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Abstract
The dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert
normal immune function in DCs through the expression of immune antagonists. Understanding
how these antagonists interact with the host immune system requires knowledge of the underlying
genetic regulatory network that operates during an uninhibited antiviral response. In order to
isolate and identify this network, we studied DCs infected with Newcastle Disease Virus (NDV),
which is able to stimulate innate immunity and DC maturation through activation of RIG-I
signaling, but lacks the ability to evade the human interferon response. To analyze this
experimental model, we developed a new approach integrating genome-wide expression kinetics
and time-dependent promoter analysis. We found that the genetic program underlying the antiviral
cell-state transition during the first 18-hours post-infection could be explained by a single
convergent regulatory network. Gene expression changes were driven by a step-wise multi-factor
cascading control mechanism, where the specific transcription factors controlling expression
changed over time. Within this network, most individual genes are regulated by multiple factors,
indicating robustness against virus-encoded immune evasion genes. In addition to effectively
recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral
roles for several novel transcription factors. More generally, our results show how a genetic
program can be temporally controlled through a single regulatory network to achieve the large-
scale genetic reprogramming characteristic of cell state transitions.

Introduction
Dendritic cells (DCs) play a key role in the early immune response to viral infections.
Activation of viral pattern sensors, such as RIG-I and MDA5, triggers a transcriptional
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program that includes the production of Type I interferons (IFNs). These antiviral cytokines
signal in both autocrine and paracrine fashion through the JAK-STAT pathway leading to
additional transcription events involving the differential expression of many hundreds of
genes. The “antiviral state” produced by this extensive genetic reprogramming involves a
core set of genes as well as pathogen-specific components (1).

The DC response to individual pathogens involves multiple signals that must be integrated
to initiate an appropriate immune response. Pathogenic viruses attempt to subvert normal
immune function through the expression of interferon antagonists (2,3). For example, IRF3
activation and IFN-β expression are blocked by the NS1 protein of influenza (4). Unraveling
the impact of these immune antagonists would be aided by a detailed understanding of the
genetic regulatory network that operates during an uninhibited antiviral response. This
knowledge is lacking since previous human studies have used viruses that interfere with the
immune response (4-6). One fundamental unresolved question is to what extent the antiviral
response is a single interconnected transcriptional cascade (convergent architecture) or a
combination of transcriptional events operating independently in reaction to the multiple
signals that arise following viral insult (parallel architecture). Newcastle Disease Virus
(NDV) infection of human DCs provides an ideal system to systematically define the
uninhibited regulatory network (7,8). NDV is an avian virus that is able to stimulate innate
immunity and DC maturation, but lacks the ability to evade the human interferon response
(9). By focusing on NDV we can accurately depict the baseline network of transcription
factor (TF) interactions that underlie a broad range of immune responses. Through
comparative studies, this network will enable detailed analysis of other infections and
greatly improve our understanding of the control mechanisms in antiviral immunity and the
myriad ways through which pathogenic viruses subvert normal immune function.

Systems biology methods combined with high-throughput experimental technologies are
providing new insights into virus-host interactions (10,11). Genome-wide transcriptional
profiling has suggested that the DC antiviral response is characterized by temporal waves of
gene activation, which may be controlled by different combinations of transcriptional
regulators (1). Potential regulators can be implicated using direct approaches, such as
differential-expression of the transcription factor mRNA (1), or indirectly by identification
of common cis-regulatory motifs (12,13). These methods typically provide a static view of
the network. Other computational methods have been proposed to identify transcription
factors driving time-dependent changes in expression, but these do not explicitly account for
the regulation of the TF itself (14,15). The most common approaches are based on the
hypothesis that genes sharing a similar temporal profile are regulated by common
transcription factors (16). In mammals, a variety of post-transcriptional regulatory
mechanisms can impact mRNA kinetics following up-regulation (17), so that requiring
similarity across the entire time-series may be unnecessarily restrictive. As an alternative,
we propose to focus on the initial up-regulation time as a criterion to identify genes that are
likely to share common regulatory control logic.

We developed and validated by experiment a new approach integrating genome-wide
expression kinetics and time-dependent promoter analysis. Our method infers the
transcription factors driving initial gene expression changes, determines the timing of their
activity and identifies a causal chain of regulation. We have applied this approach to the
anti-NDV response in human DCs to deduce the causality and coherence of the
transcriptional events responsible for the complex gene regulation elicited by virus infection.
Along with many expected factors (e.g., IRFs and STATs), key roles were predicted and
experimentally validated for several regulators with no previously known role in antiviral
responses. Our approach identified a single transcriptional cascade that spanned the
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experimental time-series and could account for observed expression changes in a majority of
all up-regulated genes.

Materials and Methods
Multiple sample gene array time-course following NDV infection of isolated dendritic cells

Differentiation of DCs—Monocyte-derived conventional DCs were obtained from human
blood donors following a standard protocol (18,19). Briefly, human monocytes from buffy
coats were isolated by Ficoll density gradient centrifugation (Histopaque, Sigma Aldrich)
and CD14+ monocytes were immunomagnetically purified by using a MACS CD14
isolation kit (Miltenyi Biotech.). CD14+ Monocytes (0.7×106 cells/ml) were later
differentiated into immature cDCs after 5-6 day incubation in DC growth media (RPMI
Medium 1640 (Gibco), 10% fetal calf serum (Hyclone), 2 mM of L-glutamine, 100 units/ml
penicillin, 100 μg/ml streptomycin (Pen/Strep) (Invitrogen), 500 units/ml hGM-CSF
(Preprotech) and 1000 units/ml hIL-4 (Preprotech) at 37°C.

