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Hydrocephalus, characterized by increased fluid in the cerebral ventricles, is traditionally evaluated by a visual assessment of serial
CT scans. The complex shape of the ventricular system makes accurate visual comparison of CT scans difficult. The current
research developed a quantitative method to measure the change in cerebral ventricular volume over time. Key elements of
the developed framework are: adaptive image registration based on mutual information and wavelet multiresolution analysis;
adaptive segmentation with novel feature extraction based on the Dual-Tree Complex Wavelet Transform; volume calculation.
The framework, when tested on physical phantoms, had an error of 2.3%. When validated on clinical cases, results showed that
cases deemed to be normal/stable had a calculated volume change less than 5%. Those with progressive/treated hydrocephalus had
a calculated change greater than 20%. These findings indicate that the framework is reasonable and has potential for development
as a tool in the evaluation of hydrocephalus.

1. Introduction

Hydrocephalus results from excessive accumulation of cere-
brospinal fluid, leading to enlargement of the cerebral
ventricles. The condition is commonly evaluated by visual
comparison of serial CT scans of the head. However, the
complex shape of the ventricular system and the differences
in the angulation of slices combined with slight differences
in positioning of the head from one CT study to the next
can make direct visual comparisons of serial imaging studies
difficult and of limited accuracy. This makes the quantitative
assessment of the volume change desirable.

Earlier methods for quantitatively assessing ventricular
volume have included the diagonal ventricular dimension
[1], the frontal and occipital horn ratio [2], the ventricular-
brain ratio [3], the Evans ratio [4], Huckman’s measurement
[5, 6], and the minimal lateral ventricular width [7],
among others. The previous attempts to quantitatively assess

ventricular volume have focused on linear, ratio, or surface
area estimates of ventricular size, and as such, have been
limited by the fact that they try to estimate volume (a 3-
dimensional construct) using 1- or 2-dimensional measure-
ments [8, 9]. In many cases the estimates are based solely
on measurements taken from a single axial slice, and may
leave potential volumetric changes in the 3rd or 4th ventricles
unaccounted for [8, 9]. The previous techniques that have
tried to assess volumetric changes 3dimensionally have been
time consuming, limiting their clinical applicability [8, 9].
Furthermore, often measurements appropriate for adults are
not appropriate for pediatric patients and vice versa [1, 2,
10].

This paper describes a novel framework to measure the
change in the volume of the ventricles using CT scans taken
at two separate times. The method involves registering the
two CT image sequences to be compared, automatically
segmenting the ventricles in all the image slices, and

mailto:nlinney@smu.ca


2 International Journal of Biomedical Imaging

calculating a volume change from the results. The framework
was validated and verified on both physical phantom models
and clinical data.

Image registration is used to align the second set of CT
images with the first, thus making the volume calculations
consistent, reducing the error caused by the partial volume
effect and improving the accuracy of the calculated change in
volume. The differences in angulation of the slices combined
with the slight differences in positioning of the head from
one CT to the next is referred to in this paper as the
displacement of the human head. A number of image regis-
tration techniques have been described previously, including
landmark techniques [11]; point-based and thin-spline-
based methods [12]; mutual information-based methods
[13–15]. The current research required a rigid registration
technique to compensate for the rigid displacement of the
head between the CT scans, while maintaining the differences
in ventricular volume and shape. Both in-plane and out-of-
plane displacements needed to be considered. The developed
framework includes an adaptive rigid registration method
based on mutual information combined with image gradient
information, and wavelet multiresolution analysis.

Image segmentation is the process of separating out
mutually exclusive homogeneous regions of interest and in
this research is used to isolate the ventricles in preparation
for the volume calculation. In this paper, the focus is on a
variation of the watershed automated segmentation method.
The watershed method suffers from an oversegmentation
problem, and a number of methods proposed in the
literature to overcome the problem have had varying success.
Soille [16] introduced the H-minima transform, which
modifies the gradient surface, suppressing shallow minima.
Shafarenko et al. [17] used a modified gradient map as the
input for the watershed algorithm in randomly textured
color images. O’Callaghan and Bull [18] proposed a two-
stage method, which is capable of processing both textured
and nontextured objects in a meaningful fashion. In the
current research, the Dual-Tree Complex Wavelet Transform
(DT-CWT) was used to detect the texture boundaries and
a novel feature extraction method used to optimize the
segmentation results.

