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Spatial Structure and Diffusive Dynamics from Single-Particle
Trajectories Using Spline Analysis
Brian R. Long and Tania Q. Vu*
Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
ABSTRACT Single-particle tracking of biomolecular probes has provided a wealth of information about intracellular trafficking
and the dynamics of proteins and lipids in the cell membrane. Conventional mean-square displacement (MSD) analysis of single-
particle trajectories often assumes that probes are moving in a uniform environment. However, the observed two-dimensional
motion of probe particles is influenced by the local three-dimensional geometry of the cell membrane and intracellular structures,
which are rarely flat at the submicron scale. This complex geometry can lead to spatially confined trajectories that are difficult to
analyze and interpret using conventional two-dimensional MSD analysis. Here we present two methods to analyze spatially
confined trajectories: spline-curve dynamics analysis, which extends conventional MSD analysis to measure diffusive motion
in confined trajectories; and spline-curve spatial analysis, which measures spatial structures smaller than the limits of optical
resolution. We show, using simulated random walks and experimental trajectories of quantum dot probes, that differences in
measured two-dimensional diffusion coefficients do not always reflect differences in underlying diffusive dynamics, but can
instead be due to differences in confinement geometries of cellular structures.
INTRODUCTION
Single-particle tracking (SPT) is becoming widely applied in

the life sciences, including the use of microscopy to track

biomolecular probes such as colloidal gold particles, fluores-

cent beads, fluorescently labeled viruses, quantum dots

(fluorescent semiconductor nanocrystals), and even single

fluorescent molecules attached to proteins of interest (1–9).

Tracking the motion of fluorescent particles at the subcellular

level has provided a wealth of information for a wide

range of fields. Recent research on the cell surface includes

study of diffusive dynamics of proteins in the plasma mem-

brane (10,11), interactions between the cytoskeleton and

plasma membrane (12), and the motion of membrane-bound

receptor proteins (13–17). Intricate motion has also been

observed inside the cell, including stepwise, motor-driven

transport of endosomes and melanosomes (18,19) and the

motion of molecular motors themselves (20,21). With fluo-

rescent probes and sensitive electron-multiplied charge-

coupled device cameras readily available, trajectories of

single (or clusters of a few) molecules can be extracted

from sequences of fluorescence microscopy images with

relative ease.

The resulting abundance of detailed trajectory informa-

tion can be daunting because there are few standardized

methods for trajectory analysis. One ubiquitous method

for analyzing trajectory data featuring diffusive motion

involves calculating the mean-square displacement (MSD)

of each trajectory and then extracting biophysical quantities

of interest such as the two-dimensional diffusion coefficient
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(22–25). To calculate the MSD from a trajectory, the

displacements over the time difference Dt are squared and

then averaged as

MSDðDtÞ ¼
�
Dx2

i þ Dy2
i

�
; (1)

where h.i indicates the average over the independent

displacements in a single trajectory. For two-dimensional

trajectories, Brownian motion of a particle with diffusion

coefficient D2D is characterized by

ð1=2ÞMSDðDtÞ ¼ 2D2DDt; (2)

and typical MSD analysis consists of fitting a line to two-

dimensional MSD data and interpreting the slope as the

two-dimensional diffusion coefficient.

Typically, only the first (or first few) data point(s) are used to

calculate D2D, because the particular stochastic nature of

Brownian motion causes the error in measuring two-dimen-

sional MSD, sMSD, to increase with Dt (22,25,26),

sMSD ¼ 4D2DDt=N1=2; (3)

where N is the number of independent displacements aver-

aged in Eq. 1. The central interpretation of conventional

two-dimensional MSD analysis, as presented here, is that

the slope of an MSD plot from a two-dimensional trajectory

measures a particle’s microscopic diffusion coefficient, D2D.

This interpretation is dependent upon two assumptions: first,

the particle is diffusing freely in a homogeneous medium

over the timescale of the measurement; and second, the

particle is spherically symmetric and the medium through

which the particle moves is isotropic. These assumptions

of conventional two-dimensional MSD analysis are rarely

satisfied in the case of fluorescent probes and biomolecules
doi: 10.1016/j.bpj.2009.12.4299

mailto:vuta@ohsu.edu


A B

C D

FIGURE 1 Trajectories A–D plotted with spline curves. (Top left) Trajec-

tory A is a random walk simulated to model experimental trajectory B. (Top

right) Trajectory B is an experimental trajectory showing two-dimensional

diffusion that is easily analyzed with conventional two-dimensional MSD

analysis. (Bottom left) Trajectory C shows linear, confined motion that is

more difficult to analyze using conventional two-dimensional MSD. (Bottom

right) Trajectory D shows spatial confinement to a curvilinear structure,

which is ill suited for conventional two-dimensional MSD analysis, but ideal

for the spline-curve analysis techniques discussed in the text. Trajectories

B–D were collected from movement of QD probes incubated with PC12

cells (see Methods).
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moving in or on live cells because cellular structures are

rarely flat and uniform at the submicron scale. These com-

plex, nanoscale three-dimensional structures and dynamics

within cells have recently been observed directly using new

optical techniques for superresolution three-dimensional

imaging and three-dimensional particle tracking (18,27–29).

