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Force Transduction by the Microtubule-Bound Dam1 Ring
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ABSTRACT The coupling between the depolymerization of microtubules (MTs) and the motion of the Dam1 ring complex is
now thought to play an important role in the generation of forces during mitosis. Our current understanding of this motion is based
on a number of detailed computational models. Although these models realize possible mechanisms for force transduction, they
can be extended by variation of any of a large number of poorly measured parameters and there is no clear strategy for deter-
mining how they might be distinguished experimentally. Here we seek to identify and analyze two distinct mechanisms present
in the computational models. In the first, the splayed protofilaments at the end of the depolymerizing MT physically prevent
the Dam1 ring from falling off the end, and in the other, an attractive binding secures the ring to the microtubule. Based on
this analysis, we discuss how to distinguish between competing models that seek to explain how the Dam1 ring stays on the
MT. We propose novel experimental approaches that could resolve these models for the first time, either by changing the
diffusion constant of the Dam1 ring (e.g., by tethering a long polymer to it) or by using a time-varying load.
INTRODUCTION
Mitosis is the mechanism of cell division in eukaryotic cells.

In mitosis, chromosomes condense and are arranged at the

center of the cell by the mitotic spindle. Microtubules

(MTs) are protein fibers, composed of n parallel protofila-

ments (PFs, typically n ¼ 13) forming a hollow cylinder.

Each PF is built from stacked tubulin protein dimers. MTs

emanate from centrosomes and attach to chromosome-bound

kinetochores. Centrosomes are positioned at both poles of

the cell forming a bipolar spindle. During anaphase, chromo-

somes are segregated and transported to the cell poles by the

retraction of MTs, providing both daughter cells with a single

copy of the cell’s chromosomes (1). To achieve segregation,

depolymerizing kinetochore-attached microtubules must

generate forces, e.g., to overcome chromosomal drag in the

cytosol (2). There is evidence that mitotic MT force genera-

tion occurs in the absence of MT minus-end directed motor

proteins (3) and when minus-end depolymerization is in-

hibited (4). Previously, a hypothetical sleeve had been

proposed to couple MT depolymerization to kinetochores

(5,6). A 10-protein complex, purified from budding yeast

(7), called Dam1 (or DASH), has been observed to form

rings around MTs (8,9). Dam1 rings have been observed

tracking depolymerizing MT plus-ends in vitro (10) and an

optical trap has been used to measure force-distance traces

for Dam1-coated polystyrene beads attached to depolymeriz-

ing MTs (11–13). Intriguingly, Dam1 has been shown to be

essential for chromosome segregation in budding yeast

(14,15) and important for avoiding mis-segregation prob-

lems in fission yeast (16).
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Mechanisms of force transduction

Several models have been proposed to explain how the

Dam1 ring can couple the kinetochore to a depolymerizing

MT to produce a force. More than two decades ago, Hill

proposed the first quantitative model describing how a depo-

lymerizing microtubule could be harnessed for the produc-

tion of force (6). In this model, a hypothetical sleeve

surrounds the MT and provides the attachment to the kinet-

ochore. An attraction between the sleeve and MT provides an

energy barrier preventing detachment, but this sleeve may

still be able to slide along the MT without paying the energy

of detachment. More recent computational models are

detailed, mechanistic and micromechanical. One such model

has taken into account the energy predicted to be available

due to the curling of PFs (17–19) and, after the discovery

of the Dam1 ring, was extended to reflect current structural

knowledge and incorporate the hypothesis that Dam1 forms

rigid transient links to the MT (20). Another independent

model postulated an electrostatic attraction maintaining the

ring’s position at the tip of the MT (21), combined with a

powerstroke. All recent models include a combination of

the following features: 1), the intrinsic diffusion of the

Dam1 ring; 2), an effective powerstroke due to curling

PFs; and 3), an attractive potential between Dam1 and the

MT. However, although these models include many of the

relevant physical features of the system and produce satisfac-

tory simulations of a reliable force transduction system, the

problem cannot be considered solved because many variants

on these models are possible and they have not been quanti-

tatively compared to data. Furthermore, the lack of discrim-

inatory experimental data precludes validation. In light of

this, we feel that much can be gained from rigorously

analyzing the contribution of the various features in order

to determine their possible role.
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In what follows, we describe two distinct minimal models,

both of which describe a functional Dam1-mediated force

transduction system. In the protofilament model, the splay-

ing PFs at the depolymerizing end physically prevent the

ring from sliding off. In binding models, an attraction

between the ring and MT provides an energy barrier prevent-

ing detachment. The two models are not mutually exclu-

sive—a hybrid model, incorporating both contributions,

may also apply, although one of the constituent mechanisms

will typically dominate. Although it is straightforward to

modify our analysis to include such hybrid models, we

neglect them here for clarity, as our purpose is to differen-

tiate the contributions. In common with previous models

we also neglect other molecular components, e.g., microtu-

bule-associated proteins and kinases (22,23), that certainly

play important additional roles in vivo.

