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The vascular system delivers oxygen and nutrients to every cell in the vertebrate organism. Hypoxia-inducible factor 1 (HIF-1) is a master regulator
of hypoxic/ischaemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis,
arteriogenesis, and the mobilization and homing of bone marrow-derived angiogenic cells. This review will focus on the pivotal role of
HIF-1 in vascular homeostasis, the involvement of HIF-1 in vascular diseases, and recent advances in targeting HIF-1 for therapy in preclinical models.
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This article is part of the Spotlight Issue on: Mechanisms of Vascular Inflammation

1. Introduction: O2 and vascular
homeostasis
Development of the embryo and maintenance of adult homeostasis
depend on the establishment of a functional vascular system that supplies
O2 and nutrients to approximately 1014 cells in an adult human. Local O2

delivery is regulated by the circulatory system through transient changes
in tone of pre-existing blood vessels, establishment of new vessels (angio-
genesis), and the remodelling of existing vessels to accept increased blood
flow (arteriogenesis). Hypoxia is defined as a reduction in the ambient O2

concentration. In ischaemic conditions, tissue perfusion is reduced such
that O2 availability is insufficient to meet tissue metabolic requirements.
In this review, we will focus on recent studies delineating the role of
hypoxia-inducible factor 1 (HIF-1) in regulating tissue perfusion under
physiological and pathological conditions. In addition, we will discuss
novel potential therapeutic approaches targeting HIF-1.

2. Hypoxia is transduced to the
nucleus as HIF-1 transcriptional
activity
HIF-1 is a ubiquitously expressed heterodimeric transcription factor that
mediates adaptive responses to hypoxia/ischaemia in all nucleated cells of
metazoan organisms. HIF-1 consists of O2-regulated HIF-1a and consti-
tutively expressed HIF-1b subunits.1 HIF-2a is a HIF-1a paralogue that is

also involved in vascular responses to ischaemia.2,3 In humans, HIF-1a is
targeted for proteasomal degradation under non-hypoxic conditions
through hydroxylation of proline residue 402 and/or 564 by prolyl-4-
hydroxylases, which utilize a-ketoglutarate and O2 as substrates.4

Prolyl hydroxylation of HIF-1a is required for binding to the von
Hippel–Lindau protein and recruitment of an E3 ubiquitin-protein
ligase, resulting in HIF-1a ubiquitination and proteasomal degradation.5,6

Hydroxylation of asparagine 803 of HIF-1a by FIH-1 (factor inhibiting
HIF-1)7 prevents binding to the transcriptional co-activators CBP and
p300.8 Hypoxia-induced inhibition of prolyl and asparaginyl hydroxylase
activity results in a rapid increase in HIF-1a levels and transcriptional
activity.4–7 HIF-1a translocates to the nucleus, dimerizes with HIF-1b,
and binds to hypoxia response elements (HREs), which function as
cis-acting elements that determine the target genes for activation by
HIF-1. HREs contain the core HIF-1 binding site nucleotide sequence
50-(A/G)CGTG-30.9 Several hundred direct HIF-1 target genes have
been identified and many of these genes encode proteins that are
involved in vascular homeostasis through effects on vascular tone, angio-
genesis, and/or arteriogenesis.10,11

3. Regulation of vasculogenesis,
angiogenesis, and arteriogenesis
by HIF-1
Blood vessel formation and physiological remodelling occur according
to three distinct mechanisms: (i) vasculogenesis, consisting of de novo
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organization of blood vessels from vascular progenitor cells (haeman-
gioblasts), which give rise to endothelial cells, vascular smooth muscle
cells, and pericytes during embryonic development; (ii) angiogenesis,
the sprouting of new capillary branches from pre-existing vessels;
and (iii) arteriogenesis, the remodelling of conduit vessels through
an increase in luminal diameter, resulting in increased blood flow.
Mouse embryos lacking HIF-1a expression initiate vasculogenesis
properly, but the initial vascular plexus subsequently degenerates,
leading to embryonic lethality at midgestation.12,13 Applying the defi-
nitions provided above, only angiogenesis and arteriogenesis occur in
the adult. These processes depend on a network of angiogenic cyto-
kines and cognate receptors that are expressed by multiple vascular
cell types, as described below.