There are also examples in the literature showing that such

complex local geometry can influence diffusion and affect

measurements of D2D from SPT trajectories. For example,

effects of membrane surface roughness on SPT-measured

diffusion coefficients has been described by Hall (30), and

diffusion in and on various confining geometries has been

reviewed (1,4,31,32). Further effects of local geometry on

diffusion such as the diffusion of asymmetric particles and

the role of membrane curvature fluctuations, cytoskeletal

activity, and crowding on local hydrodynamics have also

been documented in the literature (33–36). These studies

indicate that the observed two-dimensional motion of probe

particles is influenced by the local three-dimensional geom-

etry of the cell. Conventional two-dimensional MSD anal-

ysis does not address the three-dimensional spatial structures

that can influence measured SPT trajectories, so direct appli-

cation of Eqs. 1 and 2 to obtain D2D from confined trajecto-

ries may lead to spurious results. For the case of particles

confined to straight line, a simple coordinate rotation can

resolve motion along the linear structure from motion

perpendicular to it (see, for example, (31,37)). However,

SPT trajectories exploring more complex curvilinear

confinement geometries are not well characterized by simple

rectilinear coordinates.

Here we present trajectory analysis methods that account

for the overall shape of trajectories confined to curvilinear

geometries, providing new dynamic and spatial information

absent in conventional two-dimensional MSD analysis. Our

two methods—spline-curve dynamics analysis (SCDA) and

spline-curve spatial analysis (SCSA)—are both based on

fitting a spline curve to the overall shape of extended trajec-

tories that exhibit curvilinear spatial structure.

SCDA separates motion parallel and perpendicular to

the spline curve and extracts trajectory dynamics along

these two directions. For trajectories exhibiting diffusive

dynamics, motion parallel and perpendicular to the spline

curve can be characterized by diffusion coefficients Dk and

Dt, which are inaccessible to conventional two-dimensional

MSD analysis. In simulated random walks and example SPT

trajectories, SCDA distinguishes diffusive motion parallel to

the spline curve from confined motion perpendicular to it,

even in experimental trajectories confined to curvilinear

structures. Furthermore, using SCDA, we show that D2D

values do not reliably report the microscopic diffusive

dynamics of confined trajectories. SCSA measures the

distance from each point in the trajectory to the spline curve,

quantifying spatial confinement of the trajectory and mea-

suring spatial structures below the diffraction limit. Com-

bined, the results of SCDA and SCSA can also inform
identification of three-dimensional cellular structures from

two-dimensional SPT trajectories.
METHODS

SPT trajectories

Fig. 1 shows x-y plots of four example trajectories (A–D) that are analyzed

here using SCDA and SCSA. Trajectory A is a two-dimensional random

walk trajectory, simulated as described below, and trajectories B–D are three

experimental SPT trajectories of nerve growth factor-quantum dot probes

(NGF-QDs) incubated with cultured PC12 cells. Trajectories B–D were

selected from a database of 159 SPT trajectories on the basis that they

exhibited different types of distinct spatial structure. The 159 SPT trajecto-

ries were selected for analysis with SCDA because they had aspect ratios

3 R 1.75 and overall curvilinear shapes.
Biophysical Journal 98(8) 1712–1721
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Random walk simulations

Two-dimensional diffusive trajectory A was simulated to model example

SPT trajectory B. The trajectory was obtained by vectorially summing N

random displacements (Dx,Dy). The values Dx and Dy were random vari-

ables drawn from a Gaussian distribution with zero mean and variance

s2 ¼ 2DBt, where DB ¼ 0.22 mm2/s is the two-dimensional diffusion coef-

ficient for trajectory B and t ¼ 0.06 s is the lag between position measure-

ments in the experimental data. The number of data points of trajectory A
was chosen to match that of B (NA ¼ NB ¼ 187). MSD plots for trajectories

A and B (Fig. 3, top left) show that experimental trajectory B is comparable

to a purely diffusive trajectory over the time range of interest, validating the

use of a two-dimensional random walk as a model for trajectory B. It is worth

noting here that whereas trajectory B may seem to be nonrandom due to its

large aspect ratio 3 ¼ 2.47, comparison to aspect ratios of 5000 random

walks with the same number of data points indicates that roughly 17% of

random walks would have a larger aspect ratio than trajectory B. (For

a detailed discussion of the distribution of asymmetry factors similar to

aspect ratio 3, see (23).)

A set of 500 two-dimensional random walk trajectories (N ¼ 344, s2 ¼
2(0.24 mm2/s)t) was created using the above methods and used to compare

conventional MSD and SCDA as described in Results. Additionally, 500

two-dimensional random walk trajectories were mapped onto the surface

of a cylinder with radius r ¼ 100 nm and its axis along the x axis. The re-

sulting cylindrical trajectories were projected into the x,y plane to simulate

measured confined trajectories of fluorescent particles diffusing on a cylin-

drical surface contained within the microscope’s depth of field.