Virus preparation and viral infection—The recombinant Hitchner strain of Newcastle
Disease Virus (rNDV/B1) was prepared and aliquots of allantoic fluid were harvested as
previously described (20). NDV virus stock was titered by infection of Vero cell plates and
identification of viral growth by the addition of monoclonal antibodies specific for NDV HN
protein (Mount Sinai Hybridoma Core Facility) followed by addition of anti-mouse IgG-
FITC and visualization using fluorescent microscopy. Tittered NDV stock was diluted in
Dulbecco's Modified Eagle Medium (DMEM) and added directly into pelleted DCs at a
multiplicity of infection (MOI) of 0.5 prepared as previously described (21). After
incubation for 30 minutes at 37°C, fresh DC growth medium was added back to the infected
DCs (1.0×106 cells/ml). Virus free allantoic fluid was added to additional tubes of cells to
serve as a negative control.

Microarray experiments—Total RNA was purified from 2.5×106 DCs per time sample
using RNeasyMicro (Qiagen) with DNase treatment. RNA was eluted from columns using
water and quantified by spectrophotometry. Quality control of RNAs was performed using
the Agilent Bioanalyzer. Total RNA from cells of two different donors were infected with
NDV or control and harvested at : 0, 1, 2, 6, 10 and 18 hour for control and 1, 2, 4, 6, 8, 10,
12, 14, 16 and 18 hours for NDV infection. Biological replicates were performed for both of
these donors. A third donor was not included in the current analysis because no replicate
measurements were made. Good quality RNA was reverse transcribed using T7-oligo(dT)24
to yield double stranded cDNA. cRNA was transcribed and biotinylated from cDNA
templates. Fragmented cRNA was hybridized to Affymetrix HU133plus2 Gene Chip Arrays
by Mount Sinai Microarray Shared Resource Facility. All microarrays studied in this paper
have been deposited in the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo)
with the series accession number GSE18791

Microarray analysis—Raw Affymetrix microarray data were normalized using gcRMA.
Differential expression was defined for each probeset using four criteria. For at least one
time-point in each of the experiments, we required: (1) a minimum log2 intensity of 5,
which was indicative of non-expressed genes by visual inspection of the expression intensity
histogram at time-zero, (2) an absolute fold-change of at least two relative to time-zero, (3) a
significant change in expression by LIMMA (BioConductor implementation) after
correction for multiple hypothesis testing (q < 0.005) (22). The fourth criterion for defining
differential expression required that the probeset did not meet criteria 2 and 3 above in the
control time-series. In analysis where a background set of genes was required, it was defined
as the set of genes from all time points that met criterion 3 (significant change by LIMMA),
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without regard to either of the other criteria. All of this analysis was performed using the
BioConductor software package in R. Gene ontology analysis was performed using the
conditional test in the GOstats package (23).

Comparing the timing of response progression
Estimating the up-regulation time for genes—The initial up-regulation time for each
gene was estimated by fitting the mRNA expression time-series following NDV infection to
a logistic function (Equation 1). Parameters (A, K, I and C) were estimated by minimizing
the sum-squared error using differential evolution with modified sampling. To neutralize the
undue influence of high intensity gene array results we divided the error at each time point
by its intensity. The up-regulation time for each gene was defined as the time of maximal
change in the acceleration of the logistic function (star in Figure 1). This point can be
calculated by finding the maximum of the third derivative (i.e., the first time at which the
fourth derivative of the logistic function equals zero). Estimates of the up-regulation time
were considered acceptable if they fell between 0 and 18 hours (i.e., the time-points included
in the fit). Note that the value for time-point zero in the fitting was taken from the
appropriate control gene arrays since measurements of time zero were done only for the
control experiments.

(EQUATION 1: Logistic function)

Transcription factor binding site analysis
Using the UCSC Genome Bioinformatics site, we downloaded the TSS for all human
RefSeq genes, defined by the March 2006 refGene table (24). The region 2Kb upstream of
each TSS was identified within a genome-wide multiple alignment of 27 vertebrate species
to the human genome (25), also available through UCSC Genome Bioinformatics site. In
order to identify putative transcription factor binding sites, the human sequences, along with
aligned regions from chimp and mouse, were analyzed using the TRANSFAC MATCH (26)
algorithm with a cutoff chosen to minimize the sum of false positives and false negatives.
The analysis was performed for all vertebrate transcription factor matrices in the 2008.3
release of TRANSFAC (27), and putative binding sites were considered to be evolutionarily
conserved if matches were also found at the aligned positions in both chimp and mouse
sequences and had no gaps present in the multiple alignment. Each TRANSFAC matrix was
linked to a set of gene symbols describing potential binding factors using annotations
present in the “Binding Factor” field of the database. Only vertebrate TRANSFAC matrices
that could be linked to a human (HGNC) gene symbol (28), either directly or through an
alias listed in NCBI gene, were included. To build the regulatory network we further refined
the list of transcription factors to include only those that were up-regulated in our microarray
time-series.

