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Inflammation and angiogenesis are frequently coupled in pathological situations such as atherosclerosis, diabetes, and arthritis. The inflam-
matory response increases capillary permeability and induces endothelial activation, which, when persistent, results in capillary sprouting.
This inflammation-induced angiogenesis and the subsequent remodelling steps are in large part mediated by extracellular matrix (ECM) pro-
teins and proteases. The focal increase in capillary permeability is an early consequence of inflammation, and results in the deposition of a
provisional fibrin matrix. Subsequently, ECM turnover by proteases permits an invasive program by specialized endothelial cells whose phe-
notype can be regulated by inflammatory stimuli. ECM activity also provides specific mechanical forces, exposes cryptic adhesion sites, and
releases biologically active fragments (matrikines) and matrix-sequestered growth factors, all of which are critical for vascular morphogenesis.
Further matrix remodelling and vascular regression contribute to the resolution of the inflammatory response and facilitate tissue repair.
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1. Introduction
Mature endothelial cells (ECs) must continuously accommodate the
needs of the surrounding tissue, both during normal physiology (e.g.
increasing muscle blood flow during exercise) and in pathological set-
tings (e.g. inflammation and tumourigenesis). This requires a wide
range of responses that allow both acute and chronic remodelling of
the vessel wall. In some cases, vascular adaptation entails physical expan-
sion of vascular beds through an angiogenic process, which is often pre-
ceded by an inflammatory event and extensive matrix remodelling.

One of the hallmarks of inflammation, resulting from either sys-
temic stimuli or local injury, is an increase in vascular permeability, fre-
quently driven by an excess of vascular endothelial growth factor
(VEGF), nitric oxide, or other mediators. The increased vascular per-
meability allows plasma components and inflammatory cells to exit
the bloodstream. Two of the chief consequences of this are the for-
mation of a provisional matrix from plasma proteins and the exit of
leucocytes to the subendothelial space, initiating and sustaining the
inflammatory response. The resulting acute inflammation can induce
an angiogenic response, producing a highly vascularized granulation
tissue, as occurs during wound healing.1 Resolution of this

inflammation and the onset of lasting tissue repair cause the newly
formed vasculature to regress, resulting in the restoration of homeo-
static control. In the absence of vascular regression, positive feedback
mechanisms operating between vessels and the inflammatory infiltrate
sustain the new vasculature and further exacerbate the inflammatory
response.2 This is the case in pathologies such as atherosclerosis,
rheumatoid arthritis, and psoriasis,3 in which the decision between
sustained inflammation or tissue repair is significantly influenced by
the composition and turnover of the extracellular matrix (ECM).

The prevalent mode of vascular expansion is endothelial sprouting,
which involves the invasion of avascular areas by proliferating and
migrating ECs. In a nascent sprout, three phenotypically distinct EC
types can be recognized: tip, stalk, and phalanx.4 Specification of
tip cells is essential for capillary sprouting and is regulated by multiple
inflammatory stimuli. Tip cells express the specific proteolytic
machinery for migration and invasion, including membrane-type
matrix metalloproteinase 1 (MT1-MMP), which plays a major role in
this process.

In this review, we summarize the contributions of ECM remodelling
to the distinct steps of the angiogenic response associated with
inflammation (Figure 1).
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2. First steps in
inflammation-induced angiogenesis:
vascular permeability and EC
activation
The barrier function of blood vessels is essential for homeostasis and
is maintained by two types of specialized endothelial junctional
complex: tight junctions and adherens junctions.5 Tight junctions are
organized by claudins, occludins, and junctional adhesion molecules,
whereas adherens junctions are organized by catenins and cadherins,
mainly VE-cadherin.5 Together, the extracellular associations of these
complexes and their intracellular links to the cytoskeleton maintain
and actively regulate the vascular barrier.6 The dynamic and local
control of vascular permeability enables macromolecular transport,
immune surveillance, and the rapid generation of a fibrin-rich provi-
sional matrix via the deposition of serum proteins (for reviews see
Mehta and Malik7, Wu,8 Roberts and Palade9). The enhanced vascular
permeability produced in response to systemic or local inflammatory
stimuli increases the deposition of this provisional matrix, which pro-
vides a scaffold for the migration of infiltrating leucocytes and a tem-
plate for capillary sprouting. It is probably not a coincidence that

most permeability inducers are also pro-angiogenic molecules and
that only a few molecules, such as fibroblast growth factor (FGF)-2,
exclusively promote angiogenesis10 (Table 1).