Measurement of receptor-bound quantum dot
trajectories in cells

The NGF-QD probe was prepared using biotin-streptavidin conjugation;

details of probe preparation and methods for cell culture and NGF-QD

treatment of PC12 cells (ATCC, Manassas, VA) are described in Rajan

et al. (38). Sequential fluorescence images of the NGF-QD probes were

imaged at a rate of 16.7 frames/s using an inverted microscope in epifluor-

escence configuration (Axiovert 200m; Zeiss, Oberkochen, Germany) with

a 100� 1.4 NA oil immersion objective and a cooled charge-coupled device

camera (Axiocam, Zeiss) configured with 2�2 binning. Image files were

converted from ZVI format to TIFF stacks using the Bio-Formats Java

library (http://www.loci.wisc.edu/ome/formats.html). Particle location and

trajectory linking was performed using customized versions of publicly-

available MATLAB scripts (http://physics.georgetown.edu/matlab/code.

html) that follow the methods described in Crocker and Grier (39). Trajec-

tories B–D plotted in Fig. 1 are example trajectories chosen for varied spatial

structure and length (number of data points NB ¼ 187, NC ¼ 365, and ND ¼
335, and total time TA ¼ TB ¼ 11 s, TC ¼ 22 s, and TD ¼ 20 s). Uncertainty

in particle position measurements, sm, was estimated using the correlation

between adjacent displacements from Wang et al. (26),

s2
m ¼ �hDxiDxiþ 1i;

and ranged from 520 nm to 550 nm for trajectories B–D.

Conventional two-dimensional MSD analysis

Conventional two-dimensional MSD analysis here refers to the calculation

of MSD (Eq. 1) and interpretation of the slope of the MSD line as the diffu-

sion coefficient of the particle, D2D. Each MSD data point was averaged only

over adjacent (nonoverlapping) intervals and here we have chosen intervals

of Dt ¼ t, 2t, 4t, and 8t where t ¼ 0.06 s is the time between frames of the

original data. D2D was calculated from the first data point, i.e., D2D ¼
MSD(t)/4t, and error bars in Fig. 3 and Table 1 are the expected statistical

error due to finite sample size (Eq. 3), as discussed in the literature (22,26).

For our data, measurement errors sm
2 associated with using the first point of

the MSD plot to calculate D are on the same order of magnitude as, but
Biophysical Journal 98(8) 1712–1721
within, the statistical error bars due to finite sampling. Although the correla-

tion hDxiDxiþ1i can be used to correct MSD for measurement error in uncon-

fined, purely diffusive trajectories (26), both measurement error and actual

displacement correlations (e.g., due to confinement) may be combined

into our sm
2. We use the first point of the MSD to minimize statistical error,

for simplicity, and because correlation error cannot be separated from

measurement error in our trajectories. Conventional two-dimensional

MSD (Fig. 3, top left) is plotted as (1/2) MSD to facilitate comparison

with MSDjj and MSDt.
Spline-curve analysis

We have developed spline-curve analysis methods to produce a curve that

characterizes the overall, curvilinear shape of extended trajectories (e.g.,

trajectories with aspect ratio 3 R 1.75). We have focused on extended trajec-

tories with curvilinear shapes, and our method is general enough to accom-

modate trajectories of diffusion in curvilinear structures. In such trajectories,

a particle may retrace its position along the structure many times randomly,

and so our spline curve is based on the set of particle locations only, not on

the time ordering of those locations. We show in Results that the curvilinear

shapes of our trajectories can be explained by diffusion in curvilinear

confining geometries.

SCDA and SCSA both utilize a spline curve fit to the overall shape of each

trajectory. Our spline-fitting methods use two steps: first, choosing points that

characterize the overall shape of the curve; and second, generating a spline

curve constrained to pass through those points. We developed two methods

for choosing points to characterize the overall shape of the curve:

1. User-chosen points. Using custom-written presentation software, a user

selects typically 5–10 (x, y) points by clicking with a mouse on each

plotted trajectory. This process takes a few seconds per trajectory and can

be combined with any other trajectory analysis steps that require human

intervention.

2. Computer-generated points (see also Supporting Material). The (x, y) points

were generated in an iterative manner designed to trace out the overall shape

of curvilinear trajectories. Each trajectory is divided into n equal segments

along emajor, the direction of the trajectory’s greatest extent. The value sn,

the standard deviation about the mean along the direction perpendicular to

emajor, is calculated over the trajectory points in each segment. The mean of

these n local standard deviations, hsni, provides an estimate of the local

width of a curvilinear trajectory that is more accurate than the global stan-

dard deviation perpendicular to emajor of the whole trajectory. The global

estimate overestimates the local width of curvilinear trajectories.

The width hsni is used as a characteristic length scale for generating

points to characterize the spline curve as follows:

1. The first point is the center-of-mass of particle locations within a radius

r1 ¼ 3 hsni of the end of the trajectory along emajor.

2. The second point is determined by finding the center-of-mass of particles

in the p/2 radian section of an annulus, r1 < r < 2r1, that is directed

toward the angle with the highest number of particles within p/2 radians.