3.1 Angiogenesis: activation of local
vascular cells
Hypoxia is the principal physiological stimulus that induces angiogenesis,
which provides a stimulus–response pathway by which all cells are
assured of adequate oxygenation. Expression of virtually all of the criti-
cal angiogenic growth factors is induced by hypoxia through the tran-
scriptional activity of HIF-1, including vascular endothelial growth
factor (VEGF), stromal derived factor 1 (SDF1), angiopoietin 2
(ANGPT2), placental growth factor (PGF), platelet-derived growth
factor B (PDGFB), and stem cell factor (SCF).14–19 The HIF-1-mediated
transcriptional response to hypoxia is cell type specific16 and involves
an orchestrated expression of angiogenic growth factors by multiple
cell types within the hypoxic tissue in a temporally and spatially regu-
lated manner. These angiogenic factors bind to cognate receptors
(VEGFR1/VEGFR2 for VEGF, CXCR4 for SDF1, TIE2 for ANGPT2,
VEGFR1 for PGF, PDGFRa/PDGFRb for PDGFB, and C-KIT for
SCF), which are expressed on the surface of vascular endothelial
cells and vascular pericytes/smooth muscle cells. Receptor–ligand
interaction activates these cells and promotes the angiogenic budding
of new capillaries from existing vessels. HIF-1 binds to and directly acti-
vates transcription of the VEGF, SDF1, ANGPT2, and SCF genes,14–17

whereas for PGF and PDGFB, it is not known whether HIF-1 is a
direct or indirect activator of gene expression. In addition to mediating
the expression of secreted factors that bind to and activate endothelial
cells, HIF-1 regulates the cell-autonomous expression in hypoxic endo-
thelial cells of hundreds of genes, many of which encode cell surface
receptors that allow endothelial cells to respond to hypoxia-induced
angiogenic cytokines.18 HIF-1a mRNA and protein levels are highly
induced in the ischaemic limb on day 3 after femoral artery ligation,
coincident with the expression of mRNAs encoding multiple angiogenic
growth factors.19 All of these responses are markedly impaired in
Hif1aþ/2 mice, which are heterozygous for a null (knockout) allele at
the locus encoding HIF-1a.19

3.2 Role of circulating angiogenic cells
In addition to activating cells in existing vessels, secreted angiogenic
cytokines also serve as homing signals for the mobilization and recruit-
ment of pro-angiogenic cells from distant sites, including bone marrow
and the walls of vessels in other tissues. The circulating angiogenic cells
(CACs) that are mobilized by hypoxia-induced angiogenic cytokines are
a heterogeneous population of cells that include endothelial progenitor
cells (EPCs), haematopoietic stem-progenitor cells, and mesenchymal
stem cells (MSCs), but the vast majority are bone marrow-derived
myeloid cells.20 –24 Most studies have characterized CACs by the

co-expression of (i) receptors for angiogenic cytokines, such as
VEGFR2 or CXCR4, and (ii) progenitor cell markers, such as stem
cell antigen 1 (Sca1), CD34, or CD117 (CKIT). Unlike bona fide EPCs
and MSCs, which can differentiate into endothelial cells and pericytes/
smooth muscle cells, respectively, and incorporate into blood
vessels,25 the bone marrow-derived myeloid cells are recruited to a
perivascular location and appear to activate endogenous vascular
cells through the paracrine secretion of additional angiogenic growth
factors.21– 25 The recruitment of CACs appears to be critical for angio-
genesis under conditions of massive tissue damage, as in the case of
tissue infarction, or rapid cell proliferation, as in the case of tumour
xenografts. In Hif1aþ/2 mice, ischaemia-induced mobilization of
CD34þVEGFR2þ and Sca1þCXCR4þ CACs is impaired due to
reduced VEGF and SDF1 expression in the ischaemic tissue.19 The
recruitment of CACs also plays an important role in vascular remodel-
ling, as described below.

3.3 Arteriogenesis/collateral vessel
remodelling
Although it is clear that hypoxia triggers a strong HIF-1-dependent angio-
genic response in ischaemic tissue, the initiating stimuli for the arterio-
genic response remain unclear.26 There is some debate regarding the
importance of hypoxia in arteriogenesis, because the tissues where vas-
cular remodelling occurs usually are not hypoxic.26,27 However, it should
be emphasized that following experimental arterial ligation, angiogenesis
occurs coincident with or prior to arteriogenesis.28 Moreover, angiogen-
esis occurs in the same vascular bed, distal to the site of arteriogenesis.29