Once the images are registered and the ventricles are
segmented, the framework calculates the change in volume.
To validate the method developed in this study, physical
phantoms of the brain and cerebral ventricles were con-
structed, using agar and water to simulate brain tissue
and cerebrospinal fluid, respectively. The volume of the
phantom ventricles was measured directly and was then
calculated using the method described in this paper. Clinical
data with known outcomes were also used to validate the
results.

In Section 2, Method, the registration method is
described first, followed by the adaptive segmentation and
feature extraction method and finally the volume calculation
is discussed. The complete algorithm framework is shown
in Figure 1. Section 3, Data Sets, describes the physical
phantoms and the clinical data used to test the framework.
Section 4, Results, summarizes and discusses the results.
Conclusions are drawn in Section 5.

2. Method

2.1. Registration. The method described in this research uses
an image registration technique to align the image slices of
the CT scan taken at a time, t2, with the slices taken at an
initial time, t1. This registration step reduces the error in
the calculation of the volume change with time that would
otherwise be caused by the partial volume effect [11]. In the
following discussion Fk(x1, x2) refers to the kth slice in the
set of CT images, Fkt1 (x1, x2) refers to slice image k in the CT
image scan taken at time t1, Fkt2 (x1, x2) refers to the closest
corresponding CT slice image in the CT scan taken at the
subsequent time t2, and ˜Fkt2 (x1, x2) refers to image Fkt2 (x1, x2)
after it has been registered to slice Fkt1 (x1, x2). x1, x2, x3 are the
3D spatial coordinates of the pixels and where x3 is not given,
it is assumed to be in the image plane.

2.1.1. Change in Volume Error. Given a clinical case with two
different CT scans of the head taken at times t1 and t2, the
cerebral ventricles will have a physical volume of Vt1 and a
calculated volume of V ′

t1 at time t1 and a physical volume
of Vt2 and a calculated volume of V ′

t2 at t2. Each calculated
volume will have an error, e1 and e2, respectively, introduced
in part by the partial volume effect, such that

V ′
t1 = Vt1 + e1,

V ′
t2 = Vt2 + e2.

(1)

Thus the change in calculated volume, ΔV ′, between t1 and
t2, is given by

ΔV ′ = V ′
t2 −V ′

t1 = Vt2 −Vt1 + (e2 − e1). (2)

If the displacement of the head is such that the errors e1 and
e2 compound, then ΔV ′ will have a large error. If registration
is applied so that the CT scans are aligned and the partial
volume errors are consistent, then e1 will approach e2, and
|e2 − e1| will approach zero.

If ˜V ′
t2 represents the volume calculated using the set of

registered images, ˜Fkt2 (x1, x2)∀k, then

Δ ˜V ′ = ˜V ′
t2 −V ′

t1 � Vt2 −Vt1 = ΔV. (3)

This means that if the set of images taken at t2 is registered to
the set of images taken at t1, so that the partial volume errors
are consistent, then the error in the calculated change in
volume will be reduced. Since an accurate calculated change
in volume is required for this work, the framework described
in this research includes registration of the CT scans before
the ventricles are segmented and their change in volume
calculated.

2.1.2. Modified Mutual Information. The registration
method used in this research is a wavelet-based technique
that maximizes the mutual information in the two image
sets. The mutual information, I(A,B), of two images, A and
B, is given by [13, 14, 19]

I(A,B) = H(A) +H(B)−H(A,B), (4)
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Figure 1: Algorithm framework.

where H(A) and H(B) are Shannon entropies for images A
and B, respectively, and H(A,B) is the joint entropy between
A and B. To reduce the effect of overlap, the more common
form, normalized mutual information [20], In(A,B), is used
in this research

In(A,B) = H(A) +H(B)
H(A,B)

. (5)

The entropies are computed by estimating the probability
distributions of the image intensities. The joint entropy
denotes the probability distribution of the image intensities
shown in both the images A and B.

The mutual information registration algorithm assumes
that the images are geometrically aligned by the rigid
transformation T(−→α ), where −→α is a vector consisting
of six (three translation and three rotation) parameters.
Optimal alignment is achieved with the set of parameters,
−→α = −→α ∗, such that In(A,B) is maximal. To achieve
optimal alignment, the mutual information function must be
smooth.

