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Dynamic radiation force has been used in several types of applications, and is performed by
modulating ultrasound with different methods. By modulating ultrasound, energy can be transmitted
to tissue, in this case a dynamic force to elicit a low frequency cyclic displacement to inspect the
material properties of the tissue. In this paper, different types of modulation are explored including
amplitude modulation (AM), double sideband suppressed carrier amplitude modulation AM, linear
frequency modulation, and frequency-shift keying. Generalized theory is presented for computing
the radiation force through the short-term time average of the energy density for these various types
of modulation. Examples of modulation with different types of signals including sine waves, square
waves, and triangle waves are shown. Using different modulating signals, multifrequency radiation
force with different numbers of frequency components can be created, and can be used to
characterize tissue mimicking materials and soft tissue. Results for characterization of gelatin
phantoms using a method of vibrating an embedded sphere are presented. Different degrees of
accuracy were achieved using different modulation techniques and modulating signals. Modulating
ultrasound is a very flexible technique to produce radiation force with multiple frequency
components that can be used for various applications.
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PACS number(s): 43.25.Qp, 43.35.Yb, 43.35.Mr [TDM]

I. INTRODUCTION

Ultrasound radiation force is the phenomenon of acous-
tic waves transferring their momentum upon striking or in-
teracting with an object thus creating a force and imparting
motion to the object.l’2 Investigation of ultrasound radiation
force and its applications has been an area of research for
almost 8 decades. Theoretical studies on radiation pressure
were undertaken in Refs. 1-7. Within the last 15 years appli-
cations of radiation force in the medical imaging field have
grown considerably making it an active area of research.

Ultrasound radiation force has been used to calibrate the
output of transducers using the radiation force balance
method.®> " The manipulation of spheres, drops, bubbles,
and other objects using radiation force has also been
explored.lHﬁ Methods based on radiation force have been
developed to characterize different materials such as soft
gelatin phantoms and soft tissue.' "

One of the emerging uses of ultrasound radiation force is
its use in ultrasound-based elasticity imaging. Focused ultra-
sound is used to exert a force on soft tissue and the mechani-
cal response is measured with ultrasound-based or other
methods.'**

Radiation force can be classified as either static or
dynamic.%’27 Static radiation force is produced using con-
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tinuous wave ultrasound to exert a constant force. Dynamic
radiation force is created using ultrasound that has some sort
of amplitude modulation through time.”*?’ The force
changes with time based on the modulating function.

Dynamic ultrasound radiation force can be subdivided
further into three categories: quasi-static, amplitude modu-
lated, and frequency modulated. The quasi-static case results
from using a finite duration toneburst of ultrasound, which
exerts a transient force while the ultrasound is transmitted.
This type of radiation force is used in acoustic radiation force
impulse (ARFI) imaging where short tonebursts of ultra-
sound are used to impulsively excite tissue and the response
is measured with ultrasound."’

Amplitude modulated ultrasound can be used to create a
harmonic or multifrequency radiation force. This type of ra-
diation force has been used in vibro-acoustography and shear
wave elasticity imaging to displace tissue with a known har-
monic function.”***** The use of amplitude modulation
will be the main subject of this study and general cases will
be described in more detail.

Lastly, frequency modulation (FM) of the ultrasound
signal can be used to create a radiation force that changes
frequency with time. Typically, the frequency shifts linearly
through time and a “chirp” results. Chirped ultrasound has
been used in radiation force applications in vibro-
acoustography and in applications using contrast mi-
crobubbles to reduce standing wave artifacts.’* 2

Modulation is used in communications to transmit infor-
mation in one frequency band using a carrier signal that can
be transmitted over large distances. In our case, we use ul-
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trasound at megahertz frequencies as a carrier signal to trans-
fer energy, or a vibration force, at low frequencies, by modu-
lating the ultrasound to elicit the desired stimulation force.
We gain the advantage of beamforming at ultrasound fre-
quencies for localizing the radiation force energy to create
vibration motion at low frequencies such that the displace-
ments are large enough to be measured with ultrasound or
other techniques.

In this paper, we will present general theory that de-
scribes the formation of ultrasound radiation force using full
amplitude modulation (AM) as well as double sideband sup-
pressed carrier amplitude modulation (DSB-SC AM). The
generation of radiation force with different modulating func-
tions will be explored. Validation of the time- and frequency-
domain relationships will be demonstrated with experimental
data. Also, an example of material characterization using dif-
ferent modulation techniques and functions will be shown.

Il. METHODS

The acoustic radiation force on an object can be defined
as follows:

F(1) = d,SCE(1))r, (1)

where F(z) is the radiation force, d, is the drag coefficient, S
is the surface over which the ultrasound energy acts, and
(E(1))y is the short-term time average of the energy density.
The short-term time average is computed such that 7, the
averaging period, is longer than the period of the ultrasound
wave but much shorter than the modulation period, 27/ w,
<T<27/w,, where w, and w,, are the carrier (ultrasound)
frequency and the modulation frequency, respectively.22 If
we have an absorbing medium we can write F(z)
=2a(l(t));/ c=alE(t));, where «a is the ultrasound attenua-
tion coefficient and I(¢) is the ultrasound intensity.19 Assum-
ing plane wave propagation, the energy density is defined as

p()

E(t) = P

()
Three types of modulation will be explored in this paper:
amplitude modulation, double sideband suppressed carrier
amplitude modulation, and frequency modulation. In this pa-
per, we will ignore the spatial dependence of the focused
ultrasound fields as that adds another dimension of complex-
ity that is beyond the scope of this work.