Some previous studies have incorporated a powerstroke,

arising from the motion of PFs, in driving the motion of

the Dam1 ring (17,20,21). Indeed, it has been demonstrated

that PFs can push a bead attached to the side of a MT (24),

with a force of ~5 pN per 1–2 PFs. However, it is also known

that models in the burnt-bridges (25) class require no power-

stroke per se to generate motion (26). Rather, purely diffu-

sive Brownian motion can be rectified if bridges (here

segments of MT) are lost (depolymerize) after they have

been crossed. No instantaneous physical force is required,

although the resultant rectified Brownian motion does give

rise to a force in the thermodynamic sense. Such models

are, in turn, members of a larger class of models known as

Brownian ratchets (27). These models exhibit velocities

that depend on applied force, and stall for sufficiently high

forces, as also seen in more-complex models (21). It is not

clear a priori to what extent the powerstroke plays an impor-

tant role. In this work, we also seek to answer this question.
Generalized model

We seek to analyze a general model that includes both a

diffusive burnt-bridge mechanism and a powerstroke, to

determine their relative contribution. Here the powerstroke

involves a depolymerization event which unzips PFs and

moves the position of the last unbroken section of MT; a

new section takes on this identity when the previous one

unzips (contains separated, splayed protofilaments). As a

highly energetic powerstroke, this is assumed to occur

even when the ring is very close to the MT end, with a

rate that gives rise to a depolymerization velocity vps. The

sequence of microscopic PF unzippering events gives rise

to a well-defined velocity for the last fully intact MT section,

irrespective of the sequence in which the neighboring PFs

unzip, and the precise MT helicity. Critically, we also

assume that polymerized MT can be lost with a second

rate, giving a depolymerization velocity vbb, whenever the

ring has diffused a distance d from the end. This can be

thought of as the depolymerization velocity of a bare MT
because, in this case, there is no Dam1 ring anywhere on

the MT. We make no prior assumptions as to which contri-

bution dominates, rather we determine this by fitting the

parameters vbb, vps, and d to data for the variation of the

Dam1 velocity with load (12).

Our model involves a clear distinction between two mech-

anisms (only) and represents the simplest possible model

capable of explaining this data. It can be biophysically moti-

vated on the grounds that the Dam1 ring interacts with neigh-

boring tubulin and so the rate of PF unzippering at the MT

end should depend on how close the Dam1 ring is to the

end (a concept already introduced in (21)). In the section

below, we discuss this mechanism in terms of a putative

energy landscape for the depolymerization (unzipping) reac-

tion. We believe that it would be unjustified to postulate the

existence of any features on this energy landscape beyond

the minimum required to explain the data. This amounts to

a model involving two (distinct) depolymerization mecha-

nisms. Our results suggest that both mechanisms play impor-

tant roles at moderate loads. In particular, powerstroke-only

models are clearly inconsistent with the data showing a

velocity that is dependent on force (11,12), assuming a strong

power-stroke as previously measured of ~30–65 pN (24).

This is because, with a powerstroke-only model, we would

not expect the velocity of Dam1 ring to be significantly

slowed under a force as low as 2 pN; the data shows a signif-

icant slowing. We find that the length scale d controlling

burnt-bridge reactions, a free fit parameter, is close to the

axial length of a tubulin dimer. We speculate that this may

provide indication of cracklike splitting of the MT, as

discussed below.
MODEL

The Dam1 ring complex is reported to be capable of axial

movement with respect to the MT (10). Therefore, we treat

the Dam1 ring as a particle undergoing one-dimensional

Brownian motion in a potential V(x) (shown for two different

models in Fig. 1). The fully intact MT extends away from the

depolymerizing end for x > 0 and the point at which the MT

lattice unravels is x¼ 0 (see Fig. 1 A). The following Fokker-

Plank equation (28) determines the probability density f(x, t)
for the ring’s position relative to the (moving) end,

vf

vt
¼ D

v

vx

�
vf

vx
þ 1

kBT

vV

vx
f

�
; (1)

where D is the diffusion constant of the ring. This approach

is appropriate, providing the depolymerization velocity v of

the MT is not too fast (bounds given later in this section),

otherwise we must instead treat this as a full moving

boundary problem. Because the microtubule depolymeriza-

tion is here quasistatically slow with respect to the diffusive

relaxation of the ring, we can neglect the drag force on the

ring, except as discussed in Supporting Material.
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A B FIGURE 1 Two general classes of models of Dam1 ring-

microtubule coupling. In both cases, the force is Brownian

motion; that is, the ring diffuses to the right and the MT

happens to unzip one segment or it is driven to the right

by a powerstroke associated with unzipping. (Dotted line)

Point reached by MT unzipping (x ¼ 0). (A) The ring is

sterically confined to the MT by PFs (protofilament model).