Following femoral artery ligation, proangiogenic myeloid cells attracted
to sites of ischaemia must pass through collateral blood vessels, which
are remodelled to accommodate increased blood flow. The increased
shear stress that is present prior to remodelling is believed to be an
important inciting stimulus for vessel remodelling. Expression of mono-
cyte chemoattractant protein 1 is highly induced in ischaemic calf muscle
in mice subjected to femoral artery ligation,19 yet it plays an important
role in the recovery of perfusion by remodelling of collateral vessels
present in the thigh.30,31 Angiogenic factors such as VEGF and PGF are
also arteriogenic.32,33 As the restriction of blood flow through conduit
vessels results in decreased perfusion in the downstream vascular bed,
it is not surprising that signals from the ischaemic tissue play critical
roles in the remodelling of collateral vessels. The mobilization and
recruitment of bone marrow-derived angiogenic cells ((BMDACs)
appears to play an important role in vascular remodelling following
femoral artery ligation, and conditions that inhibit CAC mobilization,
such as ageing and diabetes (see below), also inhibit vessel remodelling.
Thus, current evidence suggests considerable overlap between the mol-
ecular mechanisms and physical stimuli that trigger angiogenesis and
arteriogenesis. Furthermore, there is compelling evidence that HIF-1
contributes to both processes.14,16,18,19,29,34 However, the extent to
which acute events associated with femoral artery ligation in the
mouse provide an appropriate experimental model for the chronic, pro-
gressive stenosis of vessels in patients with peripheral arterial disease is
not known.

4. Ischaemia-induced coronary
collateralization
Progressive atherosclerotic stenosis of one or more of the major
arteries supplying the myocardium and their subsequent luminal
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occlusion leads to ischaemia and myocardial infarction (MI). Approxi-
mately two-thirds of patients with coronary artery disease (CAD)
develop collateral vessels that bypass the stenosis, and the presence
of collaterals is associated with reduced infarct size, less severe func-
tional deterioration, and reduced mortality following MI.35,36 Mono-
cytes from CAD patients with collaterals had higher levels of
hypoxia-induced VEGF secretion compared with monocytes from
CAD patients without collaterals, even after adjusting for covariates
(age, sex, diabetes, smoking, and hypercholesterolaemia).37 The fre-
quency of a single-nucleotide polymorphism (SNP), which changes
proline to serine at codon 582 of the human HIF1A gene (P582S)
was five-fold higher in CAD patients without demonstrable collateral
coronary circulation by angiography.38 Another study showed that the
frequencies of three HIF1A SNPs, including the P582S allele, were sig-
nificantly increased in patients presenting with stable exertional angina
compared with patients presenting with MI.39 These HIF1A gene SNPs
were associated with reduced HIF-1 activity, which may result in
early-onset ischaemic symptoms, leading to clinical evaluation
prior to collateral development or manifestation of advanced
disease (i.e. MI). Most recently, increased HIF-1a expression in
leucocytes was associated with the presence of coronary collaterals
in patients with CAD.40

5. Ageing and diabetes impair
ischaemia-induced vascularization
by inhibiting HIF-1
Patients over the age of 50 with atherosclerotic stenosis of peripheral
arteries have a 1–2% risk of developing critical limb ischaemia (CLI),
which is characterized by decreased perfusion that threatens tissue
viability and is manifested by ischaemic pain at rest, ulceration, and/
or gangrene, eventually requiring limb amputation.41 Similar to
human CLI, ageing in mice is associated with impaired recovery of
limb perfusion following femoral artery ligation.19,42 Hif1aþ/2 mice
show impaired recovery of perfusion relative to wild-type littermates
at all ages and suffer more severe ischaemic tissue damage with ageing,
associated with impaired expression of HIF-1a protein and of mRNAs
encoding the angiogenic factors ANGPT1, ANGPT2, PGF, SCF, SDF1,
and VEGF in the ischaemic limb following femoral artery ligation.19

Impaired wound healing is an age-dependent manifestation of diabetes
mellitus in humans and in the Leprdb/db mouse model of type 2 dia-
betes.43 Exposure of mouse dermal fibroblasts to high glucose
impairs the hypoxia-induced stabilization of HIF-1a protein and
reduced HIF-1a levels are present in diabetic wounds when com-
pared with non-diabetic chronic venous ulcers.44– 47 Excisional
wounds of aged Leprdb/db mice expressed significantly lower levels
of HIF-1a, ANGPT2, PDGF-B, PGF, and VEGF mRNAs compared
with young counterparts, resulting in further impairment of wound
healing.48,49 CACs are reduced in the blood of type 2 diabetics with
vascular complications50 and the mobilization of CACs and recovery
of perfusion after femoral artery ligation is also severely impaired in
Leprdb/db mice51 and diabetic rats.52 It is important to emphasize
that unlike young healthy mice, which recover completely without
any tissue damage, diabetic and aged mice suffer tissue damage
ranging from soft tissue necrosis to the spontaneous amputation of
a toe or the entire foot following femoral artery ligation19,51 and
thus represent animal models of CLI.