Because displacement of the human head between scans
can be out-of-plane as well as in-plane, the framework in
this research includes 3-dimensional registration using the
complete set of image slices and trilinear interpolation. In
order to reduce the local maxima effect, partial volume
interpolation is used to provide a more accurate estimate
of the joint histogram [21]. When the joint histogram is

calculated for a subvoxel alignment, the contribution of the
pixel intensity to the joint histogram is distributed over the
intensity values of the eight nearest neighbours using weights
calculated by trilinear interpolation.

To improve the performance and robustness of the
mutual information measure used in the registration algo-
rithm, it is combined with gradient information as outlined
by Pluim et al. [22]. The method multiplies the mutual
information with a gradient term that is based on both the
magnitude and orientation of the gradients and is very briefly
summarized here.

The gradient vector is computed for each sample point
x = x1, x2, x3 in the reference image, A, which in this case is
Ft1 , and its corresponding point, x̃, in the registered image,
B or ˜Ft2 . x̃ is found using the rigid transformation, T(−→α ), of
x. The gradient terms are calculated by convolving the image
with the appropriate first derivatives of a Gaussian kernel of
scale σ . The angle αx,x̃(σ) between gradient vectors is defined
by

αx,x̃(σ) = arccos
∇x(σ)∗∇x̃(σ)
|∇x(σ)|∣∣∇x̃(σ)

∣

∣

(6)

with∇x(σ) denoting the gradient vector of scale σ at point x,
| · | denoting its magnitude, and ∗ denoting the convolution
operator. The gradient function, G(A,B), is computed as
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a weighted sum of the resulting products for all the pixels
and is given by

G(A,B) =
∑

(x,x̃)∈(Ft1∩ ˜Ft2 )
ω
(

αx,x̃(σ)
)

·min
(|∇x(σ)|,∣∣∇x̃(σ)

∣

∣

)

,

(7)

where the weighting function, ω(αx,x̃(σ)), smooths small
angle variations and compensates for intensity inversions
and is given by

ω
(

αx,x̃(σ)
) = cos(2α) + 1

2
. (8)

The new normalized mutual information I′n(A,B) becomes

I′n(A,B) = G(A,B) · In(A,B). (9)

2.1.3. Optimization Using Simplex Method and Multiresolu-
tion Decomposition. The six parameters in the registration
function, T(−→α ), are optimized simultaneously using the
simplex method to find the global maximum. A drawback of
this method is that if the mutual information function is not
smooth with a single maximum, the simplex method may
settle on a local maximum giving poor results. In order to
reduce the impact of local maxima on the registration and
improve the speed of the method the image resolution is
reduced using a standard wavelet multi-resolution decom-
position [23]. At the lower resolution, detail information is
removed, the mutual information function is smoother, and
local maxima are significantly suppressed. Also at the lower
resolution only a fraction of the voxels in the image is used to
construct the joint histograms so speed is improved. After
the global maximum is found at the lower resolution, the
resolution level is increased and initialization is based on
the previously found maximum. Therefore, a combination of
mutual information and multi-resolution analysis improves
the chance of finding the global maxima in the mutual
information function.

2.2. Adaptive Segmentation. An adaptive segmentation based
on the watershed algorithm and a novel texture measurement
is used in this research. The method consists of two
stages: the preliminary watershed segmentation stage and
the texture classification stage. In the first stage, DT-CWT
coefficients are used to extract the texture gradient for
the watershed algorithm. In the second stage, DT-CWT
coefficients are used as the texture measure to classify the
textures.

2.2.1. Stage I: Modified Gradient for Preliminary Watershed
Segmentation. The first stage of the segmentation algorithm
is outlined in Figure 2.

(a) Texture Gradient. The watershed algorithm is an auto-
matic segmentation method based on visualizing a 2D image
in 3-dimensions (two spatial dimensions, (x1, x2) and the
image intensity, F(x1, x2)). Input to the watershed algorithm
is gradient information from the original image.

Serious oversegmentation problems result when the
required gradient information is based solely on pixel
intensities [23]. To reduce the over-segmentation prob-
lem, texture gradients, as introduced by Hill et al. [24],
are used instead of intensity gradients. Different tex-
tures contain information that can be used to identify
different tissues. If the gradients between textures are
detected and used as input to the watershed algorithm, the
images can be segmented into several homogeneous texture
regions.