(B) The ring is attractively bound to the MT surface with

a free energy of binding DG Dam1 (binding model). Below

each model, the potential profile V in which the ring

diffuses is shown as a function of the distance x of the

ring from the MT end, and a dotted line indicates the

connection between profile and model. The load force is

the slope of V(x) for x > 0. In panel A, there is a large (in-

finite) energy barrier preventing the Dam1 ring moving to

x< 0 whenever curled PFs are present. If the PFs completely

depolymerize, leaving a blunt end on the MT, this barrier

disappears. In panel B, the ring maintains only partial

contact as it slides off the end of the MT (–e< x< 0), which

results in a rise in energy until it finally loses contact and is

lost forever for x < –e. See text for details.

FIGURE 2 Schematic energy landscape underlying PF unzipping. The

proposed free energy F landscape of a tubulin dimer at the end of the MT

is shown (right) as a function of the distance of the Dam1 ring from the

MT end, x, and a reaction coordinate for the unzippering, the angle q moved

by the tubulin dimer (see diagram at left). The diagram is shown for illustra-

tive purposes only and is not quantified in this work. Here q ¼ 0 represents

a dimer in a linear PF incorporated into a stable MT. During unzippering,

q increases and the dimer moves out, ultimately forming the base of a splayed

PF. The unzippering is an activated process with an energy barrier (the

height of the ridge on the right) that is different for a powerstroke (x < d)

and a burnt-bridges reaction (x> d), leading to velocities vps and vbb, respec-

tively. The energy landscape must have at least these basic features to give

rise to the two depolymerization rates consistent with the data.
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In the following, we assume the Dam1 ring is sufficiently

stable that it can only dissociate by slipping off the tip. For

simplicity, we restrict our analysis to continuous depolymer-

ization processes only and discount the possibility of rescue

and polymerization. Although it would be straightforward to

include such processes, we believe that they would distract

from the central results of this article.

A force –vV/vx appears in Eq. 1. This is the magnitude of

the applied force f on the Dam1 ring while on the MT (x> 0)

because the ring must do work to move against this force.

Hence, from Eq. 1 it can be shown that, for constant (or

slowly varying) f, the probability distribution f(x) is of

Boltzmann form,

fðxÞ ¼ f

kBT
exp

�
� fx

kBT

�
; (2)

where the ring typically explores a characteristic diffusion

length l ¼ kBT/f from the MT end and positive values of f
here indicate loads pulling in the negative x direction (toward

the MT end). We assume that the depolymerization is quasis-

tatically slow. This is appropriate provided the time for the

MT to depolymerize the distance l is much larger than the

relaxation time for a ring to diffuse this distance. This in

turn requires l/v(f) >> l2/D. In this case, the distribution

of the ring position is always close to the equilibrium prob-

ability distribution that it would have on an MT that was not

depolymerizing. This sets an upper bound on the depolymer-

ization velocity, or equivalently a lower bound on the load

force, beyond which our theory is at best semiquantitative;

solving D/v(f) ¼ kBT/f with Eq. 4, we estimate these values

to be 500 nm/s and 0.04 pN, respectively. Under these condi-

tions, the average ring velocity is equivalent to the depoly-

merization velocity of the MT.
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Force-dependent depolymerization velocity

The powerstroke and burnt-bridge reactions can be thought

of as arising from transitions over an energy barrier of the

form shown in Fig. 2, where the free energy F of PF curling

is shown as varying with protofilament angle q and the

distance of the Dam1 ring from the MT tip x. The figure

shows only a putative schematic of the free energy of PF

curling reaction, and should not be confused with the poten-

tial V(x) in which the Dam1 ring diffuses.
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FIGURE 3 The variation of velocity of the Dam1 ring with applied load.

The velocity falls as the force increases, because the motion must increas-

ingly rely on the energetic powerstroke. Note that, although the graph

appears to suggest an absence of a stalling force, at significantly higher

forces the assumption of constant vps would fail and the ring would stall.

The curve is produced from the best-fit of d and vps in Eq. 4 and data

from Franck et al. (12).