6. Therapeutic strategies
to increase HIF-1 activity in
ischaemic tissue
Given the critical role of HIF-1 in ischaemia-induced vascular remo-
delling and the evidence that ageing and diabetes impair HIF-1 acti-
vation in response to ischaemia, it is not surprising that there is
great interest in devising therapeutic strategies to increase HIF-1
activity as a means of restoring the normal physiological responses
to hypoxia.

6.1 Pharmacological strategies
HIF-1a protein levels, HIF-1 DNA-binding activity, and HIF-1 tran-
scriptional activity can be increased by exposure of cells to CoCl2
or the iron chelator desferrioxamine.53,54 These agents have been
proposed to act through inhibition of prolyl hydroxylases: CoCl2
may induce HIF-1 activity through replacement of Fe2þ by Co2þ

at the catalytic site of these enzymes, whereas desferrioxamine is
an iron chelator that induces HIF-1 activity by reducing Fe2þ avail-
ability.4 Dimethyloxalylglycine (DMOG) is a competitive antagonist
of a-ketoglutarate that inhibits prolyl hydroxylase activity and
blocks the O2-dependent degradation of HIF-1a.4 Intraperitoneal
administration of desferrioxamine to aged mice restored HIF-1a
expression in an ischaemic skin flap, ischaemia-induced mobilization
of ‘EPCs’, and improved flap vascularization, leading to tissue survival
that was comparable to young mice.55 The reduced HIF-1a and
VEGF mRNA and protein expression in cutaneous wounds of dia-
betic Leprdb/db mice can be corrected by local administration of
CoCl2.

48 Wound healing was also improved in Leprdb/db mice by
local application of desferrioxamine or DMOG.44

6.2 Gene therapy
Electroporation-assisted transduction into the skin of Leprdb/db mice
of a plasmid vector encoding a constitutively active form of HIF-1a
designated CA5 (containing a deletion of amino acids 392–520
and two misssense mutations that render the protein resistant
to O2-dependent degradation) significantly increased cutaneous
HIF-1a, ANGPT2, PDGF-B, PLGF, and VEGF mRNA levels; CACs
in peripheral blood; and the vascularization and rate of healing of
excisional skin wounds.50 In another study, injection of a plasmid
or adenovirus encoding various constitutively active forms of
HIF-1a also improved wound healing.44,48 In Leprdb/db mice sub-
jected to femoral artery ligation, intramuscular (IM) injection into
the ischaemic calf and thigh muscle of AdCA5, an adenovirus
encoding the same constitutively active HIF-1a construct described
above, significantly increased CACs in peripheral blood, limb per-
fusion, tissue viability, and motor function.51 These changes were
associated with increased vessel luminal area and vessel density
in the AdCA5-transduced ischaemic limbs, demonstrating an arter-
iogenic effect,51 as previously reported in an rabbit limb ischaemia
model.29 Moreover, AdCA5 treatment reduced the number of infil-
trating CD3þ (T-lymphocyte) and myeloperoxidaseþ (neutrophil)
cells, whereas F4/80þ (myeloid) cells were increased in the ischae-
mic limb of Leprdb/db mice treated with AdCA5 when compared
with mice treated with AdLacZ.51 F4/80þ cells have been shown
to possess pro-angiogenic properties.56 Thus, AdCA5 treatment
alters the composition of the inflammatory cell population that
infiltrates the ischaemic muscle towards macrophage predominance,
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contributing to arteriogenic and angiogenic effects that help con-
serve tissue viability. IM AdCA5 was sufficient to overcome the
impaired recovery of perfusion in middle-aged mice19 but did not
improve recovery or prevent tissue damage in old mice.57 In
another study, injection of adeno-associated virus (AAV) encoding
yet another form of constitutively active HIF-1a resulted into non-
ischaemic skeletal muscle induced marked capillary sprouting,
whereas AAV-VEGF induced only endothelial proliferation without
proper vessel formation.58 IM administration of adenovirus encod-
ing HIF-1a/VP-16 fusion protein also stimulated collateral develop-
ment in diabetic rats subjected to femoral artery ligation.59 It
should be emphasized, however, that this latter construct is likely
to differ from HIF-1a in its transcriptional properties and biological
effects and did not show efficacy in clinical trials.60

