
1418 Biophysical Journal Volume 98 April 2010 1418–1427
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
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ABSTRACT We study the stochastic dynamics of growth and shrinkage of single actin filaments taking into account insertion,
removal, and ATP hydrolysis of subunits either according to the vectorial mechanism or to the random mechanism. In a previous
work, we developed a model for a single actin or microtubule filament where hydrolysis occurred according to the vectorial
mechanism: the filament could grow only from one end, and was in contact with a reservoir of monomers. Here we extend
this approach in two ways—by including the dynamics of both ends and by comparing two possible mechanisms of ATP hydro-
lysis. Our emphasis is mainly on two possible limiting models for the mechanism of hydrolysis within a single filament, namely the
vectorial or the random model. We propose a set of experiments to test the nature of the precise mechanism of hydrolysis within
actin filaments.
INTRODUCTION
Actin monomers polymerize to form long helical filaments,

by addition of monomers at the ends of the filament. The

two ends are structurally different. The addition and removal

of subunits at one end, the barbed end, are substantially faster

than at the other end, the pointed end. In an equilibrium poly-

mer, the critical concentration at which the on- and off-rates

are balanced must be the same at both ends for thermody-

namic reasons (1). However, actin is not an equilibrium

polymer, it is an ATPase, and ATP is rapidly hydrolyzed

after polymerization. Due to this constant energy consump-

tion, the actin polymer exhibits many interesting nonequilib-

rium features; most notably, it is able to maintain different

critical concentrations at the two ends (2). This allows the

existence of a special steady state called treadmilling, charac-

terized by a flux of subunits going through the filament,

which has been observed with actin as well as with microtu-

bules filaments (3).

The precise molecular mechanism of hydrolysis in actin

has been controversial for many years. For each of the two

steps involved in the hydrolysis (the ATP cleavage and the

Pi release), the possibility of the reaction occurring either

at the interface between neighboring units carrying different

nucleotides or at random location within the filament can be

invoked. The vectorial model corresponds to a limit of infin-

ite cooperativity in which the hydrolysis of a given monomer

depends entirely on the state of its neighbors, and the random

model is a model of zero cooperativity in which the hydro-

lysis of a given monomer is independent of the state of its

neighbors. In between these two limits, models with a finite

cooperativity have been considered (4,5). For instance for
Submitted July 30, 2009, and accepted for publication December 15, 2009.

*Correspondence: ranjithp@iitb.ac.in

Padinhateeri Ranjith’s present address is Department of Biosciences and

Bioengineering, Indian Institute of Technology Bombay, Mumbai

400 076, India.

Editor: Alexander Mogilner.

� 2010 by the Biophysical Society

0006-3495/10/04/1418/10 $2.00
microtubules, a direct evidence for a cooperative mechanism

was brought recently by Dimitrov et al. (6), who observed

GTP-tubulin remnants using a specific antibody.

Several groups have emphasized the process of random

cleavage followed by random Pi release (7,8). By studying

the polymerization of actin in the presence of phosphate,

Fujiwara et al. (2) argued that the crucial step of release of

the phosphate is not a simple vectorial process but is prob-

ably cooperative. Because this release of phosphate is

slow, the delay between the completion of hydrolysis and

the polymerization can lead to overshoots which indeed

have been observed in fluorescence intensity measurements

of pyrene-labeled actin during rapid polymerization as dis-

cussed in Brooks and Carlsson (9). At the single filament

level, the dynamics of depolymerization is also very inter-

esting. The study of this dynamics provides insights into

the underlying mechanism of hydrolysis in actin as discussed

recently in the literature (5,10).

Although decades of work in the biochemistry of actin

have provided many details on the kinetics of self-assembly

of actin in the absence and in the presence of actin binding

proteins, it is difficult to capture the complexity of this

process without a mathematical model to organize all this

information. To this end, we have studied a nonequilibrium

model for a single actin or microtubule filament (11) based

on the work of Stukalin et al. (12). In this model, the hydro-

lysis of subunits inside the filament is a vectorial process, the

filament is in contact with a reservoir of monomers, and

growth occurs only from one end. We have analyzed the

phase diagram of that model with a special emphasis on

the bounded growth phase, and we have discussed some

features of the dynamic instability. Our approach differs

from previous work on the dynamic instability of microtu-

bules in the following way: the model is formulated in terms

of rates associated with monomer addition/removal and

hydrolysis rather than in terms of phenomenological param-

eters such as the switching rates between states of growth
doi: 10.1016/j.bpj.2009.12.4306

mailto:ranjithp@iitb.ac.in


Actin Dynamics 1419
and collapse, as done in the literature (13,14). This should be

a definite advantage when bridging the gap between the theo-

retical model and experiments.

The work of Flyvbjerg et al. (14) has inspired a number of

other theoretical models, based on a microscopic treatment

of growth, decay, catastrophe, and rescue of the filament:

see, in particular, Zong et al. (15), Antal et al. (16,17), and

Sumedha et al. (18), which analyze several aspects of the

dynamic instability of microtubules using analytical and

numerical methods.