Time dependent promoter analysis and regulatory network construction
We constructed a regulatory network by inferring transcriptional regulators of each time
slice. The TF inference was based on statistical enrichment of putative TF targets. More
precisely, let G, called the foreground set, be the set of differentially expressed genes at a
particular time point, and let T be the set of all genes in the dataset with binding sites for a
given TRANSFAC matrix M. The set T is determined by choosing an appropriate sequence
match cutoff for matrix M, and further filtering the genes with matches to M to include only
those with a conserved binding site upstream of an orthologous mouse and chimp gene (as
described above). The background set B, which serves to catalog the expected distribution of
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binding sites for M and dictate whether the observations in the foreground set G are unusual,
is computed as described above (see microarray analysis). Next we find how many of the
genes in the foreground and the background contain binding sites for matrix M. That defines
subsets in the foreground and the background as intersections of G and B, respectively, with
T. With Ng = |G|, Nb = |B|, Hg = |G ∩ T| and Hb = |B ∩ T|, we computed the hypergeometric
p value HGP (Ng, Nb, Hg, Hb), which is the probability that, if binding sites for M were
assigned randomly to genes in the foreground and the background, one might observe at
least Hg binding sites in the foreground set.

(EQUATION 2: Hypergeometric p value)

At each time point we computed the p value for every TRANSFAC matrix mapped to a gene
found to be differentially expressed somewhere in the time-course, and retain those passing
an FDR-corrected threshold of 0.05 (22). To connect the individual TFs into a regulatory
network, we placed each TF gene represented by one of the enriched matrices at the time it
is first differentially expressed. An activity window was defined for every TF in the
network. The temporal boundaries of the activity window of each TF were defined to
include the earliest and latest times of differential expression and enrichment of associated
matrices. Once the activity window has been identified, the transcription factor is linked to
all genes with predicted binding sites whose up-regulation time falls within the window.
Regulatory links appear explicitly in the network diagram when both the target and regulator
appear as nodes in the network, and are implicit otherwise. Feed-forward links connect
regulators to targets that are differentially expressed at later time points, while feedback
links are predicted when the target is differentially expressed before the regulator.

Electromobility shift assay (EMSA)
Whole cell extracts were obtained from NDV-infected dendritic cells at 0,4,6 and 8 hours
post infection, using NP-40 lysis buffer containing 50 mM Tris, 150 mM NaCl, 5 mM
EDTA, 10% glycerol, 40 mM β-glycerophosphate, 1% NP-40, and 1mM
phenylmethylsulfonyl fluoride. In the analysis of ISRE target sites the 0 and 4 hour time
point where from the same experiment while 6 and 8 were not. In all other cases 0 and 6
hours were from the same experiment while 4 and 8 came from different infections. Cells
were rinsed in PBS and allowed to lyse on ice for 30 min. Samples were then spun at 14K
rpm for 10 min, and supernatant was collected. Protein concentrations were quantified using
Bradford (Bio-Rad) as per the manufacturer's instructions. To begin the protein-DNA
binding reaction, 10 μg of whole cell extracts were incubated in a total volume of 15 μL
containing 50 mM HEPES pH 7.9, 10% Glycerol, 200 mM KCl, 5 mM EDTA pH 8.0, 1
mM MgCl2, 5 mM DTT, and 1 μg of poly (dI-dC). Samples were incubated on ice for 10
minutes, followed by the addition of 150, 000 CPU of 32P-labeled DNA probe and 20
minutes of incubation at room temperature. Oligonucleotide probes were ordered from
Sigma, and annealed to their complementary oligonucleoides using annealing buffer
containing 100 mM NaCl and 50 mM HEPES, pH 7.6. Probe sequences are shown in Table
2. The reaction was placed at 95°C and allowed to cool to room temperature. Annealed
probes were end labeled with 32P using T4 polynucleotide kinase (NEB). Samples were
electrophoresed at 180 Volts in 0.5% TBE buffer on an 8% native polyacrylamide gel
composed of 49:1 acrylamide to bis-acrylamide. Gels were dried on Whatman paper at 80°C
for 1 hour and exposed by autoradiogram.
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Results
In order to define the transcriptional regulatory network underlying an uninhibited antiviral
response, we performed genome-wide transcriptional profiling of human monocyte-derived
DCs infected with NDV. Differentiated DCs from two human donors, each at two different
instances, were infected in vitro with NDV and microarray analysis was performed over the
first 18 hours post-infection.

1. Timing of gene expression is highly conserved
To determine the degree of variability present during the initial phases of the anti-NDV
response, we compared the timing of gene expression changes between individuals and
across experiments. The initial up-regulation time for each gene was estimated by fitting a
logistic function to the mRNA expression time-series (see Figure 1 and Methods). The
logistic function is a commonly used model for transcriptional regulation and visual
inspection of the data suggested this was appropriate for many of the genes known to
participate in the antiviral response (e.g., IFNB1, see Figure 1). This model-based approach
allowed us to estimate the up-regulation time at a finer resolution than the microarray
sampling. Another advantage is that the estimate is less sensitive to variation in individual
expression values since the entire time-course is fit by the model. Focusing on a
representative set of genes known to participate in pathogen responses (29). We identified
94 up-regulated genes that displayed expression patterns with an acceptable fit to the logistic
function. These were used to measure the degree of conservation in the anti-NDV response.
The selected genes spanned a wide range of up-regulation times, although none were found
to be up-regulated at later time-points (after 12 hours post-infection, see Figure 2),
indicating either the relatively early initiation of the response or the difficulty of fitting
expression profiles that do not reach saturation.