6.3 Combined gene and cell therapy
There is considerable interest in utilizing bone marrow cell therapy
for ischaemic disorders. Although the cell populations that have
been used in many preclinical and clinical studies are described as
EPCs,61 we prefer the term BMDACs because there is no evidence
that the majority of these cells are capable of differentiating into endo-
thelial cells, whereas there is abundant evidence indicating that they
promote angiogenesis and vascular remodelling. If the mobilization
of CACs is impaired by diabetes49– 52 and ageing19 due to impaired
expression of angiogenic cytokines,42 then the intravenous (IV) admin-
istration of autologous BMDACs might circumvent the impaired
mobilization and thereby promote vascular remodelling. However,
the absence of a major clinical response in many studies suggests
that the autologous BMDACs from patients may be intrinsically
impaired in their ability to support vascularization. Studies in mouse
models have demonstrated impaired functional properties of
BMDACs derived from aged donors.62

Although AdCA5 delivery to muscle improves production of
angiogenic cytokines, it does not address the functional impairment
of BMDACs that is also associated with ageing. To promote vascular
remodelling, BMDACs must be recruited to, and retained in, the
ischaemic tissue.63–65 With these considerations in mind, we
devised a strategy for promoting recovery following femoral artery
ligation in old mice that involved three components.57 First,
AdCA5 was injected into the thigh and calf of the ischaemic limb,
which served to mobilize CACs and recruit them to the ischaemic
limb. Second, bone marrow cells from a donor mouse were cultured
for 4 days in the presence of angiogenic growth factors plus DMOG
to induce HIF-1 activity. Third, IV injection of these BMDACs into
recipient ischaemic mice was performed 24 h after femoral artery
ligation and AdCA5 injection. A significant improvement in recovery
of perfusion and limb salvage was observed only in mice that
received IM AdCA5 þ IV DMOG-treated BMDACs and was not
observed in mice that received only IM AdCA5 or only IV DMOG-
treated BMDACs or IM AdCA5 þ IV vehicle-treated BMDACs.57

The synergistic effect of these treatments was due to increased
recruitment of BMDACs to the ischaemic limb induced by IM
AdCA5, whereas DMOG treatment promoted retention of
recruited BMDACs by increasing the expression of cell surface
CD11/CD18 (b2) integrins, which are known to interact with
ICAM-1 and E-selectin on the surface of vascular endothelial
cells.64 These studies provide a preclinical foundation for the
design of clinical trials involving patients with CLI.

7. HIF-1-mediated pulmonary
vascular remodelling in response
to chronic alveolar hypoxia
In contrast to systemic arterioles, which dilate in response to local
tissue hypoxia in an effort to increase O2 delivery, pulmonary arter-
ioles constrict in response to alveolar hypoxia.66 This represents an
adaptive response to lobar pneumonia, in which a region of lung
tissue becomes filled with inflammatory cells eliminating the possibility
of gas exchange. Thus, pulmonary blood flow is regulated to ensure
that tissue perfusion is matched to tissue ventilation. However,
when gas exchanged is impaired throughout the lung, as in the
case of end-stage chronic obstructive pulmonary disease, chronic
hypoxia induces widespread increased pulmonary artery resistance,
progressive haemodynamic dysfunction, and right ventricular
failure.67 The increased resistance of pulmonary arterioles is due to
increased pulmonary arterial smooth muscle cell (PASMC) tone as
well as PASMC hypertrophy and proliferation. HIF-1 modulates vascu-
lar reactivity by mediating decreased expression of voltage-dependent
Kþ channels (Kv1.5, Kv2.1) and increased expression of transient recep-
tor potential Ca2þ channels (TRPC1, TRPC6) in PASMCs.68–71 HIF-1
mediates increased expression of Naþ–Hþ exchanger 1 in PASMCs,
leading to intracellular alkalinization, which promotes hypertrophy.72,73

HIF-1 also induces the expression of angiotensin converting enzyme
and angiotensin receptor AT1 in human pulmonary artery fibroblasts74

as well as augmenting endothelin-1 (ET-1) mRNA expression. ET-1 is a
potent vasoconstrictor peptide, known to enhance Ca2þ influx in
PASMCs,75,76 in addition to profibrotic and mitogenic effects on
PASMCs, contributing to hypoxic pulmonary vascular remodelling.77,78