The term endothelial activation describes both a series of molecular
and cellular changes associated with the ability of ECs to recruit inflam-
matory cells11 and also the molecular program that leads ECs to initiate
an angiogenic response. In inflammatory situations, the exit of leuco-
cytes is associated with a temporary disruption of the vascular
barrier, extravasation of plasma, and deposition of fibrin. If the inflam-
matory stimulus persists, more definitive and permanent changes in
endothelial junctional complexes enable ECs to depart from the par-
ental vessel and engage in the formation of a nascent sprout by invading
the provisional scaffold matrix (Figure 2). These activated ECs change
their cellular features and molecular expression profile and become
endothelial tip cells.4 Tip cells are highly polarized and proliferate
poorly and are especially suited to navigate into the surrounding
tissue. In contrast, the non-migratory stalk and phalanx cells form the
lumen and facilitate stabilization of the nascent vessel.4 Expression
analysis of nascent sprouts and endothelial tip cells revealed the pres-
ence of VEGFR2, VEGFR3, Delta-like 4 (Dll4), angiomotin, and other
molecules.12 –14 These specialized cells initiate a pro-angiogenic
program that includes active proteolysis and invasion of adjacent tissues.

Figure 1 Progressive steps in inflammation-driven angiogenesis. (1) Quiescent vasculature. (2) Inflammation induced by systemic or local sources
activates the angiogenic program by increasing vessel permeability and destabilizing EC junctions. (3) Proteolysis of the ECM by the endothelial tip cell
during capillary sprouting induced by inflammatory stimuli. (4) ECM-driven mechanical forces, ECM-derived cryptic sites and matrikines, and growth
factor signals during inflammation-mediated angiogenesis. Inflammation-induced angiogenesis can have two distinct fates: 4.1, persistence of vascula-
ture and chronic inflammation and 4.2, vascular regression and tissue repair.
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3. Endothelial tip cells induce ECM
proteolysis during
inflammation-induced capillary
sprouting
Capillary sprouting is one of the main mechanisms by which new vessels
are formed in the adult,15 and VEGF is the most significant inducer of
this response. Most of the biological functions initiated by VEGF are
transduced by VEGFR2, one of the two VEGF tyrosine kinase receptors.
Activation of VEGFR2 can be modulated by gradients of soluble
VEGFR1 (Flt-1) that convey important local cues during capillary
sprouting.16 These fine-tuning events direct and guide the tip cell.

Tip cells have specific phenotypic features including the ability to
migrate in response to VEGF gradients and to invade the ECM.4 Tip
cells are also provided with the enzymatic machinery for invasion
through tissue barriers such as the basement membrane, interstitial
matrix, and the provisional fibrin matrix deposited in response to
increased vascular permeability. Members of the metzincin superfam-
ily of proteases play important and distinct roles during capillary mor-
phogenesis; among the proteases implicated are the matrix
metalloproteinases (MMP), MT1-MMP, MT2-MMP, MT3-MMP,

MMP-2, MMP-3, MMP-7, MMP-9, and MMP-13, and the ADAM
family proteins, ADAM-10, ADAM-15 ADAM-17, and ADAMTS1
(reviewed by Ghajar et al.17 and van Hinsbergh and Koolwijk18).
However, the functional relevance of these proteases to the invasive
phenotype of endothelial tip cells remains undefined, except for the
contribution of MT1-MMP.