3. This second point is then used as the center of the annulus for choosing

the third point, and the process is repeated.

To ensure that each point is ahead of the previous one, and to reduce spurious

turns in the spline curve, the angle between each segment and the next point is

limited to be<0.2p. If no particle locations are found in the annulus r1< r<
2r1, r1 is increased to r1 ¼ 6 hsni, and if particles are found within the

expanded annulus, the iteration process continues. If no particles are found

within r ¼ 12 hsni, the iterations stop. Two additional points are then added

on each end of the automatically generated points so that the fitted spline curve

continues beyond the extent of the trajectory. All results in this article have

been automatically analyzed using spline curves derived from computer-

generated points with n¼ 7 and r1¼ 3 hsni. These values were chosen based

on the four example trajectories in Fig. 1 and were well suited for the random

walk simulations and the 159 SPT trajectories analyzed.

http://www.loci.wisc.edu/ome/formats.html
http://physics.georgetown.edu/matlab/code.html
http://physics.georgetown.edu/matlab/code.html


FIGURE 2 (Top) Spline-curve dynamics analysis (SCDA). A spline curve

(dashed line) is fitted through the overall trajectory shape and each displace-

ment D is resolved into a component parallel to the spline curve Dk and

a component perpendicular to the spline curve Dt. The parallel and perpen-

dicular displacements can then be analyzed independently to measure

dynamics parallel and perpendicular to the spline curve. (Bottom) Spline-

curve spatial analysis (SCSA). The distance di from each particle to the

spline curve is calculated and histograms of di provide a spatial profile of

the trajectory.
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Spline-curve fitting

Once the points have been selected either automatically or by hand, a spline

curve of 10,000 interpolated points is fit to the points to create a smooth

curve that characterizes the overall shape of the trajectory. The spline curve

is fit to the selected points using a built-in MATLAB (The MathWorks,
Natick, MA) function that generates a piecewise-cubic Hermite polynomial

with coefficients chosen so that the curve’s value, first derivative, and

second derivative are all continuous at each of the selected points.

The four trajectories analyzed here (A–D) are shown with spline curves

in Fig. 1.

SCDA

Each displacement D between successive positions was resolved into

components parallel (Dk) and perpendicular (Dt) to the local tangent to

the spline curve (as sketched in Fig. 2, top). This generated a series of

parallel displacements and a series of perpendicular displacements. These

two series of displacements were then independently analyzed to measure

the dependence of MSDt and MSDk on Dt. MSDt and MSDk are plotted

versus Dt for trajectories A and B (Fig. 3, top) and for trajectories C and

D (Fig. 3, bottom). From the first point of MSDt and MSDk data, we calcu-

lated Dt, the diffusion coefficient perpendicular to the spline curve, and Dk,

the diffusion coefficient parallel to the spline curve, reported in Table 1. Dk
and Dt are each treated here as effective one-dimensional diffusion coeffi-

cients corresponding to motion along a single coordinate.

SCSA

After the spline curve was fit to a trajectory, the shortest distance di from

each point to the spline curve was measured (as sketched in Fig. 2, bottom).

A histogram of di was plotted, displaying the spatial distribution of particle

positions around the spline curve. Spatial distributions for trajectories A–D

are shown in Fig. 5. The stated width of each spatial distribution in Fig. 5

was calculated using the standard deviation about the mean.

Cylindrical spatial distribution

A simple numerical calculation was performed to model the bimodal spatial

distribution of trajectory D. We assume that the actual particle locations are

distributed uniformly on a cylindrical shell (radius r ¼ 90 nm, thickness

t ¼ 3 nm), excluding the bottom 3 nm, which is presumably in contact

with a surface, thus preventing QDs from diffusing there. The shell thick-

ness, t, was chosen here to model the membrane thickness, as it is unclear
FIGURE 3 Comparison of conventional two-dimen-

sional MSD analysis and SCDA. (Top left) Conventional

two-dimensional MSD plotted for trajectories A–D.

Conventional two-dimensional MSD characterizes trajec-

tories C and D with smaller slope (lower D2D) than that

of experimental trajectory B and simulated random walk

A, due to the spatial confinement in trajectories C and D.

Conventional two-dimensional MSD is plotted here as

(1/2) MSD to facilitate comparison with MSDk and

MSDt. (Top right) SCDA applied to trajectories A and B

shows similar MSDk and MSDt, confirming that the diffu-

sive dynamics of A and B are isotropic and independent of

the spline curve. (Bottom left) Trajectories C and D exhibit

linear MSDk with nearly identical slopes, showing similar

free diffusion along the spline curve. However, MSDt is

severely restricted because the trajectories are spatially

confined to be near the spline curve. (Bottom right) Linear

MSDk with similar slopes for A–D, showing that all four

trajectories have similar diffusive dynamics parallel to their

spline curves (Dk values are given in Table 1). Error bars in

all plots represent the statistical error due to finite sampling

(Eq. 3).