A. AM

We start with amplitude modulation by defining A(z) as
the modulation function as follows, including a dc offset:>>

A=A L1+ px, ()], 3)

where A, is the amplitude, u is the modulation index that can
vary from 0= u=1, and x,,(t), where |x,,(1)] <1, is the base-
band or modulation function. The pressure for an AM ultra-
sound beam is given as

p(t) = A(t)cos(wct) = A [1 + px,, (1) Jcos(w.), (4)

where w, is the carrier frequency, or in this case the ultra-
sound frequency. Equation (4) can be expanded as
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p(t) =A, cos(w.1) + A ux,()cos(w,1). (5)

To find the radiation force we need to square the pressure
and take the short-term time average. We start by squaring
the relationship in Eq. (5) and expand using the trigonomet-
ric identity cos?(wt)=(1+cos(2wt))/2.

p(t) =A? cos*(w,1) +A§,u2x3,(t)cosz(wct)
+ 242 px,(1)cos*(w 1), (6)
1+cosRw, 1+cosRw, t
P =t LSRN | g et
2 2
1+ cosQw,t
24, 0 110220 )

After collecting terms, we arrive at the following expression
for the square of the pressure function:

AZ
pP= ?"[,ﬁx,i(t) +2ux,(1) +1]

2
+ %cos(cht)[,u,zxfn(t) +2,(1) + 1], 8)

Applying the short-term time average eliminates the terms at
2w, and the energy density is then computed in Eq. (10).

A2

PH))r= ;“wx,im +2,,(1) + 11, (9)
AZ

(EO)r=7 SLxn () + 24x,,(1) + 1]. (10)
pc

For the case in which x,,(f)=cos(w,,t), we can substitute and
rewrite Eq. (10) as
2

szz[y,2 cos?(w,,t) +2u cos(w, ) +1].  (11)

(E@)r=

Applying the same trigonometric identity as above and sim-
plifying give

AZ 2
(EW)r=—5| B-(1 + cos(w,t)) + 24 cos(wyt) +1 |,
2pce| 2

(12)

2

A
(E(t))r= Z Cz[uz cos(2w, 1) + 4 cos(w, 1) +2 + u?].
pc

(13)

The result in Eq. (13) is interesting because the energy den-
sity has a dc term, a term at w,, and at 2w,,. In most cases
m=1, which represents 100% modulation, but if w ap-
proaches 0, then the first term at 2w,, decreases.

B. DSB-SC AM

Now we will consider the case where the modulating
function is defined without a dc offset™
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A1) = A px, (1) (14)
We again consider the pressure signal

p(t) = A(t)cos(w,t) = A ux,,(t)cos(w,1). (15)
Squaring the pressure gives

PA(1) = Al (1)cos™(w, 1), (16)

and expanding and collecting terms give

2.2

A
Clu’ 2(t)+ c

P = xi(t)cos(2wct) . (17)

The short-term time average once again eliminates the term
at 2w, and the energy density is given in Eq. (19).

2.2

B2, (18)

<P2(t)>T=

2 2
c

wm»:A R0, (19)

For the case in which x,,(f) =cos(w,,t), we can substitute and
rewrite Eq. (19) as

2 2

<E(t)>r— cosz(w 1), (20)

and then expanding we obtain

2.2

(E(t))Tz Acp (l +cosw,,1)). (21)

This type of modulation provides a dc term and a component
at 2w,,, and in most cases u=1, which causes u’=1.

As another more complex case, we can define u=1 and
x,(f) as a square wave signal as has been previously
explored,34 but will be summarized here for emphasis.

t—T,/2 1 t
x,() = aII(—b) ® —IH(—). (22)
T, T, \T.

Using Bracewell’s notation and conventions, the radiation
force can be written as a temporal convolution of an impulse
train I11(7), with a time-shifted rectangular function II(r).*’
The time-shifted rectangular function has width 7}, ampli-
tude a, and the time shift is 7,/2. A repetition period of 7,, or
arate f,=1/T,, is used for the impulse train and 1/7, is used
to maintain umt height. The duty cycle can be written as D
=T/ T, =Tyf,

Squaring x,,(7) yields the same function assuming unit
amplitude. We can examine the frequency components by
evaluating the Fourier transform, where X,,(f) is the Fourier
transform of x,,().

X,.(f) = afb E e /Ty smc(n?) (f— —). (23)

r n=-—%

We can substitute the repetition frequency f, for the 1/7,
terms as follows:
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X,(f) =af,T, 2 ™ sinc(Tynf,)0(f —nf,).  (24)
We can further simplify by writing in terms of the duty fac-
tor.

X,,(f)=aD >, ¢™P sinc(nD)&(f - nf,). (25)

n=—0o

The square wave radiation force has components at harmon-
ics of the toneburst repetition frequency f,, and the amplitude
of those components will be governed by a sinc function that
has the duty factor in its argument. The frequency-domain
representation will be a set of impulses located at integral
multiples of f, and modulated by af,T,e™ "™ "/r sinc(T,nf,).