MT1-MMP is a membrane-anchored pericellular collagenase that
plays a major role in angiogenesis.19 MT1-MMP is the main endothelial
fibrinolysin and collagenase responsible for EC sprouting within 3D
matrices and for capillary sprouting in vivo.20,21 MT1-MMP is also
required for the formation of vascular tunnels that eventually serve
as 3D scaffolds for the guidance of EC, the formation of capillaries,
and their subsequent stabilization.22 In the vessel, MT1-MMP
expression is inhibited by pericyte–EC interactions. This restricts
MT1-MMP expression to tip cells that lack mural cells.23 Thus,
MT1-MMP is likely to regulate matrix remodelling at the leading
edge of the developing sprout. Mathematical modelling of collagenase
activities in the nascent sprout suggests that MT1-MMP, together with
MMP2 and TIMP2, is one of the factors responsible for the ECM pro-
teolysis required for invasion by endothelial tip cells during capillary
sprouting.24 However, the role of MT1-MMP in the regulation of
endothelial tip cells in vivo remains to be explored.
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Table 1 Effect of distinct growth factors and inflammatory stimuli on vascular permeability, EC activation, and ECM
proteolysis by endothelial tip cells

Vascular permeability EC activation (pro-angiogenic
phenotype)

ECM proteolysis by endothelial tip cells

Growth factors

VEGF Increases permeability via adherens junctions,
particularly VE-cadherin.6,98

The main angiogenic factor described.99

Permeability and angiogenic functions have
been partially dissected100

Enriched expression in endothelial tip cells.
Promotes tip cell invasiveness4

Angiopoietin 1 Blocks vascular permeability by modulating the
cytoskeleton101

Pro-angiogenic101 No defined role

FGF No reported effects on vascular permeability An effective promoter of angiogenesis102 Might regulate endothelial tip cell
migration103

Cytokines and chemokines

TNFa Increases vascular permeability104 Promotes angiogenesis104 Induces an endothelial tip cell-like phenotype
via the NF-kB pathway105

CCL2/MCP-1 Might indirectly increase vascular
permeability106

Promotes angiogenesis in vitro and in vivo106 Induces MT1-MMP clustering and activity in
ECs28

Other bioactive molecules

Bradykinin Increases vascular permeability in vitro and
in vivo107

Might promote angiogenesis107 Can induce an endothelial tip cell-like
phenotype108

Nitric oxide Downstream effector of bradykinin and can
increase vascular permeability109

Promotes angiogenesis109 Induces MT1-MMP clustering and activity in
ECs26

PGE2 Conflicting information Promotes angiogenesis in vitro and in vivo110,111 Induces MT1-MMP clustering and activity in
ECs27

Prostacyclin Decreases permeability, probably by
modulating stress fibres and
cytoskeleton31,112

No defined role No defined role

S1P S1P receptors can stabilize endothelial barrier
integrity in vitro and in vivo via actions on the
cytoskeleton113–115

Promotes angiogenesis116 Induces the formation of lamellipodia in ECs
and cooperates with MT1-MMP during
angiogenesis117,118

Thrombin Increases vascular permeability via an action on
the cytoskeleton119

Conflicting information No defined role

VEGF, vascular endothelial growth factor; S1P, sphingosine-1-phosphate.
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Distinct soluble factors and signalling pathways regulate the pheno-
type and functions of the three types of ECs (phalanx, stalk, and tip
cells) (Figure 2). In addition to specification of the tip cell phenotype
by VEGF gradients and Dll4/Notch signalling,4,14,25 tip cells can also
be induced by inflammatory signals via alternative pathways. For
example, TNFa, NF-kB, bradykinin, and sphingosine-1-phosphate
can induce either the full tip cell phenotype or the formation of filo-
podia and lamellipodia characteristic of these migratory invading cells
(Table 1). We have demonstrated that the inflammatory mediators
nitric oxide (a downstream effector of bradykinin), prostaglandin E2
(PGE2), and the chemokine MCP-1/CCL2 increase the cell surface
clustering and activity of MT1-MMP in human ECs and that all these

factors require MT1-MMP for the induction of capillary tube for-
mation.26–28 A more detailed analysis of the in vitro angiogenic
response to a battery of growth factors and cytokines showed that
MT1-MMP is widely, though not universally, required for angiogen-
esis.29 It will therefore be interesting to explore whether the require-
ment for MT1-MMP during angiogenesis mediated by these agents is
linked to their putative ability to induce the endothelial tip cell pheno-
type. The molecular mechanisms by which the signalling pathways
induced by nitric oxide, PGE2, and MCP-1/CCL2 converge to
induce MT1-MMP membrane clustering and activity are poorly
defined, but may involve downstream effectors such as Rac1
GTPase activity and actin polymerization26–28,30,31 (Figure 3).