In this paper, the texture gradient is derived from
the Dual-Tree Complex Wavelet Transform (DT-CWT)
coefficients [24]. DT-CWT calculates the complex wavelet
transform of a signal using two separate real wavelet decom-
positions. The transform retains the useful properties of scale
and orientation sensitivity, is approximately shift invariant,
and also provides a representation with reduced redundancy.
For each scale level, six subbands are produced, orientated
at ±15◦, ±45◦, and ±75◦, retaining the detail information
of the original image along six different orientations. The
texture gradient is derived from the subband features, where
Di,θ(x1, x2) represents the subband oriented along θ at the ith
scale level.

The texture gradient is obtained in several steps. First of
all, directional median filtering [18] is used on each subband
Di,θ(x1, x2). Directional median filtering refers to median
filtering adapted to the orientation, θ, of the subband, i. It
is implemented as two 1D median filters, fM(θ+π/2) and fMθ ,
where the neighbourhood of the first filter extends in a line
normal to the subband orientation and removes the step
response (double edge effect) of the subbands. The second
filter, parallel to the subband orientation, removes the noise
of the subbands. Considering both scale and orientation, the
subband resulting from the filtering is

Mi,θ(x1, x2) = fMθ

(

fM(θ+π/2)

(∣

∣Di,θ(x1, x2)
∣

∣

)

)

. (10)

In practice, the size of the median filter is related to the
extent of the filter bank impulse response at that level and
was chosen as (7 + 2i) [18].

After directional median filtering, the new subbands
Mi,θ(x1, x2) are passed to the Gaussian derivative function
to estimate their gradients and mitigate noise amplifica-
tion. The magnitude of the texture gradient GΓi,θ (x1, x2)
oriented at θ at scale level i of each subband is given
by

GΓi,θ (x1, x2) =
√

√

√

√

(

D · ∂g(x1, x2)
∂x1

)2

+

(

D · ∂g(x1, x2)
∂x2

)2

,

(11)

where D denotes Mi,θ(x1, x2) and g(x1, x2) is the Gaus-
sian function. The single texture gradient map, GΓ(x1, x2),
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Figure 2: Segmentation algorithm: Stage I.

required as input to the watershed algorithm, is calculated
as a simple weighted sum of magnitudes [18]

GΓ(x1, x2) =
∑

i,θ

fz
(

wi,θ · ̂GΓi,θ (x1, x2)
)

, (12)

̂GΓi,θ (x1, x2) = GΓi,θ (x1, x2)

max
x1,x2

(

GΓi,θ (x1, x2)
) , (13)

wi,θ = ni
∑

x1,x2

̂GΓi,θ (x1, x2)2 ,
(14)

where ni is the number of pixels in the subband image at level
i and fz is the simple zero insertion interpolation function.

(b) Modulated Gradient. After obtaining the texture gradi-
ent of the image, a modulated gradient is obtained. The
modulated gradient is based on texture activity as described
in [24]. Its purpose is to suppress the intensity gradient in
textured areas but leave it unmodified in smooth regions.
The measure of texture activity is described by

fΓ(x1, x2) = eRhalf(EΓ(x1,x2 )/λ−ψ) (15)

where Rhalf(ζ) is half-wave rectification to suppress negative
exponents:

Rhalf(ζ) =
⎧

⎨

⎩

0, when ζ < 0,

ζ , when ζ ≥ 0.
(16)

λ and ψ are two predefined parameters with values of λ = 2
and ψ = 7 for any 8-bit grayscale image [18], and the
texture energy, EΓ, is computed from the upsampled subband
features which are related to Mi,θ(x1, x2) such that

EΓ =
∑

i,θ

fz

(

εκ
(

Mi,θ(x1, x2)
2i

))

, (17)

where εκ is the morphological erosion operator with struc-
ture element κ. κ in this case is a square neighborhood of
nine pixels.

(c) Texture Gradient and Modulated Gradient Combined.
Now, the texture gradient and the modulated gradient are
combined to obtain a final “Modified” gradient, GM(x1, x2),
which captures the perceptual edges in the image

GM(x1, x2) = |∇F(x1, x2)|
fΓ(x1, x2) · μI

+
GΓ(x1, x2)

μT
, (18)
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where μT is the median value of the texture gradient, μI is
defined to be four times the median intensity gradient, and
∇F(x1, x2) is the gradient of the original image. Figure 4 gives
a good illustration of this process.

As a final step in this stage, the H-minima transform
[16] is used as a postprocessing technique to improve the
segmentation results by modifying the gradient surface and
suppressing shallow minima. Stage I outputs a label map, an
image where each segmented region is given a unique label,
for use in Stage II.