To quantify the overall conservation of the regulatory progression between samples and
subjects, we assessed the relative degree of similarity in the up-regulation times of the
selected pathogen response genes. As can be readily seen in Figure 2, the estimated up-
regulation times were very highly correlated both between donors and across samples,
resulting in correlation coefficients ranging between 0.8 and 0.9. This indicated that the
initial steps of the antiviral response are ordered in a highly conserved progression of gene
expression. Such a high degree of conservation in the time progression, as our results
indicated, is most likely the result of a tightly controlled set of regulatory mechanisms that
operate as the system progresses through time. Surprisingly, the variance in up-regulation
times appeared relatively constant over time (Figure 2), suggesting the existence of feedback
mechanisms to dampen any noise that might accumulate as the signal propagates through the
network (30,31). To identify the regulatory cascade underlying this tightly controlled
system, we first focused on the events occurring at distinct time-points and then connected
this information across time into a coherent higher-level transcriptional network. We
focused specifically on up-regulated genes since down-regulation times were not correlated
across donors or samples (Supplementary Figure 1).

2. Multi-factor cascading control of the antiviral genetic program
In this section we implemented our time-centric view by identifying and analyzing sets of
genes, that were first up-regulated at each time point (i.e., 1, 2, 4, 6, 8, 10, 12, 14, 16 and 18
hours post-infection, see Figure 3A). This approach contrasts with the more standard
analyses that first cluster genes across a set of experiments and then analyze these refined
subsets for functional enrichment, transcription factor activity, etc. (16, 32, 33) It also differs
from the straightforward approach of treating each time-point independently, since the entire
time-series is used to determine the point of initial up-regulation.
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2a. Transcriptional regulators—The activation of the anti-viral response is complex
and involves many viral and cellular determinants. Due to the high level of correlation we
found between samples and the careful temporal progression it implied, we analyzed the
underlying regulatory controls in a temporal succession. Starting from the 1351 up-regulated
genes, we considered sets of genes that were first differentially-expressed at each time-point
separately, and attempted to infer the transcription factors involved in regulating them.
Transcriptional regulators for each time-slice were identified by testing for statistical
enrichment of their putative targets (as described in Methods). That is, if among the set of
up-regulated genes an unusually high number contain binding sites for a particular TF, that
factor is likely involved in regulating the genes under consideration. Statistical significance
was assessed using the hypergeometric distribution to measure the degree to which a given
regulator's set of targets is over-represented in the sample of genes under consideration
compared with a representative background set.

Using information from the TRANSFAC database (27), we identified 80 transcription factor
binding matrices (motifs) annotated to human TF genes that were up-regulated during at
least one point in our microarray time-series. We restricted the TRANSFAC database in this
way because we were only interested in those transcription factors most likely to participate
in the regulatory program as conduits of the transcriptional signals (16,32,33), implying
differential-expression at the mRNA level. While it would be conceptually simple to extend
the analysis to all TFs included in TRANSFAC, computing the p value for all TRANSFAC
matrices would also greatly reduce statistical power as a result of the multiple hypothesis
correction. For each of these 80 matrices, we determined the set of putative target genes by
scanning the promoter regions, and requiring that potential binding sites be conserved in
chimp and mouse (see Methods). This kind of phylogenetic footprinting has been shown to
decrease the number of false positive binding sites (34).

Our enrichment analysis found a total of 30 matrices whose targets were significantly over-
represented during at least one time-point (FDR q < 0.05). We generated a temporal
enrichment profile for each of these matrices by identifying the different time points during
which their targets were over-represented. As seen in Figure 3B, the activity of most of the
matrices, and by implication the TFs they represent, spans several hours. Moreover, we
observed multiple temporal phases in the response, each driven by distinct groups of
transcription factors. In agreement with many previous studies of the innate antiviral
response (6), IRF-based activation was evident in the initial wave of transcriptional up-
regulation. In our analysis, this initial wave begins 4 hours post-infection, somewhat later
than expected. This is likely because genes are assigned to time-points somewhat later than
their actual up-regulation due to the stringent differential-expression criteria used here.
Similarly, STAT activity was apparent by 4-6 hours post infection, and peaked at 14 hours
post-infection. The middle phase of the response was driven by a variety of TFs, many of
which have not been previously implicated in antiviral responses (see section 3a). Overall,
the inferred enrichment profiles strongly suggested a cascade of TFs that drive different
temporal phases of the response (Figure 3B).

2b. Distributed overlap and redundancy of transcription target genes—Having
determined the individual regulators of the response, we focused on their target genes to
determine the extent of cooperative regulation and redundancy. It is quite clear that there is a
great amount of redundancy between the targets of the different matrices. Of the 30
TRANSFAC matrices implicated, none has more than ∼10% unique targets (and many have
less). Moreover, most individual genes are targeted by more than one matrix. This can arise
when a single TRANSFAC matrix is associated with multiple genes (e.g., the association of
V$IRF_Q6 with several IRFs), or when the TFs are members of a complex that is
represented by multiple matrices (e.g., NFKB1, NFKB2, REL and RELA). In other cases, a
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high overlap of target genes could indicate cooperative regulation. To identify these
potential interactions, we quantified the extent of overlap in the target gene sets for all of the
TRANSFAC matrices implicated in the anti-NDV response (Figure 3C). As expected, the
most significant overlap of target genes occurred for matrices that describe members of the
same TF family or complex. These are readily apparent in the dark blocks along the
diagonal in Figure 3C. However, in a few cases, significant overlap was observed between
different TF families. The most striking example involves the matrices encoding the STATs,
ALX1, FOXO3 and FOXC1, whose targets overlap ∼30% on average (Figure 3C, black
box). Within this group of core TFs, the highest pair-wise overlap of target genes occurs for
ALX1 and FOXO3, and we hypothesize that these two TFs may be part of a single cis-
regulatory module. In general, we predicted that most genes would be regulated by multiple
TFs, with only 150 genes containing binding sites corresponding to a single matrix.