Figure 2 Responsiveness of distinct EC types to inflammatory and angiogenic agents. Soluble factors secreted by inflammatory, accessory, and ECs
affect the fate of the different EC types in the sprout (phalanx, stalk, and tip cells), and in particular regulate the induction and specification of tip cells
and therefore of capillary sprouting (adapted from De Smet et al.4).

Figure 3 Crosstalk between inflammation, endothelial tip cells, and MT1-MMP. Tip cells can be induced by distinct inflammatory pathways (TNFa,
bradykinin, NF-kB, and S-1-P) that converge on Rac1 activation and actin polymerization.4 MT1-MMP expression is restricted to the tip cells.23 Several
inflammatory mediators (nitric oxide, PGE2, and CCL2/MCP-1) induce MT1-MMP clustering and activity, probably through the activation of Rac1 and
actin polymerization, thereby inducing the endothelial tip cell-like phenotype.26– 28
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Notably, several stimuli that activate GTPases in endothelial tip cells
also induce the formation of filopodia and lamellipodia, which are
critical for the invasive function of these cells.4

One interesting question is whether the induction of endothelial tip
cells and capillary sprouting in vivo are affected by the inflammatory
infiltrate and leucocyte-generated proteases. Several reports have
highlighted specific contributions of inflammatory cells, particularly
monocytes/macrophages, to angiogenesis. In some cases, these inter-
actions appear to centre on endothelial tip cells. For example, in a
model of hypoxia-induced retinal neovascularization, proteolytic clea-
vage of VEGF by macrophage-derived MMPs is required to induce the
phenotype and proper guidance of endothelial tip cells.32 Monocyte/
macrophages also contribute to the formation of tubular endothelial
structures in Matrigel models, to ischaemia-induced lung angiogenesis
in vivo and to VEGFR-3-mediated angiogenesis and lymphangiogen-
esis.33 –35 Stromal-derived soluble MT1-MMP activates pro-MMP-2
during rat skin wound healing;36 whether active MT1-MMP is released
from monocytes during inflammation37,38 and impacts the endothelial
tip cell invasive program remains to be explored. In contrast to mono-
cytes, lymphocytes limit angiogenesis during ischaemia-induced lung
angiogenesis.34

Inflammatory (M1) and alternatively activated (M2) macrophages
attract mesangioblasts to damaged muscle through different molecular
pathways.39 Incipient angiogenic vessels can also recruit endothelial
progenitors and circulating mononuclear cells; however, the mechan-
ism by which these cells incorporate into the vascular sprout or
modulate ECM remodelling have not been fully elucidated.40 Several
studies have also highlighted the supportive function of monocytes
in pathological neovascularization.41 In fact, elimination of Tie-2
expressing monocytes using a ‘suicide approach’ significantly impairs
the angiogenic response.42 Overall, there is growing evidence for a
critical crosstalk between inflammatory and ECs during vascular mor-
phogenesis, particularly in adult settings.

4. ECM-driven signalling during
angiogenesis
Although the ECM was traditionally considered the ‘glue’ that holds
tissues together, it is clear now that it has broad impacts on cell be-
haviour and vascular morphogenesis through a wide range of
mechanisms.43

4.1 ECM drives mechanical forces
in inflammatory vascularization
Pathological states such as hypertension are characterized by sus-
tained changes in pressure or flow. These changes result in dynamic
artery remodelling, including changes to the shape and physical prop-
erties of the artery wall that attempt to restore homeostatic intimal
shear stress and flow. This process of vessel remodelling involves
ECM alterations and seems to require macrophages and
MMP-9.44,45 The impact of these changes to ECM composition and
structure on vascular morphogenesis is being elucidated.46– 49 For
example, a mathematical model of 2D sprouting has shown that
matrix density influences sprout velocity and branching, whereas
ECM fibre alignment correlates with EC shape and orientation.48

Moreover, degradation of matrix components at low ECM density
inhibits angiogenesis, whereas matrix degradation at high ECM

density promotes it. Thus, the complexity and dynamics of the ECM
during capillary sprouting can influence the fate of new capillaries.