C. FM

If we consider frequency modulation we can write the
modulating function as™

A1) =A(1 + cos((1))). (26)

In this paper, we will consider ¢(7) to be a quadratic function
with respect to time defined as @(f)=((wy—w;)/(t,—1,))1
=(Aw/A1)f*. The instantaneous frequency, which is the de-
rivative of ¢(¢), is then a linear function d¢(r)/dt
=2(Aw/At)t. The pressure is defined as

p(t) = A(f)cos(w,t) = AC< 1+ cos( AA—(:ﬁ) )cos(wct) . (27)

We then square the pressure and take the short-term time
average and then arrive at the energy density.

A 2
p(t) =A§(1 + cos(A—c:ﬂ)) cos*(w,1)

Az[l +2 (Awrz) + (1 + (ZAwt2)>/2]
= COS| — COS —_—
¢ At At

1 2w, .t
X{( + cos(2w, ))]’ (28)
2
GOm0 a2 <&t2> A (2%#) (29)
PROIT= "y A8 Ty 4\ A )
3A§ A2 [Aw A? Aw
(E(t)}T— p 2C05<Et ) 4pc2cos<2Et2>.
(30)
If DSB-SC AM is used, A(f)=A,. cos(¢(r)), and (E(?)), is
defined as
342 A? ( Aw )
E())r=—5 - 22—t 31
< ( )>T 4PC2 + 4pC2COS Af ( )

D. Frequency-shift keying (FSK)

As an example of encoding the radiation force we
present an example using FSK. The principle of this modu-
lation technique is that the frequency of the carrier or the
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modulating signal is adjusted to binary bits, 0 and 1.% In this
study, we change the frequency of the modulating signal. To
accomplish this, traditional AM or DSB-SC AM could be
used and the modulating signal would change based whether
the bit in a code s[n] was 0 or 1. The energy density could be
defined as in the following equation using AM where x,, ()
is used to encode s[n] as 0 and x,, ;(7) is used to encode s[n]
as 1.
2

AC
2oLl + 2ing(®) + 1], s[n]=0

(EO)r=Y ., (32)

A
2p22['x3n,1(t) +2x,,(6) + 1], s[n]=1.

lll. EXPERIMENTS

We will present experiments designed to validate the
theory that has been presented above and give an example of
an application using multifrequency radiation force similar to
that presented in Ref. 28. We modulated an ultrasound signal
with different functions and derived the radiation force with
the pressure from the needle hydrophone measurements. Be-
cause the force is a quadratic function of the pressure, we
could not directly validate the force. We approached this
validation in an indirect fashion.

To validate the theory presented in this study and exhibit
an application of this general technique we measured the
motion of a steel sphere in a gelatin phantom as we changed
the modulating signal used. This is a variation of the method
introduced by Chen et al." to measure the viscoelastic ma-
terial properties of the gelatin by finding the frequency re-
sponse of the sphere induced by radiation force. First, we
will use the method described by Chen et al."” to character-
ize the viscoelastic material properties of the gelatin. We will
then use the theory presented below to compute the sphere
displacement from the force derived from the needle hydro-
phone measurements, and the theory that was presented
above. We will compare that displacement signal with the
displacement we measure.

There is also another more indirect way of validating the
theory that was presented above. If we use the same phantom
and change the modulating signal, we will induce different
motion. Using the derived force from needle hydrophone
measurements and the motion measurements, we can find the
material properties of the gelatin. If the developed theory is
correct, then we should obtain the same values for the mate-
rial properties regardless of the modulation technique.

These measurements with modulated ultrasound signals
will provide an application of this general method for the
characterization of the viscoelastic material properties in one
measurement as opposed to the original method put forth by
Chen et al.,'”” where multiple single frequency measurements
are performed.

A. Needle hydrophone measurements

Needle hydrophone measurements were performed to
measure the ultrasound radiofrequency (rf) signal in a water
tank. This signal was used to derive the radiation force time-
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and frequency-domain representations to compare with re-
sults from the analytic expressions detailed above. These
measurements will be used as a forcing function input for
later measurements made in a gelatin sphere phantom to
evaluate the transfer function of the phantom material. A 0.5
mm diameter needle hydrophone (NTR Systems, Seattle,
WA) was positioned in a large water tank at the focus of a
3.0 MHz transducer with a diameter of 45 mm and a spheri-
cal focus of 70 mm, which was assembled in-house using a
focused piezoelectric crystal (Boston Piezo-Optics, Inc.,
Bellingham, MA).

Different waveforms and types of modulation were used
for validation of the theory presented above. A sine wave of
frequency 100 Hz was used for x,(f) for AM, and a sine
wave of frequency 50 Hz was used for x,(r) for DSB-SC
AM. A square wave with a 50% duty cycle, 7,=5 ms and
T,=10 ms, was used with amplitude modulation. A triangle
wave was used with AM. An AM implementation with a
linear FM signal was wused with a bandwidth of
1 wHz-5000 Hz, and the frequency sweep was performed
in 50 ms. Lastly, a FSK signal was formed by defining a
digital zero as 8 cycles of a square wave with 50% duty cycle
with T, of 5 ms (f,=200 Hz) and a digital one as 4 cycles of
a square wave with 50% duty cycle with 7,=10 ms (f,
=100 Hz).