2.2.2. Stage II: Texture Classification and Feature Extraction.
All the methods in the previous section are gradient modifi-
cations and provide only a partial solution to the watershed
over-segmentation problem in real medical images. A novel
texture classification method is used to merge regions of
similar textures, thus further reducing the oversegmentation
and improving algorithm performance.

Traditional texture classification is based on a rectan-
gular-shaped window of a fixed sized [23]. The traditional
method treats the “small” area in the window as a texture
and attempts to extract the texture features from it. When
the window lies completely inside the region of the texture

to be represented, one texture feature is extracted. When the
window crosses several regions, the features extracted from
the window represent a mixture of textures. Rather than
using a fixed window-size, the method in the current research
uses the regions from the oversegmented image output from
Stage I as a basis for texture extraction [25]. Each of these
regions has sufficient and homogenous texture information
to allow for feature extraction. The texture in each region
is compared to the texture of neighbouring regions. If the
textures are “similar,” the regions are merged. Similarity is
determined using the Kolmogorov-Smirnov test (KS-test) in
the following manner.

The texture feature is extracted from a region using a
method that is based on the DT-CWT coefficients, relying
on their shift invariance and selective sensitivity. The DT-
CWT decomposes an image into seven subband images at
each scale level. Only one of the subband images, filtered
by the lowpass filter, is the approximation information of
the image. The remaining six subbands contain detail infor-
mation, which includes texture information. For example,
for scale level 4, one approximation subband image and
24 detail subbands can be obtained. Since the DT-CWT
allows perfect reconstruction, a black image is substituted
for the approximation subband image. When the image was
reconstructed using the inverse DT-CWT, the result, the
texture map, contained most of the texture information, and
no approximation information.

After the construction of the texture map, the original
image and the texture map, along with the label map output
from Stage I, are passed to the KS test. Two similarity
matrices are obtained: Sks1 for the texture map and Sks2 for the
original image. The final similarity map used for the merge
process, Sks, is obtained by combining Sks1 and Sks2 using the
following formula:

Sks = Sks2 · e(Sks1−1), (19)

where the original image information has the dominant
effect and the texture map has a supplementary effect.

The two regions which have the maximum value in Sks
are merged at this step. After merging, the labels for each
region are updated and the new segmented image used
as input. The flow chart of Stage II is shown in Figure 3.
The termination criterion for the “best” segmentation step,
determined empirically, is simple. When the maximum value
in Sks equals the minimum value, there are no two regions
which should merge.

In summary, an image is oversegmented at the first stage
and then a texture classification stage is applied to optimize
the outcome of the segmentation until a termination cri-
terion is achieved. Figure 6 shows an example of the final
segmentation result obtained from the standard watershed
algorithm compared with the result from the adaptive
watershed segmentation method used in this research.

2.2.3. User Interactions. Since the watershed segmentation
result segments the entire image, and only the ventricles in
the image are of interest, some user interactions are included
in the framework. This interaction allows the user to identify
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Figure 5: Sample registration result.

which regions should be included in the ventricular system.
After the regions have been selected, the framework generates
an outcome image which only includes the ventricles.

2.3. Volume Calculation. The ultimate goal is to calculate
the change in the volume of the ventricles. A combination
of several algorithms was required to reach this goal.
Registration of the two image sets is the first step in this

process. Then the ventricles are segmented from the brain
tissue. After segmentation, the complete set of slices is used
to perform the ventricular volume calculation. The area of
the ventricles in each slice is given by

ak = ps · ps · nvk , (20)

where ps represents the pixel spacing and nvk the number of
pixels in the ventricles in the kth slice. The volume of the
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(a) Standard watershed result (b) Adaptive segmentation result

Figure 6: Comparison of segmentation results.

ventricles in each slice, V ′
k , is obtained by multiplying the

area of the ventricles, ak, by the slice thickness, τk,

V ′
k = ak · τk. (21)

The total volume, V ′, is obtained by summing the volume of
the ventricles in each slice over all the slices which contain the
ventricles. The total number of slices which contain ventricle
information is represented by K

V ′ =
K
∑

k=1

V ′
k. (22)

Once the total volume of the ventricles is calculated, the
change in volume between registered scans is calculated using
(3).