In this article, we present a model for a single actin fila-

ment which accounts for the insertion, removal, and ATP

hydrolysis of subunits at both ends. It extends our previous

work (11) in several ways: first by including the dynamics

of both ends and secondly by carrying out simulations for

both mechanisms of hydrolysis—vectorial and random. In

the next section, we present the first extension due to the

inclusion of both ends, and following that, we study the

two versions of the model for the hydrolysis within the fila-

ment. In the final section, we examine transient properties of

a single filament using numerical simulations and we show

that for these transient properties, the vectorial and random

models lead to distinct behaviors. This suggests experiments

that would allow us to discriminate between the two models.
VECTORIAL MODEL OF HYDROLYSIS
WITH ACTIVITY AT BOTH ENDS

ATP hydrolysis is a two-step process: the first step is the

ATP cleavage which produces ADP-Pi, and is rapid. The

second step is the release of the phosphate (Pi), which leads

to ADP-actin, and is, by comparison, much slower (19).

ADP-Pi-actin and ATP-actin have similar critical concentra-

tions but they are kinetically different species, since they

have different on- and off-rates as shown in Fujiwara et al.

(2). Nevertheless, from a kinetic point of view, the slow

step of release of the phosphate is the rate-limiting essential

step. This suggests that many kinetic features of actin poly-

merization can be explained by a simplified model of hydro-

lysis, which takes into account only the second step of hydro-

lysis and treats actin subunits bound to ATP and actin

subunits bound to ADP-Pi as a single species. This is the

assumption of Stukalin and Kolomeisky (12), which we

have used in our previously published study (11) as well

as in this work. In other words, what is meant by hydrolysis

in all these references is the step of Pi release. In this section,

we assume that this release of Pi is a vectorial process

described as a single reaction with rate R.

Let us recall the main features of the phase diagram of our

previous model which assumes that only one end is growing.

The model has three different phases: two phases of un-

bounded growth and one phase of bounded growth. In one

phase of unbounded growth (phase III), both the cap and

the bulk of the filament are unbounded. In this rapidly

growing phase, the filament is essentially made of unhydro-
lyzed ATP-actin monomers. In the intermediate phase of

unbounded growth (phase II), the cap length remains con-

stant as a function of time whereas the length of the filament

grows linearly with time. Finally, in the phase of bounded

growth (phase I), both cap length and filament length remain

constant on average. This phase is characterized by a finite

average length hli and by a specific length distribution of

the filament which were calculated in Ranjith et al. (11).

The phase of unbounded growth is frequently observed

with actin, whereas the intermediate phase only exists as a

steady state in a small interval of concentration of actin

monomers near the critical concentration. The intermediate

phase can, however, be observed outside this interval in a

transient way, by forcing filaments to depolymerize through

a dilution of the external medium. The phase of bounded

growth of a single filament growing from one end only,

has not been observed experimentally so far with actin, but

it has been observed and is well known in microtubules

(13,14).

We now extend the single-end model by including

dynamics at both the ends. We keep, as before, the assump-

tion of vectorial hydrolysis, which means that there is a single

interface between the ATP subunit and ADP subunits, and

the assumption of a reservoir of free ATP subunits in contact

with the filament. The addition of ATP subunits occurs with

rate U at the barbed end, and the removal of ATP subunits

occurs with rate WT
þ at the barbed end and with a rate

WT
– at the pointed end. The removal of ADP subunits occurs

at the barbed end only if the cap is zero, with rate WD
þ. At

the pointed end, ADP subunits are removed with a rate

WD
–. Note that we neglect the possibility of addition of

ATP subunits at the pointed end; this assumption is not

essential, but it simplifies the analysis.

In Figs. 1 and 2, all the moves discussed above have been

represented. Furthermore, we have assumed that all the rates

are independent of the concentration of free ATP subunits C
except for the on-rate which is U ¼ k0C. All the rates of this

model have been determined precisely experimentally except

for R. The values of these rates are given in Table 1.

The state of the filament can be represented in terms of n,

the number of ADP subunits, and k, the number of ATP sub-

units. The dynamics of the filament can be mapped onto that

of a random walker in the upper-quarter plane (n, k) with the

specific moves as shown in Fig. 1. We find the following

steady-state phases (see the Appendix for details): a phase

of bounded growth (phase I), and three phases of unbounded

growth (phases IIA, IIB, and III). The phase of bounded

growth (phases I) and the phase of unbounded growth with

unbounded cap (phase III) are similar to the corresponding

phases in Ranjith et al. (11). In the phase IIA, similar to

the phase II of that reference, the filament is growing linearly

in time, with a velocity vIIA but the average cap length

remains constant in time. In the new phase IIB, the filament

is growing linearly in time, with a velocity vIIB but there is

a section of ADP subunits which remains constant in time
Biophysical Journal 98(8) 1418–1427
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FIGURE 1 Schematic diagram representing the addition of subunits with

rate U, removal with rates WT
þ, WT

–, and WD
þ, and hydrolysis with rate R,

which can only occur at the interface between T and D monomers in the

vectorial model. Note that two new rates WT
– and WD

– have been added

as compared to Ranjith et al. (11).

TABLE 1 Various rates used in the model and corresponding

references

Parameter Symbol Value Ref.