The physical properties and composition of the ECM are also criti-
cal for the generation of appropriate tensional forces. These forces
can be generated by ECs, although tensional forces established by
myofibroblasts seem to be more important during angiogenesis
associated with the formation of granulation tissue.47,50 In fact, non-
angiogenic translocation of the vasculature by myofibroblast-driven
ECM tensional forces is observed during early vascular expansion in
this model.50 Whether inflammatory cells contribute to these biome-
chanical forces in angiogenesis remains to be explored.

4.2 ECM-derived adhesion sites and active
fragments in inflammation-induced
angiogenesis
4.2.1 Matricryptic sites
The ultimate fate of ECs during inflammation is regulated by their
interaction with ECM molecules through specific adhesion receptors
that affect EC signalling and vessel remodelling.51 The dynamic nature
of the ECM during the angiogenic response is partially imposed by the
proteolytic processing of its components through the activity of
MMPs and other proteases. Davis et al.52 coined the term matricryptic
sites 10 years ago to describe ‘perturbations’ in ECM molecules,
including proteolysis but also mechanical forces, novel interactions,
multimerization, and conformational changes, that can expose recog-
nition sites for EC adhesion receptors. Matricryptic sites can be found
in diverse ECM proteins, and it is likely that proteases produced by
macrophages contribute significantly to the generation of these
sites.53,54 The critical matricryptic site Arg-Gly-Asp (RGD) is
present in fibronectin and other ECM proteins such as collagens,
vitronectin, and osteopontin.55 This RGD motif is exposed by pro-
teolysis and can bind a5b1 and avb3/avb5 integrins, thus impacting
EC adhesion, migration, proliferation, survival, and cell–cell inter-
actions during angiogenesis.51 The use of soluble peptides to
compete with RGD binding to integrins has therapeutic potential in
disorders characterized by exacerbated or aberrant vascularization,
such as cancer and chronic inflammation.56 However, recent evidence
shows that low doses of RGD peptides increase angiogenesis and
tumour growth by inducing VEGFR2 and b3 integrin recycling.57

These results provide an explanation for previous unsuccessful trials
and highlight the need for fine-tuned regulation of the interaction of
matricryptic sites with integrins during angiogenesis.

4.2.2 Matrikines
Matrikines, fragments of ECM molecules with biological functions dis-
tinct from those of the parental protein, were identified about two
decades ago. They are generated by the proteolytic cleavage of
ECM molecules by proteases including serine proteases and
MMPs.58 As the initial report of the plasminogen-fragment angiostatin
by Judah Folkman’s group,59 a variety of matrikines have been ident-
ified and their role in angiogenesis explored. MMPs and matrikines,
in conjunction with other pro- or anti-angiogenic factors, are likely
to act in concert during any step of angiogenesis.

Matrikines are involved in wound healing,60 but the contribution of
macrophage-derived MMPs53 to the production of matrikines in this
and other inflammation-driven angiogenesis contexts deserves
further investigation. Matrikines are most frequently derived from
primary components of the basement membrane such as collagen
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IV (arresten, canstatin, tumstatin, and metastatin) or from the intersti-
tial matrix surrounding the vasculature (endostatin and neostatin,
derived from collagen XVIII).48 Active fragments of other ECM mol-
ecules include vastatin (collagen VIII), restin (collagen XV), anastellin
(fibronectin), and endorepellin (from perlecan), all of which display
anti-angiogenic activities (Table 2). The function of peptides derived
from elastin, SPARC, and thrombospondins (TSPs) have also been
explored in the cardiovascular system in general and in the context
of inflammation-induced angiogenesis58 (Table 2). Both TSP-1 and
TSP-2 exhibit inhibitory functions during wound healing angiogen-
esis.61 Although full-length TSPs and proteolytically derived domains
display anti-angiogenic activity,58 smaller fragments are more effec-
tive.62 Most of the matrikines impact endothelial behaviour by com-
peting with intact ECM components for interaction with integrins.51

For instance, angiostatin, tumstatin, and endostatin binds to avb3,
angiostatin to a9b1, arresten to a1b1, and tumstatin to a5b1.58

It is also becoming clear that proteolysis-derived ECM fragments
affect the inflammatory response (for a review see Adair-Kirk and
Senior63 and Table 2). Fragments of collagen types I and IV, elastin,
fibronectin, laminins, entactin/nidogen, TSP, and hyaluronan display

chemotactic activity for inflammatory cells in vitro. These fragments
can also induce specific gene expression programs in inflammatory
cells, in particular the expression of proteases and cytokines that
may eventually impact capillary sprouting and angiogenesis. Peptides
fragments of fibronectin and laminin, for example, increase mono-
cyte/macrophage expression of a variety of proteases including
MT1-MMP.64,65 Notably, laminin, elastin, and collagen fragments can
also induce protease and cytokine production and leucocyte recruit-
ment in vivo63,66 (Table 2).