3. Causal linkage generates unified regulatory cascade
We sought to generate a transcriptional regulatory network that could connect the
transcription factors associated with each phase of the response into a coherent linked
cascade. This kind of representation required us to shift our focus from TRANSFAC
matrices, which can each be annotated to multiple TFs, to a framework that considers
individual TF activity over time.

3a. The DC antiviral transcriptional network—We generated an initial set of network
links by identifying all pairs of TFs in which one was a putative regulator of the other. In
order to reduce the potential for false positive regulatory relationships, we limited the time
frame during which a TF could be implicated as having an important role in regulating a
potential target. This was accomplished by defining an activity window for each TF (see
Methods). We removed all network links where the initial up-regulation of the target gene
occurred outside the activity window of the regulator. This pruning removed 37 links
producing a final network that consisted of 24 TFs and 133 regulatory links. To visualize the
resulting network (Figure 4), each TF was placed at the time its mRNA was first up-
regulated in the response. We also considered the placement of TFs based on their activity,
but ruled this out for two main reasons. First, many of the TRANSFAC matrices were
enriched at multiple time points making the choice of placement somewhat arbitrary.
Second, this scheme does not allow for differentiation between TFs that are annotated to the
same TRANSFAC matrix. Placing genes at the time of their first differential expression
provides TF-specific information and, in combination with the activity heatmap (Figure 3B),
leads to a clearer view of the temporal progression of the network. This placement scheme is
also consistent with our view of the biological process as a step-wise cascade where the up-
regulation of the TF is tied to its activity. To provide additional resolution, genes appearing
within the same time-slice were ordered based on the up-regulation time estimated by our
model-based analysis (Section 1). To interpret the network visualization in Figure 4, it is
helpful to keep in mind that links connect regulators to targets, and that arrow-tails indicate
up-regulation of the regulator, while arrow-heads indicate activity of the regulator.

The resulting network of 24 TFs spans virtually the entire time-period analyzed. The TFs in
this network are predicted to regulate 779 of 1351 (58%) up-regulated genes. As mentioned
above, the transcriptional cascade we have discovered includes many TFs already associated
with the interferon response (e.g., IRFs, STATs, NFkB) (6). It additionally includes ATF3
and TGIF1, which were previously implicated by other systems-biology analyses (16,33). In
all, 18 of 24 transcription factors implicated in the transcriptional cascade controlling the
antiviral response appear in the known general pathogen response signature (29) or the core
DC response signature (1) (Figure 5). Clearly, our approach is effective at capturing the
known biology of the system.
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The network contains both feed-forward links, which propagate the transcriptional signal
through time, as well as feed-back links, where TFs may influence the activity of targets that
have previously been up-regulated (Figure 4). Feed-back links, while serving as potential
conduits of regulatory activity, do not neatly fit into our idealized view of a regulatory
cascade where up-regulation of TFs at the mRNA level drives the next wave of
transcriptional changes. Thus, it is important to note that excluding these links only
disconnects a single TF (STAT5A) from our network. We chose to visualize these links in
order to present potentially important information on candidate feedback circuits. In order to
understand whether the inferred network architecture was effective in capturing the
underlying transcriptional cascade, we reasoned that true regulatory interactions would link
genes that appeared close together in time. To test this hypothesis, we compared the average
link length (i.e., the absolute difference in up-regulation time between the regulator and
target) in the inferred network with that found in a set of random networks. To generate each
random network, all up-regulated genes were randomly assigned an initial differential
expression time, and transcription factors were randomly assigned an activity window from
the set of observed profiles. Networks were inferred from these randomized data using the
same method as the observed data, including the determination of enriched TRANSFAC
matrices, etc. We found that the average link length in the real network (3.2 hours) was
significantly shorter than those of the random networks (P<0.002 for 1000 random
networks). A similar result was obtained when the link lengths were computed over all the
target genes and not just the TFs appearing in Figure 4 (P< 0.005 for 1000 random
networks). We conclude that our network is effective in capturing the underlying biology
and produces a pattern that is consistent with a step-wise transcriptional signal propagation.

3b. Experimental validation of regulatory links—The network implicated six novel
TFs in the antiviral response (Figure 5). We applied multiple criteria for selecting the most
promising of these factors along with a set of their predicted regulators and targets for
experimental validation by electromobility shift assay (EMSA). First, we looked for a robust
up-regulation pattern in the TF mRNA expression, and focused particularly on those up-
regulated in the middle phase of the response. Second, we eliminated TFs with non-specific
binding signatures so that the true sites would be easier to identify (Table 1). Finally, we
selected TFs with targets either in the constructed network or in the known pathogen
response gene set, additionally selecting targets with very good matches to the TF's binding
signature. To ensure the reliability of the EMSA validation we verified that such targets did
not overlap with predicted binding sites for any other matrixes annotated to TFs associated
with pathogen responses (1,29) or appearing in our network. Our set of chosen TFs included
ALX1, FOXC1 and RUNX3. Of these, ALX1 and FOXC1 were of particular interest, since
they belonged to the group of transcription factors with evidence for a significant overlap
among their target sets (see section 2b and Figure 3C). As a group, these TFs had at least
one binding site in 70% of all the network targets, suggesting they are critical factors driving
the observed up-regulation pattern. We sought to place these TFs in a functional context by
performing a gene ontology (GO) analysis of their predicted target genes. FOXC1, RUNX3
and ALX1 targets share many of the same functions; however they have distinct profiles
(Figure 6). The targets of RUNX3 include genes related to the T cell response, and the factor
appears functionally similar to known players ATF3 and CREM. In contrast, ALX1 and
FOXC1 both cluster together with several STATs, although FOXC1 targets more genes
related to development.