On-rate of T subunits at the barbed end k0 (mM–1 s–1) 11.6 (1,12)

Off-rate of T subunits at the barbed end WT
þ(s–1) 1.4 (1,12)

Off-rate of T subunits at the pointed end WT
–(s–1) 0.8 (1,12)

Off-rate of D subunits at the barbed end WD
þ(s–1) 7.2 (1,12)

Off-rate of D subunits at the pointed end WD
–(s–1) 0.27 (1,12)

Hydrolysis rate (vectorial model) R (s–1) 0.1–0.3 (12)

Hydrolysis rate (random model) r (s–1) 0.003 (7,9,12)

The condition is that of a low ionic strength buffer.
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near the pointed end (this is analogous to the cap of ATP

subunits near the barbed end in phase IIA). These dynamical

phases are shown in a phase diagram in Fig. 3.

This phase diagram can be understood from the random

walk representation of Fig. 1. The velocity of the random

walker in the bulk has components vn ¼ (R – WD
–)d along

the x axis and vk ¼ (U – WT
þ – R)d along the y axis, where

d is the subunit size. Depending on the signs of these

quantities, four cases emerge. If vn > 0 and vk > 0, both

the filament and cap length increase without bound; this

corresponds to phase III. If vn < 0 and vk < 0, both the

filament and cap length stay bounded and we have phase I.

If vn > 0 and vk < 0, the cap length remains constant in

time, but the rest of the filament made of D subunits can

be either bounded (then we are again in phase I) or un-

bounded (and we are in phase IIA). Similarly, if vn < 0

and vk > 0, the length of the region of D subunits at the

pointed end remain constant in time, but the region of T

subunits can be either bounded (phase I) or unbounded
FIGURE 2 Representation of the various possible moves for actin

dynamics. Cases i–iii depict different cases for vectorial hydrolysis. Cases

iv and v depict cases for random hydrolysis.
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(phase IIB). In phase IIA, the probability of finding a nonzero

cap,

q ¼ U

W þ
T þ R

; (1)

is finite, and the average filament velocity is (see the

Appendix)

vIIA ¼
�
U �W þ

T q�W þ
D ð1� qÞ �W�

D

�
d: (2)

At the critical concentration c ¼ cA, vIIA ¼ 0 and this marks

the boundary to phase I. We find that

cA ¼
�
W þ

D þ W�
D

�
k0

�
W þ

T þ R

W þ
D þ R

�
; (3)

which is always larger than the critical concentration of the

barbed end alone. In region III, the velocity is still given by

vIII ¼
�
U �W þ

T

�
d: (4)

Similarly, in phase IIB, the probability of finding a nonzero

region of D-subunits ~q ¼ R=W�D is finite, and the average

filament velocity is
FIGURE 3 Theoretical phase diagram for the vectorial model with two

ends in the variables hydrolysis rate R and on-rate U. The line OQ is

obtained by setting the cap velocity equal to zero, and the line OP is given

by the condition vIIA¼ 0 where vIIA is the velocity in phase IIA calculated in

Eq. 2. Similarly, the line OR is given by the condition vIIB ¼ 0, where vIIB is

the velocity in phase IIB given in Eq. 5.
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vIIB ¼
�
U �W þ

T �W�
T

�
1� ~q

�
�W�

D ~q
�
d; (5)

which vanishes when c ¼ cB at the boundary with phase I,

with

cB ¼
1

k0

��
W�

T �W�
D

��
1� R

W�
D

�
þ
�
W þ

T þ W�
D

�	
: (6)

Note that WT
– does not enter in vIIA, because the hydrolyzed

part of the filament is always infinitely large in this case, in

contrast to the case of vIIB, which depends on both WT
– and

WD
–. Note also that the velocity vIIA and vIIB are sums of a

contribution due to the barbed end and a contribution due

to the pointed end. This is because in all growing phases,

the filament is infinitely long in the steady state, and there-

fore the dynamics of each end is independent of the other.

In Fig. 4, all the velocities computed from Eqs. 2, 4, and 5

have been plotted.

Length fluctuations of the filament are characterized by a

diffusion coefficient which is defined in the Appendix.

Because the dynamics of each end is independent in phase

IIA, the diffusion coefficient of this phase DIIA is the sum
FIGURE 4 Filament velocity v versus concentration of free monomers

C for the vectorial model with two active ends. (a) Case R > WD
– for

R¼ 0.3. In regions I and IIA, v¼ vIIA, where vIIA is given by Eq. 2. In region

III, v¼ vIII, where the velocity is that of Eq. 4. (b) Case R<WD
– for R¼ 0.2.

Here v ¼ vIIB where vIIB is given by Eq. 5.
of a contribution from the barbed end and another from the

pointed end. From Ranjith et al. (11) we obtain

DIIA ¼
d2

2

�
U þ W þ

T q þ W þ
D ð1� qÞ

þ
2
�
W þ

D �W þ
T

��
U þ W þ

D q
�

W þ
T þ R

þ W�
D

	
; (7)

where (WD
–d2)/2 is the contribution of the diffusion coeffi-

cient due to the pointed end. A similar expression can be ob-

tained for DIIB.