Biophysical Journal 98(8) 1712–1721



TABLE 1 Measured values for D2D, Dk, and Dt from the

example trajectories A–D

D2D (mm2/s) Dk (mm2/s) Dt (mm2/s)

A 0.21 5 0.02 0.22 5 0.02 0.20 5 0.02

B 0.22 5 0.02 0.21 5 0.02 0.23 5 0.02

C 0.091 5 0.007 0.16 5 0.01 0.017 5 0.001

D 0.13 5 0.01 0.21 5 0.02 0.053 5 0.004

Conventional two-dimensional MSD analysis shows different values of D2D,

suggesting differences in the Brownian dynamics of trajectories A and B
from C and D. SCDA shows very similar values for Dk, indicating that these

trajectories actually exhibit similar underlying diffusive motion, but

differing degrees of confinement lead to varying D2D values. Errors are

statistical uncertainty due to finite sample size.

1716 Long and Vu
from our data whether the QD probe is located on the inner or outer surface

of or within the membrane. To simulate the experimental uncertainty in QD

position measurement, the measured particle locations are distributed with

a Gaussian profile in the x direction, with width sm ¼ 27 nm. This density

of measured particle locations was modeled discretely as a 1000 � 1000

matrix and is plotted in Fig. 6 (top). The spatial distribution along the

x axis (Fig. 6, bottom) was created by summing the array values along the

z axis.

All calculations were performed using MATLAB R2007b on a PC.
RESULTS

In this section, we detail the results of applying SCDA and

SCSA to SPT trajectories and simulated random walk trajec-

tories and compare our results to conventional two-dimen-

sional MSD analysis. Both SCDA and SCSA use a spline

curve fitted to the overall spatial structure of a trajectory

(Fig. 2). SCDA quantifies diffusive motion parallel and

perpendicular to the spline curve, characterized by Dk and

Dt, and SCSA extracts spatial features from SPT trajectories

by measuring the distribution of distances from measured

positions to the spline curve. The spatial features of confined

trajectories revealed by SCSA and the diffusive dynamics

measured by SCDA can be combined to show that the

complex spatial confinements exhibited by example trajecto-

ries are consistent with diffusive motion on submicron

three-dimensional cellular structures, including diffusion on

tunneling nanotubes (40,41). We have applied our methods
radius cylinder. D2D systematically underestimates the true diffusion coefficient

unconfined motion along the spline curve is separated from the confined motion

linear SPT trajectories. The range of Dk values includes a wide range of larger valu

MSD also underestimates diffusion in experimental trajectories.
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to a library of 159 experimental SPT trajectories, as well as

to a set of 500 two-dimensional random walk simulations of

normal diffusion and a set of 500 cylindrically confined

random walk simulations. We demonstrate our methods in

detail on four example trajectories, including one random

walk simulation (A) and three SPT trajectories of QD probes

(B–D) (Fig. 1) collected as described in Methods.

Dynamics: SCDA and conventional
two-dimensional MSD analysis

SCDA resolves the dynamics of a trajectory into displace-

ments parallel and perpendicular to the fitted spline curve

(as sketched in Fig. 2, top). The parallel and perpendicular

motion can then be independently analyzed to yield MSDk
and MSDt, and associated diffusion coefficients Dk and

Dt, as described in Methods. Conventional two-dimen-

sional MSD analysis of example trajectories A–D yields

MSD plots (Fig. 3, top left) and D2D values (Table 1), which

show lower values of D2D for trajectories C and D than

trajectories A and B. According to the conventional interpre-

tation of these data, these lower values of D2D reflect differ-

ences in parameters governing underlying microscopic

Brownian dynamics, such as temperature, particle size, or

viscosity of the medium.

Applying SCDA to trajectories A–D yields MSDk and

MSDt (Fig. 3) and the associated values for Dt and Dk
(Table 1). Values of MSDt are almost unchanged over

time for C and D (Fig. 3, bottom left), and so very small

diffusion coefficients characterize motion perpendicular to

the spline curve (Dt ¼ 0.017 5 0.001 and Dt ¼ 0.053 5

0.004 mm2/s for C and D, respectively). These small Dt

values are expected because particle displacements perpen-

dicular to the spline curve are restricted to be less than the

size of the confining structure for trajectories with clear

curvilinear confinement. Notably, MSDk plots are linear for

all three SPT trajectories, indicating diffusive motion parallel

to the spline curve (Fig. 3, bottom right). This analysis shows

that the underlying microscopic motion in trajectories C and

D is Brownian, but is also constrained by the local confining
FIGURE 4 Distributions of diffusion

coefficients D2D, Dk, and Dt for free

diffusion, confined diffusion, and curvi-

linear SPT trajectories. (Left) D2D, Dk,

and Dt from 500 two-dimensional ran-

dom walk trajectories simulating purely

diffusive motion. Dk and Dt reproduce

the diffusion coefficient D2D obtained

using conventional two-dimensional

MSD analysis. (Center) D2D, Dk, and

Dt from the two-dimensional projec-

tions of 500 two-dimensional random

walk trajectories confined to a 100-nm

, D ¼ 0.24 mm2/s. Dk provides a more accurate measure of D because the

perpendicular to the spline curve. (Right) D2D, Dk, and Dt from 159 curvi-

es than those reported by D2D, illustrating that conventional two-dimensional
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FIGURE 5 Results of SCSA showing the distribution of