3. Data Sets

3.1. Physical Phantom. Since it is not possible to measure
the true volume of the cerebral ventricles directly in a
living person (i.e., without resorting to another image-
based morphometric technique), the precision and reliability
of the volume calculation framework were tested using
a physical phantom with known ventricular volume. A
number of physical phantom models have been described in
the literature, including plexiglass rods submerged in water
cylinders [26] and fluid-filled rubber membranes enclosed
in gelatin [8, 9, 27]. In the latter models, the membrane-
bound “ventricles” were either of a complex shape [27] or
a simple, spherical shape [8, 9], and the fluid was either static
[27] or flowing [8, 9]. Models have also included casts of
the human ventricular system in formalin-fixed brains [28],
potassium iodide baths [29], or copper nitrate baths [26].
These phantoms have either lacked the complex shape of
the human ventricular system, required artificial membrane
boundaries or used materials that do not mimic the density
and texture of brain tissue well on CT. Therefore, in the
current research, more realistic agar and water phantoms in a
range of sizes were developed for verification and validation
of the algorithms.

A set of 5 physical phantoms was constructed [4]. The
materials were selected because their densities and textures
closely mimic those of real brain tissue and cerebrospinal
fluid on CT. Clay models of the human ventricular system,
including left and right lateral ventricles, foramina of Munro,
third ventricle, cerebral aqueduct, and fourth ventricle, were
initially created. These were used to create molds from liquid
latex rubber. The molds, in turn, were used to create ice
models of the ventricular system, which were immersed in
solidifying liquid agar. These phantoms consisting of agar
“brain” and water “ventricles” were then scanned, using
clinical CT scanning parameters (slice thickness 3 mm at
the level of the fourth ventricle and 7 mm above the fourth
ventricle, field of view 20 × 20 cm, tube voltage 140 kVp,
tube current 140 mAs). Each phantom was given a complete
CT scan four times, with the scanning angle changed by
5◦ between each of the four scans. The volume of water
within the phantom’s ventricles, VM , was measured using
a graduated syringe. The ice model and a sample CT slice
image are shown in Figure 7.

3.2. Clinical Data. The collection of clinical images was
approved by the Research Ethics Board of the IWK Health
Centre, and the requirement for informed consent was
waived. All clinical CT studies were collected in anonymized
DICOM format. The CT studies were from patients whose
outcome (normal, stable hydrocephalus, developing hydro-
cephalus, treated hydrocephalus) was known and were
selected by a radiologist (MHS) to reflect a range of
outcomes. Of the 13 cases provided, nine cases labeled pl
were patients who had 2 serial CT scans. The remaining cases
labeled pl − m were patients who had more than 2 serial
CT scans. Manual segmentation was also provided by the
radiologist (MHS), so that the segmentation portion of the
framework could be validated.

4. Results

4.1. Physical Phantom Results. The volume calculation
results for the set of five physical phantoms are summarized
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(a) CT Slice image, physical phantom model (b) Ventricular system ice model

Figure 7: Physical phantom.

Table 1: Physical phantoms: volume calculation results.

Phantom VM V ′ σV ′ Mean error σe
no. (cm3) (cm3) (%)

1 88 89.2 1.3 1.7 0.8

2 101 103.4 1.1 2.4 1.1

3 102 104.4 0.8 2.3 0.8

4 112 115.1 0.8 2.7 0.7

5 132 135.1 0.4 2.3 0.3

Overall 2.3 0.8

in Table 1. The mean calculated volume, V ′, refers to the
volume calculated by the algorithm framework, averaged
over the four scanning angles used. “Mean Error” is the
absolute value of the difference between the calculated
volume and the measured volume, averaged over the four
scanning angles tested and expressed as a percentage. The
standard deviation of the calculated volume, σV ′ , and of
the percentage error, σe, are noted in the table. The mean
percentage error±1σe for all the phantom models was 2.3%±
0.8%. The maximum percent error for any one volume
calculation was 3.5%, therefore the algorithm’s margin of
error was deemed to be 3.5%.

4.2. Clinical Results

4.2.1. Registration Measure. The improvement in alignment
achieved by the registration algorithm is illustrated in
Figure 5. In this example, the 3D displacement of the head
between the two CT scans, and its subsequent correction,
is particularly noticeable around the eyeballs. In order to
quantify the improvement between every image pair, an
improvement ratio, R, was defined [25]

R =
∑

k

∑

x1,x2
d1k (x1, x2)−∑x1,x2

d2k (x1, x2)
∑

x1,x2
d1k (x1, x2)

/K , (23)

where

d1k (x1, x2) =
∣

∣

∣Fkt1 (x1, x2)− Fkt2 (x1, x2)
∣

∣

∣,

d2k (x1, x2) =
∣

∣

∣Fkt1 (x1, x2)− ˜Fkt2 (x1, x2)
∣

∣

∣.
(24)

The R values for all the clinical cases are listed in column
2 of Table 2 and have a mean value of 58.1%. The lowest R
value, 19.07%, occurred in case p13 − 4 when Ft1 and Ft2
were well aligned before registration. In case p2, with R =
20.20%, there was significant skull deformation caused by
the hydrocephalus so the registered image, although aligned,
is still dissimilar from the initial image.