On the boundary lines c ¼ cA and c ¼ cB, the average fila-

ment velocity vanishes. At this point, the addition of subunits

at the barbed-end exactly compensates the loss of subunits at

the pointed-end. Such a state is well known in the literature as

treadmilling (21). There, the length diverges as –DIIA/vIIA

near c ¼ cA and similarly as –DIIB/vIIB near c ¼ cB as shown

in Fig. 5, where DIIA and DIIB are diffusion coefficient in

phases IIA and IIB. That divergence is a consequence of the

assumption that the filament is in contact with a reservoir of

monomers; in experimental conditions, the maximum length

is fixed by the total amount of monomers. In the bulk of phase

I, the average velocity is zero due to a succession of collapses

and nucleations of a new filament. In this phase, there is

a steady state with a well-defined treadmilling average length.

As mentioned above, because the two ends are far from

each other in the growing phases, they can be treated inde-

pendently. In the phase of bounded growth (phase I),

however, where the filament length reaches zero occasion-

ally, the two ends are interacting strongly. For this reason,

a precise description of the phase of bounded growth is

more difficult (see the Appendix). Because of this, we

have computed numerically the average length in Fig. 5 as

function of the free monomer concentration. In this figure,

we compare the case of the filament with two ends to the

case with one end only. We see that there is a small increase
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FIGURE 5 Average length as function of concentration. (Solid circles)

WT
– ¼ 0.8 and WD

– ¼ 0.27; (open circles) WT
– ¼ 0 and WD

– ¼ 0.27;

(open squares) WT
– ¼ 0.8 and WD

– ¼ 0; and (solid squares) WT
– ¼ 0 and

WD
– ¼ 0. The rates which are not specified here are given in Table 1. The

solid line is DIIA(c ¼ cA)/vIIA.
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in the critical concentration where the length diverges and a

corresponding lowering of the average length due to the

inclusion of both ends in the model. This effect is correctly

captured by Eqs. 3–6. Note that although there are large

length fluctuations in phase I, the diffusion coefficient DI

as defined in the Appendix is zero in phase I, because these

fluctuations do not depend on time.
FIGURE 7 Velocity versus free monomer concentration. The square

symbols are experimental data of Carlier et al. (22), which were themselves

taken from Carlsson (32); the solid lines is the velocity for the random model

as calculated from the theory presented in the Appendix; and the plus

symbols indicate the velocity for the vectorial model using rates in Table 1,

except for R ¼ 0.12 s–1 and WD
þ ¼ 6.7 s–1.
HYDROLYSIS WITHIN THE FILAMENT:
A VECTORIAL OR RANDOM PROCESS?

Growth velocity

As explained earlier, we have used a simplified model for

hydrolysis (12), in which the first step of hydrolysis is

absent. The only remaining step, the phosphate release, is

assumed to be a vectorial process. In the following, we

keep this assumption, but we compare the two limiting

mechanisms for the phosphate release, namely the vectorial

and the random processes. All the rates have the same

meaning for both models, except for the hydrolysis rate

which is denoted R in the vectorial model and r in the

random model.

We have compared experimental data from Carlier et al.

(22) together with the two theoretical models, vectorial and

random. Both models successfully account for the observed

sharp bend in the velocity versus concentration plots

observed near the critical concentration as shown in Figs. 6

and 7. Below the critical concentration, the velocity is nega-

tive for depolymerizing filaments and it is the velocity of

phase II, as phase II extends transiently below the critical

concentration.

Note that the velocities of both models superimpose,

which means that bulk velocity measurements do not allow

us to discriminate between these models. Irrespective of

the actual hydrolysis (phosphate release) mechanism, a fit

of this data provides a bound on the value of the hydrolysis
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FIGURE 6 Phase diagram of the random hydrolysis in the coordinate

on-rate U versus hydrolysis rate r (per site). The symbols have been obtained

from Monte Carlo simulations, whereas the solid line is the mean-field

theory of the Appendix. For r ¼ 0, we recover the value of U corresponding

to the critical concentration of the vectorial model.
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rate in the vectorial model R, which is not accurately deter-

mined experimentally. This parameter, was roughly esti-

mated in Stukalin and Kolomeisky (12) to be 0.3 s–1 based

on measurements of Pi release by Melki et al. (23). The

measured hydrolysis rate was multiplied by a typical length

to get the estimate for R. Our fit of the data of Pantaloni et al.

(24) gives R ¼ 0.1 5 0.12 s–1. This is the value which we

have used for later comparison.

In Fig. 6, the phase diagram of the random hydrolysis

model is shown. This phase diagram has only two phases

in contrast to the vectorial case, because it can be shown

that the average of the total amount of ATP subunits hki is

always bounded in the random model. Thus phase III is

absent in the random model. In the Appendix, we present

details about the derivation of the mean-field equations for

the random model (25,26). An analytical expression for the

phase boundary between phase I and II is obtained, which

corresponds to the solid line in Fig. 6 and which agrees

well with the Monte Carlo simulations.

Length diffusivity

Length fluctuations are quantified by the length diffusivity,

also called diffusion coefficient D, which is defined in

Eq. 18. The length diffusivity of single filaments has been

measured using TIRF microscopy by two groups (27,28).

Both groups reported rather high values, of ~30 monomer2/s.

This value is high when thinking in terms of the rates of

assembly and disassembly measured in bulk (29,30). From

such bulk measurements, one could have expected a length

diffusivity at the critical concentration of 1 monomer2/s, an

order-of-magnitude smaller than observed in single filament

experiments.