Force Transduction by the Dam1 Ring 1601
PFs may produce a power stroke that pushes the ring with

force fpf, estimated from experimental evidence to be 30–65

pN (24). This is the slope down the descending valley, diag-

onally right to left, in Fig. 2. Provided that the load force

f<< fpf, the powerstroke will give rise to a depolymerization

velocity vps that is the rate at which the last intact dimer on

the MT crosses the highest part of the ridgelike energy

barrier in Fig. 2 (x < d). Because the estimate for fpf is so

much larger than any force considered here, it is reasonable

to make the limited assumption that vps is constant for all

experimentally measurable load forces of a few pN or less.

In addition, the MT can also depolymerize when the

Dam1 ring is further than a critical distance d from the end

of the MT. In this case the burnt-bridge reaction gives rise

to a depolymerization velocity vbb that is the rate at which

the last intact dimer on the MT crosses the lower part of

the ridgelike energy barrier in Fig. 2 (x > d). That the rate

of MT unzippering is retarded when the Dam1 ring is near

the MT end is a result of the fact that the velocity decreases

as the load force is increased and the ring is more often closer

to the MT end. Although it is not necessary to interpret our

model in terms of the Dam1 ring physically occluding the

unzippering of the tubulin dimers, this interpretation may

not be unreasonable, particularly in view of the fact that

we find d to be comparable with the axial length of the last

intact ring of tubulin dimers.

The resultant velocity due to both mechanisms is the sum

of the probability that the ring is close to the MT end x < d,

multiplied by the powerstroke velocity, and the probability

that it is far x > d, multiplied by the burnt-bridge velocity,

n ¼ nps

�
1�

RN

d
fðxÞ dx

�
þ nbb

RN

d
fðxÞ dx

¼
�
nbb � nps

�RN

d
fðxÞ dx þ nps:

(3)

The velocity follows from Eqs. 3 and 2,

n ¼
�
nbb � nps

�
exp

�
�f d

kBT

�
þ nps: (4)

The variation of this velocity with load is shown in Fig. 3

for vbb ¼ 580 nm/s (29), and the values vps ¼ 55 nm/s and

d ¼ 14 nm that correspond to the best fit to data (12).

Because a burnt-bridges-only model fails to fit the data suffi-

ciently (i.e., vps > 0) it suggests that a powerstroke plays a

role in forced Dam1 motion. It should be noted that, although

in this model v / vps as f / N, we do not suggest this is

a physical feature of the system. Rather it is the consequence

of the assumption that protofilaments are perfectly rigid and

the powerstroke reaction is asymptotically strong. Our model

would need modification for forces approaching fpf. As dis-

cussed later, PFs are estimated to require tens of pN to bend.

Two models for Dam1 ring retention

We now proceed to calculate the mean time the Dam1 ring

will remain on a MT and transduce force. (Note that recently
it has been discovered that the Dam1 oligomers track the tip

of depolymerizing MTs without forming a ring (30,31). It

seems unlikely that a protofilament model could operate

without a full ring; however, it is not known to what extent,

if at all, small oligomers contribute to force production.

Furthermore, it has been shown that 16–20 Dam1 complexes

are present at the kinetochore during metaphase (32), enough

to form the ring. We await the result of experiments where

tension is applied to putative Dam1 oligomers.) This time

is controlled by different physics in the protofilament and the

binding models, see Figs. 1 and 4. However, in both cases,

the velocity of the ring is governed by the model described

above (see Eq. 4).
Runtime: binding model

The binding model involves a ring diffusing on a MT accord-

ing to Eq. 1, leading to a depolymerization velocity as given

in Eq. 4. However, to detach from the MT end, the ring must

overcome a linear potential imposed by the Dam1-MT

binding energy DGDam1 as it slides off the end of the ring.

In this respect, it is similar to Hill’s model (6). Previous

models invoked a DGDam1 that also determined the rough-

ness of the energy landscape through linkers (20) whose

existence is supported by binding studies (30–33). Here we

don’t make this assumption; instead, DGDam1 could be due

to less specific interactions without significant energy

barriers between neighboring sites (34) but, importantly,

can vary independently of the diffusion constant D. This,

in turn, is fixed by the smoothness of the underlying energy

landscape experienced by the ring as it diffuses along the MT

(distinct from the energy landscape experienced by an unzip-

pering PF shown in Fig. 2). This model assumes that the
Biophysical Journal 98(8) 1598–1607
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FIGURE 4 Various sketches of a ring on a microtubule.

(A) In this configuration the ring is further than d from the

tip of the MT, so the MT depolymerizes with velocity vbb.

Unzipped protofilaments are shown dotted, as they do not

affect depolymerization. (B) In some other configuration,

the ring is closer to the tip than d, so the MT depolymerizes

with velocity vps. (C–F) Detachment mechanisms are

shown. This is either insensitive to PFs (C and D, binding

model) or sensitive to PFs (E and F, protofilament model).