B. Steel sphere phantom study

From the ultrasound rf signals, the radiation force can be
calculated, within a constant multiplier, by squaring the pres-
sure and applying a low-pass filter for each modulation
waveform. We used the same waveforms as were character-
ized in the needle hydrophone measurements for vibrating a
440C stainless steel sphere with diameter of 1.59 mm em-
bedded in three types of gelatin phantoms. Phantoms 1, 2,
and 3 were made from 300 Bloom gelatin powder (Sigma-
Aldrich, St. Louis, MO) with concentrations of 10%, 10%,
and 12% by volume, respectively, and glycerol (Sigma-
Aldrich, St. Louis, MO) with concentrations of 0%, 10%,
and 10% by volume, respectively. A preservative of potas-
sium sorbate (Sigma-Aldrich, St. Louis, MO) was also added
with a concentration of 10 g/L to all three phantoms. Unless
otherwise noted, the results shown are from phantom 1. A
Doppler laser vibrometer (Polytec, Waldbronn, Germany)
was used to measure the velocity of the sphere. We measure
the velocity because it is proportional to the force imparted
on the sphere.

The velocity can be used to characterize the system if
the force is known. We can apply linear systems modeling
where v(¢) is the velocity, f(¢) is the force, and z(¢) is the
mechanical impedance function for the sphere/gelatin phan-
tom. The force is equal to the convolution of the velocity and
the impedance function.

JO) =v() © z(). (33)

In the frequency domain the force denoted as F(w) is the
product of the frequency-domain representations of the ve-
locity V(w) and the impedance Z(w).73°
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FIG. 1. Experimental setups. (a) Experimental setup with DSB-SC AM
modulation, sphere velocity was measured with the laser vibrometer and
lock-in filter. (b) Experimental setup with modulated ultrasound, sphere ve-
locity was measured with the laser vibrometer and recorded with PC-based
digitizer.

Flw)=V(w)Z(w). (34)

We can estimate the impedance function Z(w) by dividing
the force function derived from the transmitted ultrasound
measured before amplification by the measured velocity

= _Flo)

Z(w) = Vi) (35)
Using a model defined by Ostreicher and utilized by Chen et
al., we can find the shear elasticity u; and shear viscosity u,,
assuming a value of 1000 kg/m?® for the density of the
gelatin.”’37 We consider this method to be our gold standard,
or reference, measurement for w; and w,.

To obtain a reference measurement for characterization
of the gelatin, a DSB-SC AM signal with x,,(f) =cos(27f,,t)
where f,, was varied from 25 to 1000 Hz to yield vibration
frequencies of 50-2000 Hz. The output of the laser vibrome-
ter was processed by a lock-in amplifier (Signal Recovery,
Oak Ridge, TN) to obtain the measurements of the magni-
tude of the velocity. The advantage of using the modulated
ultrasound waveforms is that they produce multiple frequen-
cies so that the impedance function can be estimated in one
measurement compared to making a set of discrete measure-
ments at single frequencies with the lock-in filter. However,
when using modulation, each frequency component has a
different magnitude and so we must take that into account
when trying to characterize the mechanical system as indi-
cated in Eq. (35). We normalize for the magnitude variation
of the force when we use the DSB-SC AM method, varying
the frequency to one value at a time, because we ensure that
the same force magnitude is used for each measurement. A
figure of the experimental setup with the lock-in filter is
shown in Fig. 1(a) and with the digitizer in Fig. 1(b).
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For the experiment with the lock-in filter we use two
signal generators (33250A, Agilent, Santa Clara, CA) to gen-
erate signals at f, and f+f, where f;, is 3.0 MHz and f, is
the desired vibration frequency, and the carrier frequency is
fe=(fo+f,)/2. Those signals are added using a hybrid junc-
tion (M/A COM, Inc., Lowell, MA) and used as input to the
amplifier. The amplified output was applied to the 3.0 MHz
transducer. The ultrasound signals were also used as inputs
for a mixer. The output of the mixer was low-pass filtered to
get a reference signal at f, for the lock-in amplifier (Signal
Recovery, Oak Ridge, TN). The laser vibrometer output was
also input to the lock-in amplifier.

For the experiment with the PC-based digitizer (Alaz-
artech, Montreal, QC, Canada), the modulating signal x,,(¢)
was created using one signal generator (33250A, Agilent,
Santa Clara, CA) and that signal was applied to the external
AM input of another signal generator set at 100% modula-
tion index that was generating the 3.0 MHz ultrasound car-
rier frequency x.(r). The modulated signal was sent to one
channel of the digitizer and also amplified and applied to the
transducer. The laser vibrometer signal was sent directly to
the digitizer. The sampling frequency for both signals was 50
MHz.

We fit the velocity data from the laser vibrometer to the
model first presented by Ostreicher and subsequently used by
Chen et al., to characterize tissue mimicking gelatin”’37 to
find the viscoelastic parameters w; and u,.