4.2.2. Segmentation Measure. The segmentation portion of
the framework was validated by calculating the similarity
index, S, between the results of the automated adaptive
segmentation and a manual segmentation

S =
∑

k Sk
K

, (25)

Sk = 2 · |a1
⋂

a2|
|a1| + |a2|

, (26)

where a1 and a2 are the pixel sets of the ventricle areas,
measured in number of pixels, in the images segmented
using adaptive segmentation and manual segmentation,
respectively. A value of S > 0.7 (or 70%) indicates excellent
agreement [30]. Table 3 shows the results for each case
(psi) with S averaged over all the scans in the case as well
as over all the slices in the case. S ranged from 72.0%
to 89.1% with a mean and standard deviation of 76.8%
and 5.3%, respectively. The segmentation algorithm worked
correctly for cases that had relatively normal ventricles as
well as for those that had ventricles enlarged by developing
hydrocephalus.

4.2.3. Framework Measure. Since the objective of the research
is to measure the change in volume of the ventricular system
with time, the difference in volume between two scans was



10 International Journal of Biomedical Imaging

Table 2: Volume calculation results for clinical cases.

Case R V ′
t1 V ′

t2 ΔV ′
˜V ′
t2 Δ ˜V ′ Clinical

% (cm3) (cm3) (%) (cm3) (%) comments

p1 70.9 4.4 4.7 +5.6 4.3 −3.6 healthy

p2 20.2 71.7 169.8 +136.9 114.1 +59.1 hy

p3 64.2 23.4 24.3 +3.9 23.9 +1.9 healthy

p4 47.2 4.4 5.6 +27.3 4.4 +0.1 healthy

p5 62.5 6.7 7.5 +12.6 6.7 −0.3 healthy

p6 63.3 29.8 30.1 +1.1 30.8 +3.4 hy:stable

p7 55.7 24.1 14.9 −38.4 17.4 −27.7 hy:treated

p8 63.8 10.6 12.6 +18.8 10.3 −3.2 healthy

p9-1 53.8 50.1 83.4 +66.6 70.6 +41.1 hy

p9-2 68.0 83.4 76.9 −7.8 79.8 −4.3 hy:stable

p9-3 49.8 76.9 11.1 −85.6 15.9 −79.3 hy:treated

p10 67.0 8.5 98.0 +1046.9 94.3 +1003.7 hy

p11-1 62.0 54.2 149.4 +175.8 109.2 +101.5 hy

p11-2 55.5 149.4 155.6 +4.1 152.1 +1.8 hy:stable

p11-3 98.7 155.6 178.5 +14.8 162.6 +4.6 hy:stable

p12-1 61.2 7.6 21.3 +181.6 18.5 +144.7 hy

p12-2 58.2 21.3 37.6 +77.0 29.5 +38.9 hy

p13-1 109.7 42.0 9.8 −76.6 18.1 −56.9 hy:treated

p13-2 69.9 9.8 12.5 +27.2 9.8 +0.04 hy:stable

p13-3 66.4 9.8 39.9 +306.3 32.0 +226.0 hy

p13-4 19.1 39.9 22.1 −44.6 22.6 −43.4 hy:treated

p13-5 41.3 22.1 2.7 −87.7 3.9 −82.3 hy:treated

p13-6 41.0 2.7 3.2 +16.1 2.8 +4.5 hy:stable

Table 3: Similarity index calculated between adaptive and manual
segmentation.

Case name Similarity index %

ps1 76.8

ps2 77.1

ps3 72.0

ps4 72.4

ps5 72.4

ps6 74.9

ps7 80.2

ps8 74.6

ps9 72.5

ps10 89.1

ps11 72.4

ps12 80.6

ps13 83.9

Mean 76.8

σ 5.3

calculated using (3). The change in volume is expressed as a
percentage using the following equation:

Δ ˜V ′% =
˜V ′
t2 −V ′

t1

V ′
t1

· 100%. (27)

Table 2 summarizes the volume calculation results for all the
clinical cases. To further illustrate the effect of registration,
the change in volume was calculated both without registra-
tion and with it and the results are tabulated asΔV ′ andΔ ˜V ′,
respectively. By examining the values for ΔV ′ and Δ ˜V ′, it can
be noted that the values generally differ significantly.