In panels C and E, the ring has not yet escaped. In panels D

and F, the ring has escaped from the MT.
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splayed PFs play no role, either because they are transient

(rapidly breaking) or otherwise interact negligibly with the

ring as it slides off the end of the MT. Although clearly an

extreme approximation, it forms the natural opposite limit

to the protofilament model discussed in the next section.

Under a load force, the ring is in the well of a tick-shaped

potential with two linear domains (inset, Fig. 1 B). To

move to the left (toward negative x), it must partially unbind

from the MT; to move to the right (positive x), it must do

work against the applied force. The potential gradients

experienced by the Dam1 ring determine the load force f
(while on the MT, x > 0) and the resultant force fe (while de-

taching from the MT over the small distance, �e < x < 0).

The force on the ring, adopting a sign convention where

a positive force acts in the direction of positive x, is therefore

given by

�vV

vx
¼ �f xR0

fe ¼ DG Dam1

e
� f �e%x%0

;

�
(5)

where e is the unbinding region. If the ring is in the region

x < �e then it is lost, and if lost we assume it never

returns—hence, we have V / �N for x < �e.

Symmetry from electron microscopy (10) and copy

number (32) experiments suggest 16 complexes are required

to form the Dam1 ring; however, the total bond energy may

not be additive and this should therefore be regarded as an

extreme upper bound on the total binding energy.

The detachment of the ring can be cast as a classical

Kramer’s escape problem (35). To solve Eq. 1 with Eq. 5

we followed the method in the literature (36,37). In this

way we obtain the lifetime of the metastable state directly

from the Laplace-transformed version of Eq. 1, with initial

condition f(x, 0) ¼ d(x), where d(x) is the Dirac d-function,

although the precise form of this initial condition is unimpor-

tant. The mean time the ring remains on the MT is the

runtime t,

t ¼ ðkBTÞ2

Dfe

0
@e

fee
kBT � 1

f
�

e
fee

kBT þ fee
kBT
� 1

fe

1
A; (6)

where e is a small distance.
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Runtime: protofilament model

The protofilament model involves a ring diffusing on a MT

according to Eq. 1, leading to a depolymerization velocity

Eq. 4, as before. However, to detach from the MT end, the

ring has to wait until all protofilaments have broken (depoly-

merized), leaving a sufficiently blunt end to the MT for the

ring to simply slide off (see Fig. 1 A). We no longer require

the Dam1 ring to overcome a Dam1-MT binding energy.

Electron microscopy reveals that short, separated PFs splay

outwards at the depolymerizing MT end (18,19) and it is

quite plausible that these block the escape of the ring; the

elastic energy required to straighten a curled PF (38) follows

from measurements of their rigidity (39,40) and is of the

order of tens of kBT per subunit, i.e., very large.

The frayed PFs near the end of the MT are curved and

laterally separate. The unzipping (depolymerization) of the

MT lattice (see Fig. 1 A) is most accurately described as a

process which transfers length from the polymerized MT

into separated PFs. The unzipping is thought to be driven

by the stored elastic energy in the ab-tubulin units in the

lattice (41). When not constrained by lateral bonds, PFs relax

into a curved state. We model unzipping as a Poisson process

with rate kunzip. Each unzipping event extends every PF curl

by some microscopic, or subunit, length b, leading to a depo-

lymerization velocity v ¼ bkunzip. This microscopic length

might be the tubulin dimer repeat distance b, if the MT splits

between a particular pair of PFs, or otherwise smaller than

this. When the ring is within a small length, d unzipping

is inhibited. To more carefully analyze this process, note

that the time between unzipping events tunzip is an exponen-

tial random variable, with probability density function

punzip(t) ¼ kunzip exp(– kunzipt), and mean,�
tunzip

�
¼ 1

kunzip

¼ b

n
: (7)

The distribution of the ring position in this model follows

Eq. 2. Detachment occurs when all PF curl lengths reach

zero. (Note that extensions of our model to the case of

loosely-fitting rings are straightforward, involving attach-

ment whenever the PF curls exceed some finite length L.

Our results are qualitatively insensitive to this modification,
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provided the ring rarely detaches at low force. Furthermore,

for such rings the molecular length b becomes irrelevant, as

the characteristic timescale is L/v.) Because v is a function of

the applied force f, according to Eq. 4, htunzipi increases

under load. From Eq. 2, we have that the characteristic

distance of the ring from the tip is l ¼ kBT/f. The character-

istic time for the ring to diffuse this length and escape is

l2/D, which is <<htunzipi for typical parameters whenever

f > 0.15 pN (see Supporting Material). Thus, it is not unrea-

sonable to assume that the ring might disengage from the MT

extremely rapidly as soon as all curled PFs reach zero length.