_ F(w) B F(w)
)= @) = @) + (@)

(36)

The impedance terms, derived under plane wave conditions,
are given as

3

Z(w)=—1i pw

(-2 o2
ah  a*h? ah  a*h? aki+ 1

i 1\ &% a’k? ’
—+ |+ 2-—
ah a°h”)aki+1 aki+1

(37)

d7a’

Zm(w) == ps, (38)

where k= \/pwz/(Z,u,+)\), h=\pw?*/ u, p=p +iou, A=\
+iw\,, a is the radius of the sphere, p is the mass density of
the medium, u; and w, are the shear elasticity and viscosity
of the medium, \| and \, are the bulk elasticity and viscos-
ity, and p, is the mass density of the sphere. The values used
for this model implementation were p=1000 kg/m?, a
=0.794 mm, p,=7849 kg/m3, \;=2.48 GPa, and \,=0.
The curve fits to the model were performed using the nlin-
fit.m function in MATLAB (The Mathworks, Natick, MA).
To validate the theory on modulating ultrasound with the
measurements, we examine the displacement of the sphere
from theoretical and experimental bases. For the sphere in
the gelatin phantom we can derive the displacement by inte-
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FIG. 2. Validation methods for the multifrequency radiation force theory. (a)
The force is derived from the pressure measured by the needle hydrophone.
The pressure is squared and low-pass filtered and the spectrum is computed.
The force spectrum is divided by iwZ(w). The velocity measured by the
laser vibrometer was integrated to get displacement. The displacement spec-
trum was computed and compared to the signal derived from the needle
hydrophone. (b) The DSB-SC AM measurements made with the lock-in
amplifier provide a reference measurement of impedance Z(w), and a curve
fitting was performed to get u; and w,. The laser vibrometer velocity signal
is measured and the reference force signal is divided by V(w). The curve fit
is performed and w; and w, values are compared.

grating Eq. (36). In the frequency domain, this is accom-
plished by dividing both sides of the equation by iw, yielding

B V(w) _ F(w)
D)= = i0(Z(0) +Z,(w)

(39)

We can take the force that we derive from the pressure mea-
surements using the needle hydrophone and divide by the
product iwZ(w) that is computed from the results of the ref-
erence measurement using single modulation frequencies
and the lock-in amplifier. We then will compare this with the
measured displacement. If the theory is correct, the results
should match. A flow diagram of this process is shown in
Fig. 2(a).

We also used a large set of modulating waveforms to
estimate the impedance function for the gelatin phantom in-
cluding AM with square waves of duty cycles ranging from
25% to 80%, a triangle wave, a sawtooth wave, a linear FM
signal, and FSK performed with the square waves of duty
cycles ranging from 25% to 75%, a triangle wave, and a
sawtooth wave. Using DSB-SC AM we used a triangle wave,
a linear FM signal, and a FSK with a triangle wave. These
modulating signals yielded a multifrequency radiation force
and we evaluated how these types of signals could be used to
measure the mechanical properties of the gelatin phantom in
one measurement. The reference measurements and the mea-
surements with different modulating waveforms were per-
formed on all three phantoms that were made for this study.
A flow diagram for this process with the modulation func-
tions is shown in Fig. 2(b).
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FIG. 3. Modulation with sinusoidal functions. (a) Ultrasound pressure for
AM with sinusoidal function with frequency 100 Hz. (b) Ultrasound pres-
sure for DSB-SC AM with sinusoidal function with frequency 50 Hz. (c)
Calculated radiation force for modulation in (a) and (b). (d) Spectra for
radiation force in (c). The legend in (d) applies to (c) and (d).

IV. RESULTS
A. Needle hydrophone measurements

Figure 3(a) shows the ultrasound pressure for AM per-
formed with a sine wave with frequency of 100 Hz, and Fig.
3(b) shows the ultrasound pressure for DSB-SC AM per-
formed with a sine wave with frequency of 50 Hz. The wave-
forms appear filled because of the many ultrasound cycles
within the 50 ms timeframe of the transmission. Figure 3(c)
shows the calculated radiation force produced by the two
types of modulated ultrasound in Figs. 3(a) and 3(b). Figure
3(d) shows the frequency-domain representations of the sig-
nals in Fig. 3(c). The frequency components are in agree-
ment in proportion and frequency as the analytic expressions
in Egs. (13) and (21) for the AM and DSB-SC AM cases,
respectively.

Figure 4(a) shows the ultrasound pressure for AM with a
square wave with 50% duty cycle. Figures 4(b) and 4(c)
show the time- and frequency-domain representations of the
intensity, which is proportional to the radiation force. The
square wave has components at odd harmonics of the funda-
mental, 100 Hz. The components at the even harmonics are
low compared to adjacent odd harmonics and are probably
introduced because of the ultrasound overshoot at the begin-
ning of a toneburst, and the extra transmission or standing
wave at the end of the toneburst observed in the needle hy-
drophone measurements.

Figure 5(a) shows a triangle wave used for modulation.
Figures 5(b) shows the intensity when the triangle wave is
used in AM, respectively. The frequency-domain representa-
tions of the intensity are shown in Fig. 5(c). The triangle
wave modulation signal provides components at harmonics
of the fundamental frequency, 100 Hz. The use of different
modulating functions changes the amplitude of the compo-
nents that they produce in the radiation force.

