tween-20 (PBSTw). After washing three times with PBSTw,

slides were incubated with the mouse anti-POP-1 antibody

(clone P4G4, 1 : 2500; Lin et al. 1998) and the rabbit anti-

c-tubulin antibody (LL-17; 1 : 1000; Sigma-Aldrich, St. Louis,

MO, USA) in PBSTw supplemented with 1% BSA at 4 �C
over night. After washing three times, slides were incubated

with the Rhodamine-X-conjugated goat anti-mouse IgG

(1 : 1000; Invitrogen, Carlsbad, CA, USA) and Fluorescein-

conjugated goat anti-rabbit IgG (1 : 1000; Invitrogen) for 2 h

at room temperature. POP-1 asymmetry was calculated as the

ratio of the average fluorescence intensities between the ante-

rior and posterior nuclei quantified using the IP lab software.
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Supporting Information ⁄Supplementary
material

The following Supporting Information can be found in the

online version of the article:

Figure S1 Schematic views of Caenorhabditis elegans embryos

with centrosome positions. Left side is up for embryos at the

6- and 14-cell stages (top and bottom). For the 8-cell and 12-

cell stages, embryos on the left and right sides of the black

dotted line are shown with their left side up and right side up,

respectively. Double headed arrows and thin black lines indi-

cate the orientation of the divisions and sister cell pairs, respec-

tively. Centrosomes of posterior daughter cells which attached

to the cell cortex and those which did not are shown as small

red and gray circles, respectively.

Figure S2 Timeline of the experimental procedures used in

Fig. 5. Experimental procedures and cellular events were

plotted over time. 0 min is a furrowing onset. Note that we

judge the nuclear attachment before fixation and measured the

distance between nuclei and cell cortex after staining.

Additional Supporting Information may be found in the online

version of this article.

Please note: Wiley-Blackwell are not responsible for the

content or functionality of any supporting materials supplied

by the authors. Any queries (other than missing material)

should be directed to the corresponding author for the article.
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