Several studies have been carried out to explain this

discrepancy: Vavylonis et al. (7) computed the diffusion
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coefficient D as a function of ATP monomer concentration

and found that D is peaked just below the critical concentra-

tion and its maximum is comparable to the value observed in

experiments (z30 monomer2/s). Stukalin et al. (12) ob-

tained from an analytical model the same large values for

D (z30 monomer2/s) just above the critical concentration.

Recently, Fass et al. (20) studied the length diffusivity

numerically taking into account filament fragmentation and

annealing, within the vectorial model. They found that

high length diffusivity at the critical concentration cannot

be explained by fragmentation and annealing events unless

both fragmentation and annealing rates are much greater

than previously thought. In the limit where their fragmenta-

tion rate goes to zero, they recover the results of Vavylonis

et al. (7). Others have proposed that the discrepancy in diffu-

sivity may be related to experimental errors in the length of

the filament due to out-of-plane bending of the filaments (M.

F. Carlier, CNRS, France, private communication, 2009).

According to Stukalin et al. (12) and Vavylonis et al. (7),

the large length diffusivity observed in experiments results

from dynamic instability-like fluctuations of the cap. It is

important to point out that both articles make very different

assumptions: the first one describes hydrolysis as a single

step corresponding to Pi release with the vectorial mecha-

nism; the second one describes both steps as random

processes.

We have shown in Fig. 8 the concentration dependence

of D for the vectorial model using analytical expressions

provided in the Appendix and similar to that of Ranjith

et al. (11) and Stukalin and Kolomeisky (12). In this figure,

the critical concentration defined as the boundary between

phases I and II almost coincides with the concentration at

the boundary between phases II and III; both are of the order

of 0.14 mM. Above this value, D is indeed small—the ex-

pected estimate of 1 monomer2/s is indeed recovered there
FIGURE 8 Diffusion coefficient as function of the monomer concentra-

tion for the random and vectorial model of hydrolysis. The data points are

the prediction for the random model of hydrolysis whereas the solid lines

are the predictions for the vectorial model. The dashed (respectively,

dash-dotted) vertical line represents the critical concentration for the vecto-

rial (respectively, random) model.
because the contribution of hydrolysis is negligible. Near

the critical concentration, however, the fluctuations are

much larger, essentially for the same reason that leads to

large fluctuations near critical points in condensed matter

systems (31). Here, hydrolysis, known to destabilize fila-

ments, has a larger effect. It leads to large fluctuations of

the cap, and ultimately to a large length diffusivity. Note

that the region below the critical concentration corresponds

to the transient extension of phase II discussed in the

previous section. If the fluctuations were probed there for

a very long time, one would find D ¼ DI ¼ 0, characteristic

of phase I.

In Fig. 8, we have compared these analytical results

obtained for the vectorial model with numerical results

obtained for the random model. In the random model, we

use Monte Carlo simulations to calculate a time-dependent

diffusion coefficient D(t), defined as

DðtÞ ¼ 1

2

d

dt

�

l2
�
� hli2

�
:

For concentrations larger than the critical concentration, the

initial condition is l(t ¼ 0) ¼ 0, whereas for concentrations

smaller than the critical concentration, the initial condition

was a very long filament (l(t ¼ 0) > 106 subunits) with all

subunits in the hydrolyzed state. On a large time window,

we find that D(t) is approximately time-independent, and

we interpret that value as the length diffusivity of the random

model. Our results fully agree with that of Vavylonis et al.

(7), and with that of Fass et al. (20) in the limit of zero

fragmentation rate. The length diffusivity indeed reaches a

maximum of ~30 monomer2/s below the critical concentra-

tion. As shown in that figure, there is only a small difference

of length diffusivity in the vectorial case as compared to the

random case: the maximum of the curve for the random

model occurs at a smaller concentration than in the vectorial

model. The fact that we are able to reproduce a similar curve

to that shown in the literature (7,20) justifies our simplifying

assumption of describing the hydrolysis as a single step asso-

ciated with the release of phosphate (rather than taking into

account the two steps as performed in (7,20)). More impor-

tantly, it confirms the idea that the length diffusivity of actin,

near critical concentration, is dominated by a process similar

to the dynamic instability, which is essentially captured by

the vectorial model.

To make further progress, it would be very useful to repro-

duce experiments similar to those of Fujiwara et al. (27), on

single filaments for various monomer concentrations, to

confirm the scenario presented above for the length fluctua-

tions of actin. Given that the predictions of the random and

vectorial model are rather close to each other as shown in

Fig. 8, it is likely that it will be difficult to distinguish

between these models from measurements of the con-

centration dependence of the length diffusivity. The length

diffusivities of the two models are very close to each

other because a very small value of the hydrolysis rate r
Biophysical Journal 98(8) 1418–1427
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(as estimated from experiments) has been used. We have

observed that if this parameter had a larger value than refer-

enced here, the predictions of the vectorial and random

model would differ far more.
DYNAMICS OF THE FILAMENT IN TRANSIENT
REGIMES

Because it appears difficult to distinguish the vectorial from

the random model using measurements of growth velocity

or length diffusivity, one can turn to an analysis of the

dynamics of the filament length in polymerization (27) or

in depolymerization (5,10) to discriminate between the two

models. Here, we focus on the dynamics of polymerization

of a single filament, in the presence of a constraint of conser-

vation of the total number of subunits (freeþpolymerized).