distances from the spline curve for trajectories A–D as indi-

cated. Width indicated is the standard deviation about the

mean and N is the number of data points. Trajectories

A and B show broad spatial distributions (top), whereas C

and D show clear confinement near the fitted spline curve

(bottom). Additionally, trajectory D exhibits a bimodal

distribution, consistent with trajectory positions distributed

on a cylindrical surface projected onto the image plane, as

described in Results and Fig. 5.
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geometry. Despite the fact that the example trajectories are

characterized by a wide range of D2D values, qualitatively

different shapes and varying spatial confinement, they all

have similar Dk values.

To validate the SCDA results from trajectories A–D, we

applied SCDA to 500 two-dimensional random walk trajec-

tories simulating free diffusion and 500 random walk trajec-

tories confined to the surface of a 100-nm cylinder. For

purely diffusive trajectories, SCDA recapitulates the results

of conventional two-dimensional MSD analysis. Fig. 4 (left)
shows that distributions of Dk, Dt, and D2D values have

nearly identical means. However, SCDA and conventional

two-dimensional MSD analysis yield clearly different results

when applied to simulated random walks confined to a cylin-

drical surface. In Fig. 4 (center), distributions of Dk, Dt,

and D2D show that Dj reproduces the true, microscopic

two-dimensional diffusion coefficient (random walk D ¼
0.24 mm2/s). D2D, on the other hand, systematically underes-

timates D by ~50% because of the lateral confinement which

reduces the measured Dt values. This underestimation of

D is also shown when we applied SCDA to a library of

159 curvilinear SPT trajectories of QD probes. The distribu-

tions of diffusion coefficients in Fig. 4 (right) show that D2D

is strongly influenced by the restricted diffusion in the

perpendicular direction, whereas Dk shows a wide range of

values that are larger than the diffusion coefficient D2D

reported by conventional two-dimensional MSD analysis.

Close examination of three example trajectories (B–D)

from the library of 159 SPT trajectories reveals similar Dk
values among trajectories with disparate appearances. These

Dk values indicate that trajectories B–D measure the motion

of QD probes experiencing similar local, microscopic

dynamics despite different confinement geometries. The

differences between D2D and Dk values in Table 1 and the

distributions of diffusion coefficients in Fig. 4 illustrate
a limitation of conventional two-dimensional MSD analysis:

Eq. 1 treats each displacement in the confined trajectories

equally, and does not distinguish between the confined diffu-

sion perpendicular to the spline curve and the unconfined

motion parallel to it. As a result, a combination of confined

and unconfined motion leads to lower D2D for confined

trajectories such as C and D, and the majority of the 159

curvilinear SPT trajectories were analyzed in Fig. 4 (right).
In contrast to conventional two-dimensional MSD analysis,

SCDA separates parallel and perpendicular dynamics and

recovers the unconfined, microscopic Brownian motion

parallel to the spline curve, as characterized by Dk. The

SCDA-extracted values of Dk provide a more accurate

measurement of microscopic diffusion in confined trajecto-

ries. These confined dynamics commonly arise as the result

of motion confined by subcellular structures or movement on

complex surfaces of plasma membranes.
Mapping subdiffraction spatial structure
from trajectories using SCSA

SCSA quantifies the spatial confinement of SPT trajectories

that can sometimes be visible by eye in x-y plots with subdif-

fraction resolution (e.g., trajectories C and D in Fig. 1). Sub-

diffraction-limit spatial resolution is accessible here because

each particle location is measured from a separate image with

estimated position error sm¼520–50 nm. The distance di is

calculated from each point to the spline curve, independent

of its order in the trajectory and its location along the curve

(see sketch in Fig. 2, bottom). This spatial information is also

static and independent of the dynamic information (Dt, Dk)
obtained using SCDA. Fig. 5 shows the distribution of

particle positions relative to the spline curve, revealing the

transverse spatial profile of the trajectory and quantifying

the range of visible spatial confinement seen in x-y plots of
Biophysical Journal 98(8) 1712–1721
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FIGURE 6 (Top) Simple model of the distribution of measured position

locations on a cylindrical shell. The cylinder has radius r¼ 90 nm and thick-

ness 3 nm, with the bottom 3 nm excluded to model the region in contact

with a surface. The density of measured positions is normal-distributed in

the x direction corresponding to position measurement error of sm 5

27 nm. (Bottom) Projection of this cylindrical distribution onto the x axis,

displaying a bimodal distribution similar to that seen in the spatial distribu-

tion of trajectory D (Fig. 5, bottom right).
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the trajectories in Fig. 1. The spatial distributions for trajec-

tories A and B are broad and show no spatial confinement

(Fig. 5, top), whereas trajectories C and D show clear

confinement to regions a few hundred nanometers from their

respective spline curves (Fig. 5, bottom). The bimodal distri-

bution for trajectory D is especially striking (Fig. 5, bottom
right), clearly quantifying spatial structure below the diffrac-

tion limit (z230 nm).