Figure 6(a) shows a linear FM signal, and Fig. 6(b)
shows the intensity. The frequency-domain representations
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FIG. 4. Modulation with AM square wave with 50% duty cycle and fre-
quency of 100 Hz. (a) Modulated ultrasound, (b) Intensity for modulated
ultrasound in (a), and (c) spectrum for intensity in (b).

of the FM function and the intensity are shown in Fig. 6(c).
The use of frequency modulation provides a near constant
bilevel radiation force from O to 5 kHz and from 5 to 10 kHz,
which is separated by about 6 dB. However, the force is not
constant at the extremes of the bandwidth used, particularly
at the lower frequencies from 0 to 300 Hz and at the transi-
tion around 5 kHz.

For the case of the FSK with a square wave with two
different fundamental frequencies, Fig. 7(a) shows the modu-
lated ultrasound pressure signal. The intensity is shown in
Fig. 7(b), and the frequency-domain representation of the
intensity is shown in Fig. 7(c). The FSK square wave yields
components at the odd harmonics of the fundamental fre-
quencies of the modulating signals used to encode the differ-
ent bits, 200 and 100 Hz, respectively. From the first segment
(0-50 ms), components at 200, 600, 1000, 1400, and 1800
Hz result, and from the second segment (50-100 ms), com-

0.4 T T T T T T T T T
0.2 -

Pressure, MPa
o

0.2 b
04 I I I I L 1 I I L
0 5 10 15 20 25 30 35 40 45
Time, ms
(b)
" 6 T T T T
£
L
H
2
K
c
]
£

0 5 10 15 20 25 30 35 40 45

A
o

&
=)

A
S

I I I | !
500 600 700 800 900 1000
Frequency, Hz

1 I I I
0 100 200 300 400

Normalized Magnitude, dB
L
o

FIG. 5. Modulation with AM triangle wave with frequency of 100 Hz. (a)
Modulated ultrasound, (b) intensity for modulated ultrasound in (a), and (c)
spectrum for intensity in (b).
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ponents at 100, 300, 500, 700, 900, 1100, 1300, 1500, 1700,
and 1900 result. In total, using this 2 bit code yields 15
unique components.

B. Sphere phantom characterization

We measured the velocity of a sphere induced by the
multifrequency radiation force for different modulating func-
tions directly with the laser vibrometer and derived the dis-
placement by integrating the velocity signal. Figures 8(a) and
8(b) show the sphere displacement and velocity for the AM
square wave excitation. Figures 8(c) and 8(d) show the
sphere displacement and velocity for the AM triangle wave-
form. Figures 8(e) and 8(f) show the sphere displacement
and velocity for the FSK square wave signal. The displace-
ments look very similar to the force depicted in Figs. 4(b),
5(b), and 7(b) for the square, triangle, and FSK modulation
functions. There is some very low frequency drift that is
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FIG. 7. Modulation with AM using FSK with square wave frequencies of
200 Hz for 0-50 ms and 100 Hz for 50-100 ms. (a) Modulated ultrasound,
(b) intensity for modulated ultrasound in (a), and (c) spectrum for entire
intensity in (b).

Urban et al.: Modulated ultrasound and multifrequency force



(a) (b)
10 20

-10
-10 -20
20 30 40 50 0 10 20 30 40 50

Time, ms Time, ms

(c) (d)

@

Displacement, ym
& o

Velocity, mm/s
o

)
-
=)

IS
N

N

o
Velocity, mm/s

Displacement, um

N
A

20 30 40 50 0 10 20 30 40 50
Time, ms Time, ms
(e) ()

10 20

10
-10
-10 -20
0

20 40 60 80 100 0 20 40 60 80 100
Time, ms Time, ms

o
-
=

@

&

Displacement, um
h o
Velocity, mm/s
=
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for AM square wave. (c) Sphere displacement for AM triangle wave used in
Fig. 5. (d) Sphere velocity for AM triangle wave. (e) Sphere displacement
for FSK square wave used in Fig. 7. (f) Sphere velocity for FSK square
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most prevalent in the AM triangle wave results. These quali-
tative similarities are an indication that the theory used to
derive the force is correct.

The reference measurement with single frequencies was
carried out and yielded wu;=5.23 kPa and u,=0.72 Pas for
phantom 1. These values were used for computing the dis-
placement using Eq. (39) and the velocity using Eq. (36)
assuming a constant force for all frequencies. The normal-
ized magnitude spectra for the displacement and velocity are
shown in Fig. 9(a). If we look at these spectra from a linear
systems perspective, the displacement has a low-pass filter

(a)
T

1
Displacement
§ ML ===eeenes \feloOCity
£
:
g 06 ]
=
-
o
N o4l 1
<
=
S 0.2 ]
) | i | i L L T T T
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency, Hz
(b)
0 T ! !
) Theoretical
:- w6 Measurement
E -20 ]
éa.so ]
S -40 A
e = ]
........ G E i i &
..... ]|\ | i
= A e ﬂ ..... e I
| L | ' '