4.3 ECM modulates growth factors that
regulate vascular morphogenesis,
remodelling, and responses to
inflammatory stimuli
4.3.1 VEGFs and ECM
Like many other growth factors, VEGF binds to ECM molecules. This
interaction is regulated by alternative splicing, which generates a
variety of VEGF isoforms with distinct affinities for specific ECM pro-
teins. Alternatively, VEGF–ECM interaction can also be altered post-
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Table 2 List of selected matrikines and their function in inflammation and angiogenesis

Matrikine Original protein Mechanism of action/receptor binding Function/activity

Angiostatin Plasminogen avb3 a9b1 Anti-angiogenic

Arresten Basement membrane collagen IV a1b1 Anti-angiogenic

Canstatin Basement membrane collagen IV Anti-angiogenic

Tumstatin Basement membrane collagen IV avb3 aa5b1 Anti-angiogenic

Metastatin Basement membrane collagen IV Anti-angiogenic

Endostatin Collagen XVIII avb3 Anti-angiogenic

Neostatin Collagen XVIII Anti-angiogenic

Vastatin Collagen VIII Anti-angiogenic

Restin Collagen XV Anti-angiogenic

Anastellin Fibronectin Anti-angiogenic

Endorepellin Perlecan Anti-angiogenic

Peptides derived
from

Elastin Pro-angiogenic

Peptides derived
from

SPARC Pro-angiogenic/anti-angiogenic

Peptides derived
from

TSPs Pro-angiogenic/anti-angiogenic

Peptides derived
from

Collagen types I and IV, elastin, fibronectin,
laminins, entactin/nidogen, TSP, and
hyaluronan

Elastin binding protein (67 kDa), L-selectin,
Integrins, CXCR1 and CXCR2

Chemotactic activity for inflammatory
cells in vitro

Peptides from Increase in vitro production of:

† Hyaluronan
† Fibronectin
† Laminin-111 (SIKVAV)
† Laminin-511 (ASKVKV)

† MMP-12, PAI-1 and cytokines
† MMP-9, MMP-12 and cytokines
† MMP-9, uPA
† MMP-9, MT1-MMP and cytokines

Peptides from Promote in vivo

† Laminin
† Elastin
† Collagen
† Hyaluronan

† Protease production and cell
migration

† Monocyte recruitment
† Neutrophil migration
† Cytokine production

Adapted from Bellon et al.58 and Adair-Kirk and Senior.63

ECM and inflammatory angiogenesis 231



translationally by proteolytic processing (Figure 4). In this case, the
length of the C-terminal region can be modified depending on the
availability of active proteases. Specifically, plasmin and a subset of
MMPs can cleave the C-terminal region of VEGF to release the bio-
active growth factor (receptor-binding domain) from its anchorage
site in the ECM.67

VEGF can be cleaved by plasmin at 110–111 aa and by MMPs at
113 aa. A large cohort of MMPs can process VEGF, including
MMP-3, MMP-7, MMP-9 (in the presence of heparin), and
MMP-19.67 These endoproteolytic events can modulate the levels of
soluble and matrix-bound VEGF in tissues and thereby result in
either enlarged vessels or sprouting angiogenesis (Figure 4). In this
way, the number of inflammatory cells can modulate the binding of
VEGF to the ECM, thereby regulating its growth factor activity.