This constraint leads to a steady state with a constant average

length for the filament. We compare the time it takes for the

filament to be fully hydrolyzed to the time that it takes to

reach the steady-state length. We also discuss the corre-

sponding length fluctuations as a function of time. We argue

that both measurements (the lag time of hydrolysis and the

time-resolved fluctuations) can distinguish between the two

mechanisms of hydrolysis.

In Fig. 9, we show the filament length as well as its vari-

ance, as a function of time, for both vectorial and random

models. Using Monte Carlo simulations we computed l(t),
starting from l(t ¼ 0) ¼ 0, for 1000 different realizations

and calculated s2(t) ¼ hl2i – hli2. Concerning the lag time

of hydrolysis, we have observed that in simulations of the
FIGURE 9 (a and b) Total filament length (denoted l, solid), and total

amount of hydrolyzed subunits (denoted n, shaded) as function of time

for the case of vectorial hydrolysis (left panel) and random hydrolysis (right

panel) (the total concentration of subunits cT ¼ 0.7 mM; one filament in a

volume of 10 (mm)3). Note that the point where the two curves meet in

the random hydrolysis model occurs much earlier compared to the case of

vectorial hydrolysis (z10,000 s). (c and d) The variance (s2 ¼ hl2i – hli2)

as a function of time is plotted for the vectorial model and random model,

respectively.
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vectorial model, the filament typically reaches its steady-

state length long before it has been completely hydrolyzed.

The time when this happens corresponds to the point where

the two curves meet in Fig. 9 a. This characteristic time,

because only one end is involved, is tH x hli/R, where R
is the hydrolysis rate in the vectorial model (11). From the

figure we find that tH x 3500/0.3 x 11,000 s x 180 min

(with R x 0.3, which is much longer than the typical time

to reach the steady state tSS x hli/v x 3500/(11.6 � 0.7 �
1.4) ¼ 520 s. In contrast to this, in the random model, the

time for completion of hydrolysis is comparable to the

time to reach steady state (see Fig. 9 b) as both the filament

and the ADP part have similar growth dynamics.

In practice, this lag time of hydrolysis may be difficult to

measure on single filaments as the ATP subunits and ADP

subunits cannot be distinguished easily experimentally. In

view of the previous section, on the role of ATP hydrolysis

in length diffusivity, we suggest to study instead the length

fluctuations of the filament as a function of time. Such a

quantity is accessible from image analysis of single fila-

ments with TIRF, for instance. We have simulated the

variance of the length fluctuations s(t)2 ¼ hl(t)2i – hl(t)i2
as function of time, for the vectorial model and random

model, as shown in Fig. 9, c and d, respectively. At early

times, this variance is linear in time, and the slope corre-

sponds to the length diffusivity discussed in previous

section, because the constraint of conservation of monomers

plays no role at short times. Once the steady state has been

reached, we find that the variance of the vectorial model

shows a sharp increase when t R tH, whereas the variance

of the random model shows no significant change. The

approximately constant variance of the random model is

intermediate between the variance of the vectorial model

before and after the jump.

Thus, contrary to velocity and length diffusivity measure-

ments, an analysis of either the lag time of hydrolysis or of

the time dependence of the length fluctuations provide a

direct signature of the underlying mechanism of hydrolysis.
CONCLUSION

In this article, we have analyzed several aspects of the

dynamics of a single actin filament. Many results discussed

above could be extended, with the necessary changes having

been made, to the case of microtubules.

We have constructed a phase diagram, which summarizes

all the possible dynamical phases of an actin filament with

two active ends and vectorial hydrolysis in its inside. We

have found that quantities like the filament velocity and the

length diffusivity show similar behavior for both vectorial

and random models of hydrolysis. We propose that measuring

the length fluctuations of a single filament as a function of

time can distinguish between the two models for hydrolysis

(or to be more precise, to the step of phosphate release).

Although more experimental and theoretical work are needed,
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investigations of the dynamics of the length of single fila-

ments during polymerization (27) and during depolymeriza-

tion (5,10) indicate that the mechanism of phosphate release

is not purely vectorial or purely random, but rather probably

intermediate between these two limiting cases.

We hope that our study will contribute to the under-

standing of the nonequilibrium self-assembly of actin/micro-

tubule filaments.
APPENDIX

Equations of the vectorial model with two ends

Let P(n, k, t) be the probability of having n hydrolyzed ADP subunits and

k unhydrolyzed ATP subunits at time t, such that l ¼ (n þ k)d is the

total length of the filament. It obeys the following master equation: For

k > 0 and n > 0, we have

dPðn; k; tÞ
dt

¼ UPðn; k � 1; tÞ þ W þ
T Pðn; k þ 1; tÞ

þ RPðn� 1; k þ 1; tÞ þ W�
D Pðn þ 1; kÞ

�
�
U þ W þ

T þ R þ W�
D

�
Pðn; k; tÞ:

(8)

For k > 0 and n ¼ 0,

dPð0; k; tÞ
dt

¼ UPð0; k � 1; tÞ

þ
�
W þ

T þ W�
T

�
Pð0; k þ 1; tÞ þ W�

D Pð1; kÞ
�
�
U þ W þ

T þ W�
T þ R

�
Pð0; k; tÞ:

(9)

For k ¼ 0 and n R 1, we have
dPðn; 0; tÞ
dt

¼
�
W þ

D þ W�
D

�
Pðn þ 1; 0; tÞ þ W þ

T Pðn; 1; tÞ

þ RPðn� 1; 1; tÞ �
�
U þ W þ

D þ W�
D

�
� Pðn; 0; tÞ:

(10)

If k ¼ 0 and n ¼ 0, we have

dPð0; 0; tÞ
dt

¼
�
W þ

T þ W�
T

�
Pð0; 1; tÞ

þ
�
W þ

D þ W�
D

�
Pð1; 0; tÞ � UPð0; 0; tÞ:

(11)
We define the following generating functions

Gðx; y; tÞ ¼
X
nR0

X
kR0

Pðn; k; tÞxn yk; (12)

Fkðx; tÞ ¼
X
nR0

Pðn; k; tÞxn; (13)

Hnðy; tÞ ¼
X
kR0

Pðn; k; tÞyk: (14)

Normalization imposes that at all times t,
Gð1; 1; tÞ ¼
XN
n¼ 0

XN
k¼ 0

Pðn; k; tÞ ¼ 1: (15)

Using Eqs. 8–11, we obtain the evolution equation for G(x, y, t),

dGðx; y; tÞ
dt

¼
h
Uðy� 1Þ þ W þ

T

�
1
y
� 1


þ R

�
x
y
� 1



þW�
D

�
1
x
� 1
�i

Gðx; y; tÞ

�
h
W þ

T

�
1
y
� 1


þ R

�
x
y
� 1


þ W þ

D

�
1� 1

x

�i
F0ðx; tÞ

�
h
W�

D

�
1
x
� 1
�
þ W�

T

�
1� 1

y


i
H0ðy; tÞ

�
h
W þ

D

�
1
x
� 1
�
�W�

T

�
1� 1

y


i
Pð0; 0; tÞ:

(16)

From G(x, y, t), the following quantities can be obtained: the velocity of the

filament, which is

v ¼ lim
t/N

dhli
dt
¼ d lim

t/N

v

vx

�
dGðx; x; tÞ

dt

�
x¼ 1

; (17)

and the diffusion coefficient characterizing filament length fluctuations,

D ¼ lim
t/N

1

2

d

dt

�

l2
�
� hli2

�
¼ d2 lim

t/N

"
1

2

v2

vx2

�
dGðx; x; tÞ

dt

�
þ 1

2

v

vx

�
dGðx; x; tÞ

dt

�

�
�

vGðx; x; tÞ
vx

�
v

vx

�
dGðx; x; tÞ

dt

�#
x¼ 1

:

(18)
The average cap velocity is

J ¼ d lim
t/N

dhki
dt
¼ d lim

t/N

v

vy

�
dGð1; y; tÞ

dt

�
y¼ 1

; (19)

and the diffusion coefficient characterizing the fluctuations of the cap is

Dc ¼ d2 lim
t/N

1

2

d

dt

�

k2
�
� hki2

�

¼ d2 lim
t/N

"
1

2

v2

vy2

�
dGð1; y; tÞ

dt

�
þ 1

2

v

vy

�
dGð1; y; tÞ

dt

�

�
�

vGð1; y; tÞ
vy

�
v

vy

�
dGð1; y; tÞ

dt

�#
y¼ 1

:

(20)

Phase diagram and average length in the bounded
phase

To construct the phase diagram, we first focus on steady-states solutions

of Eq. 16, which are such that dG(x, y, t)/dt ¼ 0. The obtained equation

for G(x, y) involves the following time-independent quantities,

F0ðxÞ ¼ Gðx; 0Þ ¼
X
nR0

Pðn; 0Þxn; (21)
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H ðyÞ ¼ Gð0; yÞ ¼
X

Pð0; kÞyk; (22)
0

kR0

Pð0; 0Þ ¼ F0ð0Þ ¼ H0ð0Þ ¼ Gð0; 0Þ; (23)

which are coupled back to G(x, y).

Progress can be made by considering two particular cases for x ¼ 1 and

y ¼ 1 of this expression for G(x, y). This leads to

R�W�
T ¼ F0ð1Þ

�
R þ W þ

D

�
�W�

D H0ð1Þ � Pð0; 0ÞW þ
T ;

(24)

U� R�W þ
T ¼ F0ð1Þ

�
RþW þ

D

�
þW�

T H0ð1Þ�Pð0; 0ÞW�
T :

(25)

These two equations involve three unknowns F0(1): the probability that

the cap is zero, H0(1): the probability that the D part of the filament is zero,

and P(0, 0): the probability that the filament is in the state of monomers.

Note that P(0, 0) ¼ 0 in phases of unbounded growth whereas P(0, 0) > 0

in the phase of bounded growth.

In the random walk representation of Fig. 1, the velocity of the random

walker in the bulk has components vn ¼ (R – WD
–)d along the x axis and

vk ¼ (U – WT
þ – R)d along the y axis. Depending on the signs of these

quantities, four cases emerge. If vn > 0 and vk > 0, both the filament and

cap length increase without bound (phase III), which means that F0(1) ¼
H0(1) ¼ P(0, 0) ¼ 0. If vn < 0 and vk < 0, both the filament and cap length

stay bounded (phase I) and F0(1) > 0, H0(1) > 0 and P(0, 0) > 0.