&
o

I I
400 600 800 1000 1200 1400 1600 1800 2000
Frequency, Hz

FIG. 9. Validation results using measured and calculated displacements. (a)
Calculated displacement and velocity responses assuming a constant force at
all frequencies. (b) Theoretical and measured displacement magnitude spec-
tra results. The theoretical magnitude spectrum was calculated using the
force derived from pressure measurements made with a needle hydrophone
[Fig. 4(b)] divided by the calculated product iwZ(w). The measured magni-
tude spectrum is from the displacement in Fig. 8(a).
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FIG. 10. Sphere phantom impedance functions and model fits for different
modulation functions. (a) Data, denoted by the open circles, and model fit,
denoted as the solid line, for DSB-SC AM with sinusoidal modulating func-
tion. The legends contain the material properties from the model fit in each
respective panel, (b) Data and model fit for AM with square wave with 50%
duty cycle as modulating function. (c) Data and model fit for AM with
triangle wave as modulating function. (d) Data and model fit for AM with
FSK square wave with 50% duty cycle as modulating function.

characteristic and the velocity has a bandpass filter charac-
teristic. The low-pass filter nature of the displacement re-
sponse agrees with the qualitative assessment of the mea-
sured displacement previously mentioned and displayed in
Fig. 8. We then took the derived force for square wave
modulation from Fig. 4(b) and divided it by the computed
product iwZ(w) and compared that with the measurement
from square wave modulation shown in Fig. 8(a). The nor-
malized theoretical and measured results are shown in Fig.
9(b). The agreement is very good. This result serves as veri-
fication of the modulation theory.

Figure 10(a) shows the reference measurement made
with the DSB-SC AM measurements and the estimated im-
pedance function. Figure 10(b) shows the magnitude spec-
trum of the sphere phantom impedance function derived
from the transmitted ultrasound and the velocity measured
by the laser for the AM square waveform. Figures 10(c) and
10(d) show the magnitude spectra for the impedance func-
tion obtained using the AM triangle modulating signal and
the FSK square wave signal, respectively. The number of
frequency components with high signal-to-noise ratio (SNR)
varies based on the modulating signal. The solid lines in the
plots in Fig. 10 are the curve fits to the model for the em-
bedded sphere in a viscoelastic medium. We performed this
for the different waveforms used in this study and tabulated
the results in Table I.

Noting that each modulating signal produces different
components with significant SNR in the radiation force, we
attempted to account for this fact by performing linear inter-
polation and extrapolation over the frequency bandwidth that
was used for the reference measurement, 50-2000 Hz. We
performed the linear interpolation and fit the results to the
model as was explained above, and those results are also
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TABLE 1. Model fitting results for viscoelastic properties of gelatin with
different modulation signals.

M M

M (kPa) Ha (Pass)
Modulation signal (kPa) (interpolation) (PaS) (interpolation)
DSB-SC sine (reference)  5.23 5.23 0.72 0.72
AM square 25% 5.15 5.32 0.62 0.88
AM square 30% 4.94 5.19 0.51 0.76
AM square 50% 4.57 5.60 0.19 0.77
AM square 75% 577 5.37 0.37 0.83
AM square 80% 5.89 6.00 0.53 0.57
AM triangle 5.27 5.55 0.67 0.59
AM sawtooth 5.22 5.30 0.58 0.63
AM chirp 5 kHz 7.24 6.85 —0.08 0.40
AM FSK square 25% 5.17 5.29 0.54 0.63
AM FSK square 50% 5.45 5.18 0.45 0.80
AM FSK square 75% 5.04 5.18 0.82 0.85
AM FSK triangle 5.47 5.56 0.86 0.90
AM FSK sawtooth 5.36 5.62 0.69 0.66
DSB-SC triangle 5.46 5.57 0.80 0.85
DSB-SC chirp 5 kHz 9.35 9.28 0.57 0.32
DSB-SC FSK triangle 5.33 5.44 0.79 0.87

summarized in Table I. Using the same modulation signals as
shown Fig. 10, linear interpolation was performed and the
model fits are shown in Fig. 11.

The reference measurement with single frequencies was
carried out on phantoms 2 and 3 and yielded u;=7.21 kPa
and ©,=0.52 Pas, and ;=892 kPa and u,=0.67 Pas, re-
spectively. The phantoms had increased shear elasticity, but
did not have increased shear viscosity. We compared the ma-
terial property estimates made from measurements using dif-
ferent modulation waveforms such as AM with square wave
with 50% duty cycle, AM with a sawtooth wave, AM FSK
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FIG. 11. Sphere phantom impedance functions and model fits for different
modulation functions. (a) Data, denoted by the open circles, and model fit,
denoted as the solid line, for DSB-SC AM with sinusoidal modulating func-
tion. The legends contain the material properties from the model fit in each
respective panel. (b) Interpolated data and model fit for AM with square
wave with 50% duty cycle as modulating function. (c) Interpolated data and
model fit for AM with triangle wave as modulating function. (d) Interpolated
data and model fit for AM with FSK square wave with 50% duty cycle as
modulating function.
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with square wave with 25% duty cycle, and AM FSK with a
triangle wave. Figure 12 summarizes those estimation results
for all three phantoms for u; and u, without and with inter-
polation. In general, the estimates for u; were similar to the
reference measurement, but the estimates for u, were more
varied.