To validate the chosen target sites associated with our three novel TFs, we performed
EMSAs with NDV-infected whole cell extract using 32P labeled oligonucleotides. EMSA
probes were designed to include core target sites flanked with the endogenous genomic
sequence. In comparing uninfected whole cell extract to extract derived from 4, 6, and 8
hours post-infection, we were able to verify four uncharacterized, virus inducible elements
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(Figure 7). TF binding assays using a characterized IRF7 element of ISG15, and a putative
ISRE site upstream of the ALX1 transcription start site (TSS), both demonstrated virus
inducible binding that was evident at 4 hours post-infection and was sustained for the
duration of the sampling (Figure 7A and 7B). Furthermore, a putative ALX1 target element
also demonstrated virus-inducible occupancy during infection (Figure 7C). This element
upstream of the PLA1A gene mediated the assembly of a single DNA binding complex
estimated to be 75-150kD. Moreover, binding of the ALX1 promoter element in PLA1A
appeared to by dynamic, as a second faster migrating complex was visible by 8 hours post-
infection, suggesting a time-dependent change in the composition of this complex (Figure
7C). Two additional non-ISRE binding sites were also verified by EMSA, including putative
binding sites for FOXC1and RUNX3 (Figure 7D and 7E). Taken together, these data
corroborate both microarray data and computational analyses, suggesting a complex
transcriptional regulatory network that may depend on the cooperative activities of multiple
TFs.

Discussion
The activation of viral pattern sensors combined with cytokine signaling initiates a genetic
program in DCs that is critical to controlling infection. We have found that the timing of this
program is highly conserved. In order to deduce the underlying regulatory architecture, we
developed an integrative method to reverse engineer the transcriptional network and its
progression through time. Using genome-wide transcriptional profiling data covering the
first 18 hours post-infection, our approach identified a single regulatory network composed
of 24 transcription factors that accounts for the up-regulation of a majority of genes (Figure
4). This network captures and connects through time many known elements of the antiviral
response, including IRFs, STATs and NFkB. The cascading pattern of TF activity (Figure
3B) and the interconnectedness of the network (Figure 4) combined with the tight
conservation of target up-regulation times (Figure 2), all indicate an integrated control as
opposed to an underlying parallel architecture. It is important to carefully interpret the
network structure and ordering of events defined by the predicted regulatory network since
the overall genetic program results from the integration of multiple signals that may arrive at
different times. The NDV infection was performed using an MOI of 0.5 so that only
approximately half the cells are infected and thus many cells are simply responding to the
interferon and other cytokines secreted by infected cells, rather than directly to the virus.
While this implies that the gene expression measurements reflect the operation of two
distinct signaling pathways, the inferred network structure suggests that both rapidly
converge on an overlapping set of downstream transcriptional regulators. Nevertheless, this
could explain why NFkB activity follows STAT activity in our network. We conclude that
the uninhibited antiviral response is the result of a single transcriptional cascade with a
convergent architecture, and is not implemented as a series of independent transcriptional
events.

Six transcription factors whose involvement in the network was predicted by our method are
not part of the general pathogen response signature (29) or the DC core response (1). These
represent potentially novel antiviral TFs: ALX1, FOXC1, FOXO3, MAX, RUNX3 and
ZEB1. In order to validate the transcriptional network, we attempted to experimentally
validate the regulatory connections for three of these novel transcription factors (ALX1,
FOXC1 and RUNX3). We considered both incoming links, testing regulation of the novel
TF, and outgoing links, testing the ability of the novel TF to regulate other genes. Using
EMSA, we validated 4 out of the 12 regulatory relationships tested indicating an antiviral
role for all of the TFs tested. Moreover, this success rate likely represents a lower bound for
the specificity of our method in determining regulatory relationships for two main reasons.
First, we did not include the many well-known players in our experimental validation.
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Second, a negative EMSA result may simply reflect sub-optimal binding conditions or be
indicative of a relatively unstable complex. Furthermore, although the temporal activation of
PLA1A, IFNA14 and RUNX3 does not necessarily correlate to the binding kinetics of
ALX1, FOXC1 and RUNX3 putative binding sites respectively, this is likely a reflection of
their individual transcriptional potentials or ability to recruit DNA modifying enzymes. In
the case of the putative FOXC1 binding site, this element represents the first documented
example of a non-IRF controlling the transcription of this genetic cluster. Although this site
was found to overlap the TATA-box, it has also been observed that FOX proteins can
regulate genes through direct binding to TATA-boxes (35). Further experiments will be
needed to verify the true impact of this site and the cause for the FOXC1 binding site we
have found.