The release of VEGF from matrix stores has been implicated in the
angiogenic switch, facilitating the transition of tumours from the
hyperplastic to the malignant state.68 The ability of proteases to
modulate VEGF release from the ECM is thus significant in the
context of specific tissues and pathological settings. All VEGF isoforms
(including VEGF121) can be cleaved by plasmin (110 aa) or MMPs
(113 aa). As cleaved and bound VEGF can both phosphorylate the
two main tyrosine receptors, the significance of these proteolytic pro-
cessing events has not been clear. Nonetheless, recent findings indi-
cate that matrix-bound or soluble VEGF provides important
contextual differences in signalling; for example, matrix anchorage
leads to clustering of VEGFR2 and increases receptor internalization
and downstream phosphorylation kinetics, all of which contribute
to distinct endothelial responses.69

In fact, these differences between soluble and matrix-bound VEGF
result in alternative modes of vascular expansion. Using engineered
forms of VEGF, we found that a version mimicking cleaved soluble
VEGF113 produced vascular beds with low vascular density and
poor branching. In contrast, a matrix-bound VEGF mutant, resistant
to cleavage by either plasmin or MMPs, induced highly branched
and thin vessels that greatly facilitated tissue perfusion and tumour

growth.67 Thus, soluble VEGF induces vascular hyperplasia, while
sprouting angiogenesis is induced by matrix-bound VEGF.

4.3.2 FGF and ECM
The interaction of FGF with extracellular matrix proteins, particularly
heparan sulfate proteoglycans, has been explored both in vitro and in
vivo in elegant genetic mouse models.70–72 It is now well accepted
that these interactions depend on structures determined by the sulfa-
tion pattern and by which hydroxyl group is oxidized in uronic acid resi-
dues.73 Moreover, FGFR1 levels in pancreatic beta cells are reduced by
the binding of alpha6 integrin to laminin, with consequent reduction in
ERK activation and proliferative activities;74 thus alterations in integrin
profiles at the cell surface by matrix substrates can further contribute
to the outcome of FGFR activation. Taken together, the data convin-
cingly demonstrate that the ECM contributes significantly to finetune
the complex FGF signalling network during distinct phases of embryonic
development and in pathological settings in adults.

4.3.3 Transforming growth factor-beta and ECM
The interaction of Transforming growth factor (TGF)-beta with ECM
not only provides a means of anchoring the ligand to the extracellular
environment; it can also contribute to its activation. For example,
association with thrombospodin1 mediates a physiologically relevant
activation by TGF-beta.75 Interestingly, however, TSP-1 inhibits
VEGF.76 Thus, it is not the identity of the matrix component but
the combined association that determines whether the growth
factor is activated or inhibited.

4.3.4 Platelet-derived growth factor and ECM
Platelet-derived growth factor (PDGF) also binds to matrix proteins.
Using plasmon resonance assays, Gohring et al.77 identified several
collagen types, laminin 1, nidogen, perlecan, and BM-40 as PDGF
binding partners. Interaction with matrix proteins does not affect
binding of PDGF to its receptors and suggests that matrix binding
might provide storage sites for PDGF in the extracellular environment

Figure 4 Schematic representation of VEGF. Two monomers are held together in an anti-parallel orientation by disulfide bonds. The central region
(blue) is the receptor binding domain, which binds both VEGFR1 and 2, and is encoded by exons 2–5. The C-terminal region (green) includes the
matrix-binding motif (encoded by a variable number and combination of exons 6a, 6b, and 7). Amino acids encoded by exon 8 are present in all VEGF
forms. Plasmin and some matrix metalloproteases can sever (by proteolysis) the receptor-binding motif from the extracellular matrix binding domain.
Soluble VEGF lacks the matrix-binding region either because it is secreted as a short alternative spliced form (VEGF120) or because is modified post-
translationally by plasmin or MMPs. The effects of soluble and bound forms are indicated on the right and based on our previous data.67,69
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for later release upon partial matrix proteolysis, thereby regulating the
association of mural cells with the growing endothelial sprout.

5. ECM remodelling during
resolution of inflammation:
regression of provisional vasculature
During the resolution of the inflammatory response, the provisional
vasculature must regress in order to facilitate proper tissue
repair.1,78 Fine-tuned adjustments to the proteolytic machinery of
ECs are required for removal of the recently formed blood vessels,
the provisional ECM and the leucocyte infiltrate.