V. DISCUSSION

Using different types of modulation and modulating sig-
nals yields radiation force with different shapes and spectra.
Using a sinusoidal modulation signal with either AM or
DSB-SC AM yields spectra with different components and
weighting of those components as predicted by the theory.
When more complex modulating signals are used such as a
square wave, a triangle wave, or a FM signal, the radiation
force contains multiple frequency components. The magni-
tude of those components also changes and so different
modulating signals could be used for different experiments
based on the desired excitation.

We measured the cyclic velocity of a sphere induced by
the multifrequency radiation force for different modulating
functions. Using the velocity signals, we were able to esti-
mate the viscoelastic properties of the gelatin in which the
sphere was embedded. Figure 10 shows the fits using differ-
ent modulation functions along with the reference measure-
ment that was made using DSB-SC AM with a single sinu-
soid and varying the frequency. Using the triangle and FSK
square waves seemed to produce results closest to the refer-
ence measurement, and the match was aided by the inclusion
of more frequency components.

When linear interpolation was performed to achieve data
with the same frequency resolution as the reference measure-
ment, the fits matched better. The linear interpolation helped
to compensate for frequency components that lacked signifi-
cant SNR for certain modulating waveforms. For example,
when using the square wave with 50% duty cycle [Fig.
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10(b)], we only obtained components at 100, 300, 500,...,
1900 Hz, but the interpolation filled components at 200, 400,
600,..., 2000 Hz and improved the fitting. This was quanti-
tatively evaluated and summarized in Table 1. In a majority
of cases, interpolation helped to improve the fits to obtain
values of u; and u, that were closer to those of the reference
measurement made at single frequencies. In general the val-
ues for u; were in good agreement. The value of u, was
more difficult to estimate consistently, probably because the
shear viscosity was fairly low. The worst results were given
with the AM chirp signal and that may be due to low SNR at
any given frequency during the course of the chirp as op-
posed to the other waveforms used. A slower chirp could be
used and may improve the results because more time would
be taken at a given frequency.

We compared the measured sphere displacement and
that derived from the theoretical development, and the agree-
ment was very good. We take this result as a validation of the
theory. We also observed that different modulation signals
yielded similar estimates of w; and u,. Using the data in
Table I, the median absolute percent errors in u; were 4.12%
and 3.94% without and with interpolation, respectively, and
the median absolute percent errors in u, were 21.54% and
16.56% without and with interpolation, respectively. The
higher percent errors for u, result because of the low value
of w,. This agreement among material property estimates
using different modulation signals would not be possible if
the general theoretical basis was flawed. These results serve
as an indirect validation as well as application of this multi-
frequency radiation force theory and method.

Modulating the ultrasound produces vibration with high
SNR for a selected group of frequencies depending on the
modulation function. The accuracy of the characterization of
the viscoelastic properties of the gelatin material is depen-
dent on the number of frequency components present and
their respective weighting. Depending on the suspected ma-
terial properties, one could choose one modulating signal
versus another to optimize the ability to characterize the ma-
terial. Either weighting at certain frequencies or desired
bandwidth could be considered.

AM is probably the most versatile modulation technique
while DSB-SC AM is also useful in creating modulated sig-
nals. FSK could be used for introducing codes into the radia-
tion force if there was an application that necessitated this
technique. FM could be used to distribute energy to a wide
bandwidth. The modulation technique used for a given ap-
plication depends on the way that the energy needs to be
distributed in the forcing function.

One of the advantages of using modulation to produce a
multifrequency radiation force is that one can obtain the
same data in one measurement that the reference method
took multiple measurements to obtain. The information gain
can be quite high and the signal strength can be concentrated
into known frequency components in the desired bandwidth
through proper selection of the modulation function.

Two applications have arisen that utilize multifrequency
radiation force to take advantage of obtaining information at
multiple frequencies in one measurement. Vibro-acous-
tography has taken advantage of this multifrequency radia-
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tion force using DSB-SC AM waveforms to create multiple
images from one scan.”® Another method called shear wave
dispersion ultrasound vibrometry (SDUV) uses square wave
modulation to transmit multiple tonebursts of ultrasound at
the frequency of the square wave f,, and then elicits shear
waves with components at harmonics of f,.25 The shear wave
velocity is estimated at f, and several of its harmonics to
estimate the shear wave velocity dispersion and characterize
the viscoelastic material properties of the tissue or medium.
One could also design modulating functions to empha-
size certain frequency components with specific weightings.
That signal could be entered as an arbitrary waveform in
hardware to be used for the analog modulation function.

VI. CONCLUSION

In this paper we presented general theory for modulating
ultrasound to produce multifrequency radiation force. We
showed that using different modulation functions can create
multifrequency radiation force with components at different
frequencies and different relative weighting. As an example
of the utility of using modulated ultrasound, we showed that
this method could be used to characterize the viscoelastic
properties of a tissue mimicking phantom material with dif-
fering degrees of accuracy based on the modulation function
using one multifrequency measurement. Techniques such as
SDUYV and vibro-acoustography use these modulation tech-
niques to perform noncontact, noninvasive characterization
and imaging of materials and biological tissues.
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