The central role of HIF-1 in these pathological responses to hypoxia
is highlighted by the finding that hypoxia-induced depolarization, alkali-
nization, and hypertrophy of PASMCs is impaired in Hif1aþ/2 mice.79

In contrast to peripheral arterial disease and wound healing, in
which therapeutic strategies are designed to promote adaptive
responses mediated by HIF-1, in the context of hypoxic pulmonary
hypertension, pharmacological inhibition of HIF-1-mediated pathogenic
responses may be therapeutic. In support of this hypothesis, a recent
study showed that rapamycin inhibits hypoxia-induced pulmonary
vascular remodelling and right ventricular hypertrophy in mice,
an effect that may be due to blockade of HIF-1a synthesis, which is
positively regulated by the mammalian target of rapamycin.80–82

8. HIF-1-mediated tumour
vascularization
Increased HIF-1a expression is associated with a highly vascularized
and aggressive tumour phenotype, whereas HIF-1a loss-of-function
leads to decreased tumour growth and vascularization.13,83–88

Cancer cells express high levels of SDF1 and VEGF through HIF-
1-dependent mechanisms leading to the mobilization and recruitment
of CACs.86 –88 Screening of known drugs for novel HIF-1 inhibitors
revealed that digoxin and other cardiac glycosides inhibit HIF-1a syn-
thesis,89 doxorubicin and other anthracyclines block HIF-1 DNA
binding,87 and acriflavine blocks HIF-1 dimerization.88 These drugs
inhibited tumour growth, tumour-induced mobilization of
VEGFR2þ/CD117þ, VEGFR2þ/CD34þ, and CXCR4þ/Sca1þ CACs,
and tumour vascularization in mouse xenograft models.87– 89
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9. Pathogenic role of HIF-1
in retinal neovascularization
In retinopathy of prematurity, exposure to increased O2 concen-
trations inhibits retinal vascularization; when supplemental O2 admin-
istration is discontinued, the retina becomes ischaemic, thereby
triggering excessive formation of new blood vessels (neovasculariza-
tion) with increased vascular leakage, which ultimately results in
retinal detachment and loss of vision.90 Multiple HIF-1-regulated
angiogenic factors have been implicated in the pathogenesis of
retinal neovascularization including VEGF, PGF, ANGPT2, PDGFB,
SDF1, and erythropoietin.91 –96 In a mouse model of O2-induced reti-
nopathy, in which HIF-1a is induced by retinal ischaemia,97 intraocular
or intraperitoneal injection of digoxin markedly reduced retinal levels
of HIF-1a protein and of mRNAs encoding VEGF, PGF, PDGFB, SCF,
and SDF1; blocked the recruitment of pro-angiogenic F4/80þ and
CXCR4þ myeloid cells to the ischaemic retina; and inhibited retinal
neovascularization.98 Although anti-VEGF therapy has revolutionized
the treatment of ocular neovascularization, ranibizumab results in
improved vision in less than half of all treated patients,99 suggesting
that angiogenic factors other than VEGF may be playing an important
role in the non-responders. Digoxin therapy has the potential advan-
tage of inhibiting the expression of multiple angiogenic factors. YC-1, a
compound that inhibits HIF-1a protein expression by unknown mech-
anisms, has also been reported to inhibit retinal neovascularization in
the mouse.100

10. Conclusion
HIF-1 is a pivotal regulator of vascular responses to hypoxia and
ischaemia. One important hallmark of ageing and diabetes is an impair-
ment of ischaemia-induced HIF-1-mediated vascularization. Enhance-
ment of HIF-1a protein expression is advantageous over therapies
that target single angiogenic factors, because HIF-1a can induce mul-
tiple angiogenic targets in a coordinated manner. Moreover, preclini-
cal experimental data suggest that transient local expression of a
constitutively active form of HIF-1a may be sufficient to induce a ben-
eficial pro-angiogenic response in patients with CLI, diabetic ulcers, or
non-healing wounds, thereby alleviating concerns of possible toxicity
or adverse effects that might be associated with systemic HIF-1 acti-
vation. Conversely, inhibition of HIF-1 activity may block pathological
vascular remodelling or angiogenesis associated with pulmonary
hypertension, cancer, or retinopathy.
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