One of the best physiological examples of capillary regression is the
remodelling of the hyaloid vasculature in the developing retina.79– 81

Although the precise mechanism of hyaloid vessel regression is not
fully understood, the first step involves apoptosis of pericytes, and
is followed by regression of the endothelial tubes. Macrophages are
found in close association with hyaloid vessels even after these
vessels became vestigial and disappear,82 suggesting that macrophages
participate in the pericyte apoptosis and contribute to capillary
regression.83 This was confirmed by the examination of PU.1-deficient
mice, which lack macrophages. Persistence of hyaloid vasculature
postnatally in these mice shows that macrophages are essential for
the process.84 Specific genes required for vascular removal have
been identified. For example, the Norrie disease gene product is
necessary for hyaloid vessel regression; however, the mechanism is
unclear, because the absence of this gene is not associated with
changes in macrophages or endostatin.85 More recently, it has been
shown that ninjurin1 (nerve injury-induced protein-1) is implicated
in macrophage activation and interaction with vascular ECs. Neutral-
ization of this pathway results in delayed hyaloid regression, suggesting
that macrophage expression of Ninj1 amplifies the death signal
through cell–cell interactions.86

Capillary regression is also evident in wound healing, during which
the highly vascularized granulation tissue needs to be removed to
allow proper skin repair. After capillary sprouting, the newly formed
vasculature is first stabilized by the inhibition of endothelial
MT1-MMP, achieved by the secretion of TIMP3 by directly adjacent
vascular pericytes.87 Other MMPs induced during the formation of
the granulation tissue88 contribute to vascular regression. For
example, work by Davis’ group with in vitro models has identified
MMP-1 and MMP-10 as proteases essential for proper capillary tube
regression.88–90 Plasminogen and plasma kallikrein may also acceler-
ate the process. The role of all these proteases in vascular regression
is complex and probably includes direct degradation of ECM com-
ponents and alterations to the mechanical forces that prevent the col-
lapse of endothelial tubes. Another likely contributing factor is the
leucocyte infiltrate. However, skin wound repair was normal in
PU.1 null ‘macrophageless’ mice, with only a slightly enhanced early
angiogenic response.91 Although this study did not specifically
address the vascular regression phase, this finding suggests that
there might be alternative mechanisms of vessel regression in distinct
tissues, some of them independent of leucocyte infiltrate. The contri-
bution of macrophages to the impaired regression of new vessels
associated with chronic inflammatory disorders, such as the athero-
matous plaque, remains unexplored.

6. Future directions
Much has been learned about the role of ECM remodelling in
inflammation-driven angiogenesis and in the vascular regression
necessary for proper tissue repair during pathological states.
However, the molecular regulatory events that mediate tissue-specific
ECM changes and the resolution of the inflammatory response are yet
to be elucidated. The systems biology technologies emerging during
the post-genomic era are likely to refine our knowledge of the com-
plexity of proteins and molecular pathways involved in this process.
One potential area of interest is the degradome, the battery of pro-
teases and inhibitors expressed by a cell type under specific con-
ditions or the protease substrate repertoire of a specific cell type.
Characterization of the degradome in endothelial, mural, and acces-
sory cells activated in distinct inflammatory contexts promises to
identify new targets for the inhibition or promotion of angiogenesis.
In addition, miRNAs have emerged as critical modulators of gene
expression in a variety of processes including angiogenesis, ECM pro-
duction, and remodelling.92– 94 Alteration of miRNA activity in vivo in
animal models offers a promising avenue for the development of new
treatments for disorders involving ECM remodelling during pathologi-
cal angiogenesis.95

Furthermore, normalization of the aberrant vasculature, rather than
inhibition of its formation, may offer a better prospect for treating
inflammatory diseases characterized by uncontrolled vascularization.
Various targets for promoting normalization are being explored in
animal models and will soon progress to clinical trials.96,97

ECM remodelling affects angiogenesis in several ways, but its con-
tribution to vascular regression is of fundamental importance to
tissue repair. The persistence of newly formed vasculature in an
inflammatory context leads to the maintenance of the disorder.
More studies are therefore needed to define the role of macrophages
and other immune cells during the regression of neovasculature in dis-
eases such as atherosclerosis, and may lead to strategies for genetic or
pharmacological manipulation of macrophage activity to promote
vessel regression and contribute to tissue repair.
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