We assume that tubulin subunits on the frayed PFs break

independently according to a Poisson process with rate

kbreak. The depolymerization of PFs then follows from the

loss of all PF material beyond the break, as in previous

computational models (42). A PF curl reaches zero length

if the axial bond nearest to the unzipping point breaks (see

Fig. 1 A). Because this occurs with a rate kbreak, the waiting

time tpf,i for PF curl i to break off completely is an exponen-

tial random variable. The wait time for all n PF curls

breaking is the order statistic tpf ¼ maxi tpf,i. The distribution

function for this time is Ppf(t) ¼ (1 – exp(– kbreakt))n and the

mean wait-time (see section 4.6 from (43) or (44)) is

�
tpf

�
¼
Xn

i¼ 1

�
tpf;i

�
n� i þ 1

¼ Hn

kbreak

; (8)

where

Hn ¼
Xn

i¼ 1
i�1

is the harmonic number, roughly log n for n >> 1, as can be

seen by converting the sum to an integral, and h$i denotes the

ensemble average. The Dam1 ring will therefore no longer

be secured to the MT-end and will detach after a time tpf,

provided that no unzipping events have taken place during

the time tpf. If the MT has unzipped, then the PFs extend

(from their base), effectively restarting the waiting process.

Fundamentally we are interested in the mean runtime t,

this being the time taken for the curled PFs to all depoly-

merize completely even while the MT is simultaneously

undergoing stochastic unzipping events. The value t can

be found by counting the number of unzipping events N
that occur before the PFs all successfully break and the

Dam1 ring can disengage. The value N is geometrically

distributed with mean hNi ¼ 1/Pdetach, with Pdetach the prob-

ability that the curled PFs depolymerize completely before

the next unzippering event. Thus,

t ¼
�
tunzip

�
Pdetach

: (9)

The ring detaches if the PFs break before an unzipping

occurs, i.e., with probability that tpf < tunzip,

Pdetach ¼
Z N

0

dt punzipðtÞ
Z t

0

ppf

�
t
0�

dt
0
; (10)
where ppf¼ dPpf/dt is the probability density function for tpf.

Evaluating the integral with respect to t0,

Pdetach ¼
Z N

0

PpfðtÞpunzipðtÞ dt

¼
Z N

0

ð1� e�kbreaktÞnkunzipe�kunzipt dt:

(11)

Binomially expanding the integrand, integrating term-by-

term and substituting back into Eq. 9, we obtain

t ¼ 1

kunzip

 Xn

j¼ 0

�
n
j

�
kunzipð � 1Þj

jkbreak þ kunzip

!�1

; (12)

where �
n
j

�
¼ n!=j!ðn� jÞ!:

Time-varying applied forces

We now consider an oscillating applied force of the form

f ðtÞ ¼ f0sin ut þ f1: (13)

Provided the period is sufficiently long, u�1 >> l2/D, our

quasistatic approximation for the ring position should give

an accurate estimate for its probability density f(x, t).
The depolymerization velocity will be retarded according

to Eq. 4, relating v to f(t).
Protofilament model under oscillating force

The probability that the MT does not unzip, in a time t after

the time at which the last unzipping occurred ~t, is

Punzip

�
t;~t
�
¼ 1� Punzip

�
t;~t
�
¼ exp

 
�
Z ~tþ t

~t

n
�
t
0�

b
dt
0

!
:

(14)

Because Eq. 14 depends explicitly on ~t, we perform an

average over ~t, appropriately weighted, to give the comple-

mentary distribution of times between unzipping events as

PunzipðtÞ ¼
Z 2p=u

0

Punzip

�
t;~t
�nð~tÞ
N b

d~t

¼
Z 2p=u

0

exp

 
�
Z ~tþ t

~t

n
�
t
0�

b
dt
0

!
nð~tÞ
N b

d~t

(15)

involving a normalization constant

N ¼
Z 2p=u

0

vð~tÞ
b

d~t:

To calculate the runtime as in Eq. 9, we first determine the

probability the unzip time exceeds the curled PF breaking

time:
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Pdetach ¼
Z N

0

dt punzipðtÞ
Z t

0

ppf

�
t
0�

dt
0

¼
Z N

0

dt
0
ppf

�
t
0�Z N

t
0

punzipðtÞ dt

¼
Z N

0

PunzipðtÞppfðtÞ dt:

(16)

The probability density of tpf is

ppfðtÞ ¼
d

dt
PpfðtÞ ¼

d

dt

�
1� e�kbreakt

�n

¼ nkbreake�kbreaktð1� e�kbreaktÞn�1
:

(17)

Finally the runtime is

t ¼
	
PdetachhkunzipðtÞi


�1

¼ 1

Pdetach

u

2p

Z 2p=u

0

b

nðtÞ dt;
(18)

where 1/Pdetach is the mean number of steps before detach-

ment.
Binding model under oscillating force

The generalization of Eq. 6 to the case of time-varying force

(Eq. 13) is straightforward,

t ¼ u

2p

Z 2p=u

0

ðkBTÞ2

Dfe

�
efee=kBT�1

f
�efee=kBT þ fee=kBT�1

fe

�
dt;

(19)

where f and fe are now time-dependent potential gradients,

according to Eq. 13 with Eq. 5.
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FIGURE 5 Runtime of the protofilament and binding models. The runtime

t of each model is calculated using the parameters fitted as described in Results

and Discussion. Although it may seem that distinguishing the models by

varying force is possible due to the differences among their predicted behavior,

as shown here, the difference is close to experimental error (56.15 s) and both

models present similar functional form. Only two data points with sufficient

statistics were available to perform this fitting (12), making it difficult to

draw any conclusions from this approach. The fit provides values for

DG Dam1 for the binding model and kbreak for the protofilament model.
RESULTS AND DISCUSSION

We identified the following parameters using data reported

in the experimental literature: vbb ¼ 580 nm/s (29) and

D ¼ 0.083 5 0.001 mm2 s�1 (10); for the protofilament

model we assume b ¼ 8 nm and n ¼ 13 to be typical.

Table 1 in Franck et al. (12) (see Table S1 in the Supporting

Material) lists velocities at f ¼ 0.5 pN and 2.0 pN. Using the

velocity data, we fit to obtain d ¼ 14 5 1.4 nm and vps ¼
55 5 9.3 nm/s. As has already been mentioned, the range

d is intriguingly close to a tubulin axial repeat length (8 nm

or 1.5 times this, due to helicity). A simple picture might be

of a sleeve that suppresses depolymerization while it sits

over the next intact tubulin dimers in the PFs that are about

to split. This supports the idea that the MT depolymerizes

by first splitting in a linear fashion, perhaps along its seam,

with the other PF pairs splitting apart somewhat behind this

leading cracklike defect. Indeed, materials do typically split

along linear cracks, where the elastic stresses are concen-

trated (45). In particular, splitting between random PFs would

yield step sizes that, due to helicity, could be a small fraction
Biophysical Journal 98(8) 1598–1607
of the tubulin size. It would be hard to physically motivate

a range d that is more than ten times the incremental depoly-

merization step size. Why would such a depolymerization

process, involving little or no motion of PFs >1 nm from

the last fully polymerized section of MT, be highly sensitive

to the presence of a Dam1 ring>10 nm distant? We therefore

consider our estimate of the characteristic range d for the

burnt-bridges reaction (within which the Dam1 ring occludes

unzipping) to be quite reasonable.

Combining the available data for velocity and detachment

frequency we find, on average, t ¼ 23.9 s and 12.2 s, for

f ¼ 0.5 pN and 2.0 pN, respectively. To fit the binding model

for t we choose e¼ 1 nm, as a reasonable distance over which

an attraction might act, and find DGDam1 ¼ 15 5 0.26 kBT.

Independently, we fit kbreak for the protofilament model and

find kbreak ¼ 7.1 5 0.63 s�1. Fitting these parameters to just

two data points does not provide strong evidence for these

particular values. However, uncertainty in the exact parameter

values should not detract from the main value of this work,

which is to provide a model that explains the Dam1 force sensi-

tivity and to distinguish between binding and protofilament

models. Comparison of the fit with data is shown in Fig. 5.

Variation of intrinsic depolymerization velocity

The protofilament model exhibits the most sensitivity to the

intrinsic (bare) MT depolymerization velocity vbb, as is

shown in Fig. 6 A. For the protofilament model, t is strongly

dependent on htunzipi and consequently vbb. The binding

model, on the other hand, is only weakly dependent on v
(Supporting Material), and on this range of vbb, we can

assume that depolymerization is quasistatically slow with



A B C FIGURE 6 Model discrimination.