Further capabilities of SCDA and SCSA

By combining information of diffusive dynamics and subdif-

fraction spatial structure, results of SCDA and SCSA can

assist in interpreting the spatial geometry of cellular three-

dimensional structures from two-dimensional trajectories.

One important aspect of SPT trajectories is that they are

two-dimensional projections of three-dimensional move-

ment within the microscope’s depth of field. Our example
Biophysical Journal 98(8) 1712–1721
trajectories A–D and the results of SCDA and SCSA high-

light the importance of considering this three-dimensional

motion when interpreting two-dimensional SPT trajectory

data.

SCSA and SCDA can identify isotropic, unconfined diffu-

sive movement characteristic of motion on a flat surface.

In our data, example trajectories A and B show linear

MSDk and MSDt with similar slopes (Fig. 3, top right),
implying similar Brownian motion parallel and perpendic-

ular to the spline curves over the measured range of Dt.
SCSA corroborates this result: there is no clear spatial con-

finement in trajectories A and B, as seen by the broad distri-

butions of distances from the spline curve (Fig. 5, top). The

isotropy of Brownian motion in trajectory B, as well as its

spatial and dynamic similarities with the two-dimensional

random walk trajectory A, lead us to infer that trajectory B
represents the two-dimensional Brownian motion within

the depth of field of the microscope. We conclude that trajec-

tory B measures the motion of a QD probe on a flat portion of

the cell membrane. The values of Dk are consistent with pub-

lished diffusion coefficients for NGF receptor proteins in the

plasma membrane of PC12 cells (42).

The combined results of SCSA and SCDA can lead to

a consistent picture of local three-dimensional spatial struc-

ture and microscopic dynamics from individual SPT trajecto-

ries. For example, SCSA yields the bimodal spatial profile

for trajectory D (Fig. 5, bottom right), which indicates that

particle positions are preferentially distributed along both

sides of the fitted spline curve, with two peaks of the distri-

bution separated by d z 160 nm. This bimodal distribution

is consistent with the two-dimensional projection of particle

locations distributed over a cylindrical shell as shown in

Fig. 6. Such a cylindrical structure is smaller in diameter

than the microscope’s depth of field, so all z positions on

the cylinder can be captured in focus. The high spatial reso-

lution of SCSA data is necessary for this interpretation: if

a cylindrical shell of diameter d z 120 nm were uniformly

labeled with a fluorescent dye, optical diffraction would

blur the bimodal distribution, making the two peaks irresolv-

able. Dynamic information from SCDA of trajectory D
reveals the dynamics of the QD probe on this cylindrical

structure. Here, MSDk is linear and its measured Dk is com-

parable to that of the other example trajectories (Fig. 3,

bottom right), indicating Brownian motion along the spline

curve. Furthermore, the local, microscopic diffusion coeffi-

cient along the structure (Dk) is similar to that of free two-

dimensional diffusion in trajectory B and within the range

of published values of D2D for NGF receptors in the plasma

membrane. Taken together, SCSA and SCDA provide

evidence that trajectory D is the two-dimensional projection

of diffusion on the surface of a cylindrical plasma membrane

structure with radius r z 80 nm. These cylindrical spatial

structures (as represented by bimodal spatial distributions)

were seen in 10 out of 159 experimental trajectories, with

radii 50 > r > 100 nm. The size of these spatial structures
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and the Dk values that we measure are consistent with the

movement of particles along tunneling nanotubes observed

in PC12 and other cell cultures (32,40,41).
DISCUSSION

Extending MSD analysis to include curvilinear
trajectories

Conventional two-dimensional MSD analysis is often used

to measure D2D from an ensemble of particle trajectories.

However, not all trajectories are suitable for conventional

two-dimensional MSD analysis. For example, particles in

trajectories C and D are confined to curvilinear structures

and therefore violate the underlying assumptions of conven-

tional two-dimensional MSD analysis. Inclusion of these

trajectories in two-dimensional MSD analysis gives spuri-

ously low values of D2D, as discussed in Results. Spline-

curve methods extend the capabilities of conventional

MSD analysis to include trajectories confined to curvilinear

structures: trajectories with curvilinear spatial structure can

be fitted to a spline curve and the motion parallel and perpen-

dicular to the spline curve can each be analyzed indepen-

dently. Dk provides a more accurate measure of microscopic

diffusive dynamics than D2D, because the spline curve takes

into account the local geometry of the trajectory.

Implementation, spline-curve variation,
and limitations

The automated implementation of our method involves using

computer-chosen points to generate each spline curve (see

Methods and Supporting Material). The automated method

generates spline curves based only on the shape of the trajec-

tory, and does not rely on an external input for determining

r1, the only length-scale used in determining the spline curve.