ALX1 had the highest number of experimentally validated links. Based on the occupancy of
the IRF7 upstream of the ALX1 TSS, it would appear that transcription is, in part, mediated
directly by Type I interferon signaling (Figure 7B). In the network, ALX1 is predicted to
cooperate with IRFs in the regulation of down-stream genes as part of a feed-forward loop
(Figure 8). ALX1 encodes for CART1, a paired-class homeodomain protein that is
necessary for survival of the forebrain mesenchyme in rodents (36). While the binding site
preferences for CART1 have been characterized, (37) the function of this protein in humans
is not known. Although the precise role for CART1 in the antiviral response is not yet clear,
a gene ontology analysis of ALX1 predicted targets suggests that this factor is functionally
similar to STAT1 and FOXO3 (Figure 6). ALX1 target genes are involved in a variety of
functions, but the most enriched GO category predicts that this factor is most likely involved
in the negative regulation of macromolecule biosynthetic processes (GO:0010558 – see
Figure 6). Our network analysis places ALX1 within a well-known network motif (38),
supporting a critical role for this transcription factor in coordinating the antiviral response
(Figure 8). Our experimental results also appear to indicate the workings of such a feed
forward control element of PLA1A by ALX1 and another virus activated transcription
factor. Looking at our EMSA results we see that following the assembly of a single DNA
binding complex at 4 hours, a second faster migrating complex was visible by 8 hours post-
infection (Figure 7B). These results suggest the exciting possibility that ALX1, and other
novel TFs identified in this study, may cooperate both with each other, or with known virus
activated factors such as IRF3, IRF7, STAT1, and/or NFkB.

Combinatorial regulation can play an important role in mammalian gene regulation, but is
not specifically incorporated in our approach. However, multiple regulators are predicted for
most target genes and the potential for combinatorial control can be investigated indirectly
by analysis of TF target overlap (Figure 3C). Consistent with our idea of cascading control,
we found that most of the implicated TFs do not exhibit significant pair-wise overlap of
target genes. However, a cluster of high overlap, including ALX1 (mentioned above) and
also FOXO3, FOXC1 and STAT, was identified and may also reflect cooperative activity
(black box, Figure 3C). Together these TFs account for approximately 70% of the genes
controlled by the network. The cooperative nature of the network is further evidenced by the
fact that only ∼19% of genes controlled by the network are targeted by a single matrix.
Thus, while TFs pass along the ‘baton’ in an orderly fashion, individual genes may be
controlled by multiple TFs at various points in the cascade and the network as a whole is the
minimal unit of control.

The network building approach developed here is generally applicable to transcriptional
profiling time-series. It differs from most current analyses in several important ways. First,
we grouped genes according to their initial time of up-regulation. Second, instead of simply
identifying the controlling TFs, we connected these together mechanistically to generate a
complete transcriptional cascade. In cases where the time resolution of microarray sampling
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may not be sufficiently dense to isolate genes with common cis-regulatory logic, we suggest
that the model-based analysis might be generalized to estimate up-regulation times on a finer
scale. Several assumptions underlying our network reconstruction method are important to
keep in mind. The analysis is limited to transcription factors whose binding preferences are
known and are included in the TRANSFAC database. Nevertheless, as we have
demonstrated, it is possible to implicate factors with previously unknown functions such as
ALX1. Our method is also restricted to TFs that are differentially-expressed at the mRNA
level. Consequently, it will miss factors that are post-transcriptionally regulated, which may
be particularly important in the earliest stages of the response. Furthermore, since only up-
regulated genes are included, the analysis will also not identify transcriptional repressors.
While it is conceptually possible to extend the network reconstruction procedure to down-
regulated genes, the lack of correlation among down-regulation times (Supplementary
Figure 1) suggested that a transcriptional cascade may not be the best model for these data.