The Δ ˜V ′ values are plotted in Figure 8 on a log scale.
This plot shows that the Δ ˜V ′ values separate into two clusters
based on k-means clustering of the log10(|Δ ˜V ′|). The red
and blue dots represent the two different clusters. One group
has all the Δ ˜V ′ values less than 5% and the other one has
the values greater than 20%. A value of Δ ˜V ′ greater than
5% was selected empirically to be the algorithm predictor of
developing hydrocephalus. This value was greater than the
algorithm’s measured accuracy of 3.4% and also allowed a
small margin of error for the differences between the physical
phantom and the clinical data.

Using this predictor value, the diagnostic performance
of the framework was compared to the clinical comments
supplied by the radiologist (MHS) and the results are
summarized in Table 4 using the following notations.

(TP) true positive: the number of cases which are diag-
nosed as hydrocephalus and the algorithm output
also suggests a hydrocephalus diagnosis.

(TN) true negative: the number of the cases which are
diagnosed as nonhydrocephalus and the algorithm
also suggests a nonhydrocephalus diagnosis.



International Journal of Biomedical Imaging 11

0

5

10

15

20

25

C
as

e
n

u
m

be
r

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

log 10 of the difference in volume

Mean 1
= log 10(1.18)

Divided line
= log 10(5)

Mean 2
= log 10(84.9)

Figure 8: Graphical results for clinical cases: change in volume,
Δ ˜V ′, on log scale.

Table 4: Diagnostic performance analysis.

Predicted positive Predicted negative Total

Positive examples 8 (TP) 0 (FN) 8

Negative examples 0 (FP) 5 (TN) 5

Total 8 5 13

(FP) false positive: the cases are non-hydrocephalus but
the algorithm suggests a hydrocephalus diagnosis.

(FN) false negative: the algorithm predicts a non-hydro-
cephalus diagnosis but the true diagnosis is hydro-
cephalus.

For ease of comparison, the clinical comments associated
with each case are also listed in Table 2. The clinical com-
ments were made independently of this research and were
supplied by the radiologist (MHS) as a basis for comparison.
The following abbreviations are used for these comments:
healthy: the patient was diagnosed as healthy; hy: the patient
was developing hydrocephalus; hy:stable: the patient has
hydrocephalus but the hydrocephalus was stable between the
two different scans; hy:treated: the patient was diagnosed
with hydrocephalus and was treated between scans.

For all the positive and negative examples, the framework
prediction and the clinical comments match.

5. Conclusion

In this paper, a framework was implemented to measure the
volume of the ventricular system to aid in the diagnosis of
hydrocephalus. This framework consists of four important
algorithms: a modified registration algorithm using a com-
bination of the wavelet multiresolution pyramid and mutual
information, an adaptive watershed segmentation with a
novel feature extraction method based on the DT-CWT

coefficients, and a volume calculation algorithm. In order
to quantify the assessment of the success of the algorithms,
an improvement ratio was calculated for the registration
algorithm and a similarity index for the segmentation
algorithm. Finally, physical phantom models with known
volumes and clinical cases with known diagnoses were used
to verify the volume calculation algorithm.

The average of R for the normal cases is 58.1% indicating
that the registration algorithm succeeded in compensating
for the displacement between scans. The range of the
similarity index for the 13 cases was 72.0% to 89.1% and the
average similarity index of all the cases was 76.8% indicating
that the segmentation method worked well.

For the volume calculation method on the physical
phantom models, all the error rates were below 3.4% and
the average error rate was 2.3%, indicating that the accuracy
of the algorithm is high. Using Δ ˜V ′ ≥ 5% as a predic-
tor of developing hydrocephalus, the algorithm prediction
matched the clinical comments in all cases. These findings
show that the structure of the framework is reasonable and
illustrate its potential for development as a tool to aid in the
evaluation of hydrocephalus on serial CT scans.

Future work will include a more rigorous determination
of the predictor value as well as collecting and testing a larger
set of clinical data to examine the algorithm’s performance
on a wider range of clinically significant volume changes,
particularly small clinically relevant changes.
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