This scale-independence of SCSA and SCDA allows the

algorithms to be applied to trajectories of any size. As a

result, the methods do not impose any a priori limitations

on the absolute size of features characterized by the spline

curve. Our method of calculating r1 from each trajectory

individually works well for our experimental SPT data and

random walk simulations, and may be adjusted to accommo-

date other types of trajectories as needed. Similarly, the

computer-chosen points are best suited to extended, curvi-

linear trajectories, because they are restricted to have a

maximum angle between the n sequential points of qmax ¼
0.2p, yielding a minimum radius of curvature rc % r1/qmax.

This automated implementation requires no user supervi-

sion once qmax ¼ 0.2p and the method for calculating r1

have been selected, so large amounts of SPT trajectory

data can be quickly analyzed. However, the streamlining

associated with automating this process (as opposed to

a user choosing points by eye for each trajectory) comes at

the cost of flexibility. Random variations in the density of

particle locations along an otherwise uniform curvilinear
trajectory can lead to deviations in the spline curve that

a human user would intuitively avoid in selecting points

by eye.

We have developed our method to extract spatial and

dynamic information from confined, curvilinear trajectories,

and as such, we are limited in the types of structures that can

be characterized with our method. For example, character-

izing motion confined to branched or circular structures is

outside the range of suitable trajectories for our method;

such trajectories result in the spline curve missing the overall

shape of the trajectory and subsequently inaccurate SCSA

and SCDA results.

A key benefit of spline-curve analysis is its flexibility to

quantify anisotropic dynamics via Dk and Dt for a wide

range of trajectory shapes. The anisotropic dynamics of

linear trajectories such as C could be partially accessible

through independent analysis of x and y displacements in a

suitably rotated coordinate system (e.g., (31,37)). However,

the complex spatial structures of trajectories such as D
prevent its dynamics from being resolvable by a global

coordinate rotation. Our spline-curve methods allow the

resolution of anisotropic dynamics from these trajectories

that exhibit more complex, curvilinear spatial confinement.

We note that a curvilinear coordinate system similar to our

spline-curve methods has been recently used to improve

step-finding analysis of myosin V motion (21), demon-

strating the broad utility of curvilinear coordinate sys-

tems for analysis of confined and anisotropic motion inside

cells.

The interpretation of three-dimensional structures from

two-dimensional trajectories is difficult, because a two-

dimensional projection does not unambiguously determine

the original three-dimensional structure. However, qualita-

tive features of SCDA spatial distributions can identify three-

dimensional geometries that are consistent with measured

trajectory data. For example, the bimodal spatial distribution

of trajectory D is consistent with diffusion on the surface

of a cylinder, but not with diffusion inside a cylinder.

For particle positions from two-dimensional trajectories to

faithfully represent the projection of three-dimensional

structures, the measured particle positions must be evenly

distributed over the three-dimensional structure. Even if

this condition is met, different possible three-dimensional

geometries could be projected to form a given two-dimen-

sional trajectory. This is the case of example trajectory C,

which could be the two-dimensional projection of diffusive

motion on a linear structure, or on a planar structure viewed

edge-on. In the future, three-dimensional tracking and three-

dimensional superresolution imaging methods could be used

to corroborate our interpretation of the results from SCDA

and SCSA.

Our SCDA and SCSA methods calculate Dk, Dt, and the

spatial profile over each entire trajectory, so any variations in

the dynamics or spatial confinement within a trajectory are

folded into average quantities. For this reason, it is most
Biophysical Journal 98(8) 1712–1721
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straightforward to interpret the results of SCDA and SCSA

when the dynamics are uniformly diffusive on a curvilinear

structure with constant cross section. To quantify variation

within a single trajectory, SPT trajectories with more data

points are needed. For our SPT trajectories (number of data-

points N ~102), statistical error in D measurements is roughly

10% (see Table 1), and subdividing the trajectory would

increase this statistical error in D (see Eq. 3). However, for

trajectories with N ~103 or greater, SCDA and SCSA could

be extended to measure varied dynamics or spatial confine-

ment in subsegments of trajectories.
Future applications

Spline-curve analysis opens the door to several new avenues

of extracting meaningful information from particle trajecto-

ries in cells. For example, quantifiable trajectory features

could be correlated with biomarkers of interest by associ-

ating characteristics of the local dynamics and confining

geometry, such as the width of the spatial distribution and

Dk and Dt, with fluorescently-labeled antibodies for specific

proteins. Such a tool combined with a validated probe has the

potential to identify the intracellular location of biomolecules

with high spatial resolution directly from SPT trajectories

alone. Another application is to differentiate between Brow-

nian motion and active transport in confined SPT trajectories,

which would be possible with improved temporal resolution

and more detailed analysis of dynamics parallel and perpen-

dicular to the spline curves. For example, the motion of

endosomes undergoing active transport could be confined

to a particular linear or tubular structure, but the active trans-

port along such a structure should be characterized by non-

Gaussian displacement distributions and nonlinear MSD,

not the Brownian motion seen in our example trajectories.

With improved resolution, our spline-curve methods could

be used to separate the effects of particle confinement from

the effects of active transport on measured two-dimensional

trajectories.
SUPPORTING MATERIAL

Four figures illustrating automated spline-curve analysis are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)06152-9.
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