To study the highly dynamic processes involved in immune interaction with pathogens
requires a methodology that incorporates time directly into the analysis rather than
subsuming it. The method presented here is a first step in the construction of such a
methodology. Using our time-centric promoter analysis methods we have elucidated the
transcriptional network underlying an uninhibited antiviral response in human DCs. Our
results indicate a robust convergent design and stepwise execution of the antiviral program.
While inherently limited to discovering regulation by TFs whose binding preferences are
known (and annotated in TRANSFAC), the inferred network nonetheless accounts for a
majority of up-regulated genes and time points. The identification of key transcriptional
players in the antiviral response, along with knowledge of their timing and regulatory
architecture, provides a framework to identify the specific mechanisms used by human
pathogens to subvert normal immune function.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Model-based estimation of the up-regulation time for individual genes
The up-regulation time for each gene was determined by fitting a logistic function (solid
line) to the experimentally-measured mRNA expression values from a single experiment
(circles). The estimated time of up-regulation was defined as the maximal change in the
acceleration of the logistic function and is indicated by a star. This example shows IFNB1
expression from Donor 2 Sample 1.
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Figure 2. The anti-NDV response is highly correlated across samples and donors
The initial up-regulation times were estimated for a set of genes known to be involved in
pathogen responses using a model-based analysis. Up-regulation times for individual genes
(points) were compared across samples from the same donor (upper row) and between
donors for the same sample (bottom row). The extent of conservation was determined using
orthogonal least-squares linear regression (solid lines). The correlation for each comparison
was, starting at the top left corner and moving clockwise: 0.85, 0.88, 0.81 and 0.87.
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Figure 3. Dynamic activity profiles and target overlap for transcription factors in the NDV
response network
(A) The number of genes first up-regulated at each time point, split by TF (white bar) and
non-TF (black bar) genes. (B) Heatmap showing the over-representation of targets
associated with each of the TRANSFAC matrices in the network (rows) over time
(columns). The colors are row normalized -log(P values). Darker red indicates greater
inferred activity of the transcription factor(s). The temporal activity window of each TF
matrix (● --- *) was inferred from the union of the activity of all the individual TFs
represented by that matrix. (C) Heatmap quantifying the extent of overlap between predicted
targets of each TRANSFAC matrix (rows and columns). Colors indicate -log(P values) of
the hypergeometric test. The threshold for statistical significance assuming a Bonferroni-
corrected P value of 0.05 is indicated by the dashed line on the color bar. Matrices that could
be individually removed without any loss of coverage are marked with an asterisk (*). The
black box indicates a region of high overlap between TFs from different families, suggesting
possible cooperativity.
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Figure 4. Transcription regulatory network for the uninhibited antiviral response
Each node represents a transcription factor with inferred activity in the anti-NDV response.
Edges connect regulators to targets so that arrow-tails indicate up-regulation of the regulator,
while arrow-heads indicate activity of the regulator on the target. Regulatory relationships
can be either feed-forward (green links), feed-back (red links) or reciprocal (black links).
Time in the figure progresses vertically down, with nodes placed in the time-slice during
which the gene is first differentially expressed. Within each time-slice, TFs are ordered
based on the sigmoid analysis wherever possible. Node color reflects importance measured
by number of outgoing links to all gene targets (i.e., total number of genes, not just TF,
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targeted by the node in question), with darker color corresponding to more highly connected
nodes. Rectangular nodes indicate TFs with no predicted regulators.
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Figure 5. Comparison of the anti-NDV transcriptional response with other pathogen responses
Transcription factors defined by the inferred network were compared with transcription
factors from two published gene signatures: the general pathogen response defined in (29)
and the core DC response defined in (1). Transcription factors in these signatures were
identified by their annotation in (39) or linkage to a vertebrate TRANSFAC matrix (see
Methods).
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Figure 6. Gene ontology analysis of TF targets
Each row corresponds to a GO term that was significantly enriched (p<0.001) for the targets
of at least one transcription factor. The colors indicate absolute P values (darker for
increased significance) computed using the conditional test in the GOstats package in
Bioconductor. Hierarchical clustering of the columns was carried out using the Euclidean
distance metric and Ward's linkage.
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Figure 7. Experimental validation of transcription factor network connections
Electromobility shift assays (EMSAs) were performed at 0, 4, 6 and 8 hours post-infection
to test for virus-inducible binding at predicted binding sites. (A) Positive control
demonstrating virus-inducible binding to an ISRE element in the promoter of ISG15. As
validation of the TF network connections, virus-inducible binding was demonstrated for
predicted binding sites of (B) IRF7, (C) ALX1, (D) FOXC1 and (E) RUNX3. The probe
sequences (detailed in Table 2) encompass predicted binding sites found in the promoters of
(B) ALX1, (C) PLA1A, (D) IFNA14 and (E) RUNX3 as specified in methods. TF-probe
complexes are indicated with arrows.
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Figure 8. Network motif involving the putative antiviral transcription factor ALX1
(A) The ALX1 gene is activated by IRF7. (B) ALX1 activates other genes such as PLA1A.
The solid lines (A,B) represent EMSA-validated network connections. The dashed lines,
completing a feed-forward loop (C) and indicating auto-regulation (D), were predicted
computationally.
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TABLE I
Novel transcription factors predicted by the network analysis. Factors listed in bold were
experimentally tested using EMSA

Gene Symbol TRANSFAC matrix TRANSFAC motif First expressed (hours)

ALX1 V$CART1_01 10

FOXC1 V$FREAC3_01 8

FOXO3 V$FOXO3_01* 14

MAX V$MYCMAX_02* 8

RUNX3 V$AML_Q6* 8

ZEB1 V$AREB6_01 14

*
Multiple TRANSFAC matrices are significant, only the one with the most significant P value is indicated
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TABLE II
Probe sequences used in EMSA experiments

Gene Symbol Specific TRANSFAC matrix TF / target site Probe sequence (5′ – 3′)

ISG15 (control)* ISRE GATCGGAAAGGGAAACCGAAACTGAAGCC

ALX1* V$IRF7_01 IRF7 AGTTCTAATGAATATGAAAATAGGCGGGCG

PLA1A* V$CART1_01 ALX1 GAGGCTAGTTAATGATTAGTGAAATCCACG

IFNA5 V$CART1_01 ALX1 ATTAAAATTTAATGGGATTTTTAGTTAGAA

IFNA7 V$CART1_01 ALX1 TGAACATACTAATTTCCATTTTCTAAATGC

FOXC1 V$STAT1_01 STAT1 GGGCTCCGCTGCCCGGAAAAAAGTGTAACT

IFNA14* V$FREAC3_01 FOXC1 GTGCATAGGTCTTAAATAAGGAACATAC

CREM V$FREAC3_01 FOXC1 CAAATGGCTCAGCAAATAAAAATGTTAA

CXCL9 V$FREAC3_01 FOXC1 GAAATGAATATCCTAAATAAATATGATCCC

PELI1 V$FREAC3_01 FOXC1 CCTTATTAAACTGCAAATAAAATGCTGTGA

RUNX3 V$CREB_Q4_01 CREM CACCTGGGCCGTGATGTCACGGCCTTTTA

RUNX3* V$AML_Q6 RUNX3 CACCTGGGCCGTGATGTCACGGCCTTTTA

CCL3 V$AML_Q6 RUNX3 TATCCTGAGCCCCTGTGGTCACCAGGGACC

*
Validated by EMSA
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