If vn > 0 and vk < 0, the cap length remains constant in time, which

means F0(1) > 0, but the rest of the filament made of D subunits can be

either bounded (for H0(1) ¼ P(0, 0) ¼ 0, which corresponds to phase I)

or unbounded (for H0(1) ¼ P(0, 0) > 0, which corresponds to phase IIA).

When reporting the condition H0(1) ¼ P(0, 0) ¼ 0 into Eqs. 24 and 25

and solving for F0(1), one finds that the phase of bounded growth occurs

when U/(R þ WT
þ) < (WD

þ þ WD
–)/(R þ WD

þ), and the boundary to the

phase of unbounded growth corresponds to replacing the unequal sign by

an equal sign.

An alternative way to find this condition is to start from the time-

dependent evolution equation of G(x, y, t) of Eq. 16 and impose H0(y, t) ¼
P(0, 0, t) ¼ 0. We end up with two coupled dynamical equations for F0(x, t)

and G(x, y, t). The way to obtain the velocity and diffusion coefficient in

phase IIA from these equations is explained in detail in the Appendix of

Ranjith et al. (11). The result is the expression of vIIA given in Eq. 2, and

the expression of DIIA of Eq. 7. As expected, the condition that marks the

boundary between phase IIA and phase I corresponds to vIIA ¼ 0.

Similarly, if vn < 0 and vk > 0, the length of the region of D subunits at

the pointed end remains constant in time, and the region of T subunits can be

either bounded (phase I) or unbounded (phase IIB). By either method, one

obtains the velocity in the phase IIB given in Eq. 5, and the condition that

marks the boundary to phase I, which corresponds to vIIB ¼ 0.

In Ranjith et al. (11), an explicit expression for the average length in the

phase of bounded growth was obtained by a method of cancellation of poles

of G(x, y). Unfortunately, this method does not allow us to derive the expres-

sion of G(x, y) here, because the rates WT
– s 0 and WD

– s 0 lead to an

additional unknown H0(y, t) in Eq. 16, which makes the problem much

more difficult to solve. For this reason, we could not derive an explicit

expression for the average length in this case, and we investigated this

quantity only numerically.

Mean-field equations of the random model

We explain in this Appendix how the velocity of the filament in the random

model is obtained from a mean-field approach. This Appendix is provided

mainly for pedagogical reasons, since the solution has already appeared in

Stukalin and Kolomeisky (12) and Keiser et al. (26). For simplicity, we
Biophysical Journal 98(8) 1418–1427
focus on the case where growth and shrinking occur only from one end,

which we number as the first site i ¼ 1. We use the same notations for the

rates as in the vectorial model except for the hydrolysis rate, which is de-

noted r in the random model. For a given configuration, we introduce for

each subunit i inside the filament an occupation number ti, such that ti ¼
1 if the subunit binds ATP and ti¼ 0 otherwise. In the reference frame asso-

ciated with the end of the filament, the equations for the average occupation

number are

dht1i
dt
¼ Uð1� ht1iÞ �WT



t1ð1� t2Þ

�
þ WD



t2ð1� t1Þ

�
� r


t1

�
; (26)

dhtii
dt
¼ Uðhti�1ð1� tiÞi � htið1� ti�1ÞiÞ

þ WT



t1½ð1� tiÞtiþ 1 � tið1� tiþ 1Þ�

�
þ WD



ð1� t1Þ½ð1� tiÞtiþ 1� tið1� tiþ 1Þ�

�
� r


ti

�
:

(27)

In a mean-field approach, the effect of correlations htitji are neglected, i.e.,

these correlations are replaced by htiihtji (and similarly for averages of

product of three occupation numbers). At steady state, the left-hand sides

of Eqs. 26 and 27 are both zero, which leads to recursion relations for the

htii. Note that htii is denoted as ai in Keiser et al. (26) and as Pi in Stukalin

and Kolomeisky (12). We still denote ht1i ¼ q, because it represents the

probability that the terminal unit binds ATP. It is the analog of the parameter

defined in Eq. 1 for the vectorial model, which is now a more complicated

function of the rates. The recursion relations have a solution of the form for

i R 1,

htiþ 1i
htii

¼ U � qðWT þ rÞ
U � qWT

: (28)

Combining Eqs. 26–28, one obtains the following cubic equation for q:

ðWT þ rÞðWT �WDÞq3 þ
�
UWD � 2UWT þWDWT þWDr;

�WTr �W2
T

�
q2 þ UðU �WD þ 2WT þ rÞq� U2 ¼ 0:

(29)

This cubic equation has three solutions, but only one solution is such that

0 % q % 1. The rate of elongation of the filament can be obtained by report-

ing that solution into

v ¼ t/N
dhli
dt
¼ ½U �WTq�WDð1� qÞ�d: (30)

In Fig. 7, this velocity v is shown as function of the concentration of

free monomers. For low values of r, the velocity rates of the random and

vectorial model are identical, because as r is increased the velocity of the

random model starts to deviate from the curve of the vectorial model. By

imposing the condition v ¼ 0, one obtains the phase boundary shown in

the solid line in Fig. 6.
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