The panels show variation of runtime

t with (A) bare MT depolymerization

velocity vbb, (B) diffusion coefficient

D, and (C) frequency of applied force

u/2p, for both models under load

f ¼ 0.45 pN, chosen because both

models predict the same nominal t

and v at this load (see Fig. 5). (A) The

runtime t increases exponentially with

vbb for the protofilament model,

whereas the binding model is insensitive. This is because the protofilament model directly depends on v, but the binding model does not. (B) Restricted diffu-

sion suppresses detachment for the binding model because t is inversely related to D, due to the reduced impetus to escape the potential barrier. The protofila-

ment model, on the other hand, is not affected by D, as tunzip is independent of D. Distinguishing between models will be easiest by experimental reduction of

D, for example by attachment of a long polymer. (C) The binding model is sensitive only to the amplitudes f0 (here 0.1 pN) and f1 (here 0.43 pN), not the

frequency u. The rate of detachment for the protofilament model instead strongly depends on the frequency: roughly speaking, the ring is lost more quickly

when the high-force part of the cycle persists for long enough for the PFs to completely depolymerize in this time (i.e., when the period is long).
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respect to ring diffusion. The result can be understood

physically by realizing that as vbb increases, the rate of PF

unzipping kunzip also increases, while kbreak remains

constant—making it less likely that the PFs will break off

sufficiently quickly to release the ring.

An experimental test that might be able to distinguish

which model operates could be achieved, e.g., by addition

of a depolymerization inducing agent, such as Ca2þ or

XMCAK1.

Changing of diffusion coefficient

The diffusion constant D of the ring is determined by the

ring’s dimensions and the roughness of the binding energy

landscape along the MT, rather than the magnitude of the

binding energy itself. A more rough landscape reduces the

mobility of the ring. Fig. 6 B shows the effect of the diffusion

constant on the runtime for both models. Only the binding

model is sensitive to change in D, having reduced runtime

with faster diffusion. This is because the increased mobility

of the ring increases the chance it is able to scale the potential

barrier constraining it to the MT.

Although it may be possible to alter D biochemically,

for example by phosphorylation (30), it is difficult to do so

independently of DGDam1. Decreasing D may be better

accomplished by attaching a long inert polymer to the

complex to increase viscous drag.

Effect of time-varying loading force

The runtime in the binding model is sensitive only to the

instantaneous force, provided 2p/u >> l2/D (see the low

frequency portion of Fig. 6 C). If f1 ¼ 1 pN, then 2p/umax

is ~1 kHz. The runtime in the protofilament model is sensi-

tive to the time over which changes in v persist. If the force

is oscillating with a long period, then the rate of detachment

will be greater in the high-force part of the cycle than if the

period is short. This is because the Dam1 ring takes some

time to detach if it needs to first wait for the PF curls to break

(see Fig. 6 C). Sigmoidal increase of t would be a signature
of a system that depends on a second time (1/kbreak), like the

protofilament model; insensitivity of t to frequency would

imply a binding-style coupling.
CONCLUSION

Our results indicate a power stroke does contribute to the

effective force generated during depolymerization but only

becomes dominant at >2 pN load. We show how a faster

depolymerization mechanism must operate at lower loads

and argue that the Dam1 ring suppresses depolymerization

when it is close to the MT end.

We have shown that either of two rather different

Dam1-MT coupling mechanisms might be operating under

picoNewton loads. Both models have comparable perfor-

mance under load; their differences only become apparent

under novel experimental conditions. Structural studies

cannot resolve the question of which model operates

in vivo. We suggest several methods for using runtime statis-

tics to determine which class of model best describes the

coupling of the Dam1 ring to depolymerizing MTs. Note

that throughout this study we have assumed that depolymer-

ization is sufficiently slow compared to ring diffusion that

we can consider the distribution of the ring’s position to be

quasiequilibrated. Over the range of parameters, we have

considered this assumption is valid to within 1% of the pre-

dicted velocity. The characteristic range over which Dam1

inhibits depolymerization can be estimated by comparing

our model with data. It is intriguingly close to the size of the

microscopic (tubulin) repeat length of the MT. We have

argued that this provides evidence that the MT is splitting,

possibly along its seam, at the leading-edge of the depolymer-

ization front. In this case, the PFs move outwards at a similar

distance from each other along the MT from the last polymer-

ized section.

It is important to note that this work has neglected in vivo

factors such as microtubule-associated proteins or kinases.

However, some of these factors operate to increase or reduce

the depolymerization rate of the microtubule, a parameter
Biophysical Journal 98(8) 1598–1607
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included in the model. We therefore expect the general

results to remain largely applicable. Furthermore, we have

assumed Dam1 to be present as a ring. Recent work

(30,31) has raised the possibility that Dam1 may operate as

short oligomers or single complexes. If we can assume these

oligomers interact with PFs in a fashion comparable to that

of a ring, our model would be indistinguishable for rings

or oligomers. If not, our model may be of use to determine

whether ring or oligomer is present based on, e.g., differing

diffusion constants.
SUPPORTING MATERIAL

One figure and one table are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(10)00094-9.

The authors thank George Rowlands and Jonathan Millar for useful discus-
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