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Abstract
A C60

+ cluster ion projectile is employed for sputter cleaning biological surfaces to reveal spatio-
chemical information obscured by contamination overlayers. This protocol is used as a
supplemental sample preparation method for time of flight secondary ion mass spectrometry (ToF-
SIMS) imaging of frozen and freeze-dried biological materials. Following the removal of
nanometers of material from the surface using sputter cleaning, a frozen-patterned cholesterol film
and a freeze-dried tissue sample were analyzed using ToF-SIMS imaging. In both experiments, the
chemical information was maintained after the sputter dose, due to the minimal chemical damage
caused by C60

+ bombardment. The damage to the surface produced by freeze-drying the tissue
sample was found to have a greater effect on the loss of cholesterol signal than the sputter-induced
damage. In addition to maintaining the chemical information, sputtering is not found to alter the
spatial distribution of molecules on the surface. This approach removes artifacts that might
obscure the surface chemistry of the sample and are common to many biological sample
preparation schemes for ToF-SIMS imaging.

Imaging time of flight secondary ion mass spectrometry (ToF-SIMS) is an emerging
bioanalytical tool that allows molecular-specific images of biological samples to be acquired
with their native chemistry intact, at submicron resolution, and without employing labels.
However, the preparation of biological samples remains a limiting step in applying the
technique to answering specific biological questions [1–10]. Numerous methods have been
developed to make biological samples more amiable to the vacuum environment required
for ToF-SIMS, including freeze-drying with various rinses [2,11,12], metal imprinting [8],
metal deposition [2], freeze etching [3], freeze fracture [4,13], and vitrification [5]. These
methods have proven to be useful but all have shortcomings, the most limiting being
reproducibility.
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Ultimately, a SIMS experiment should yield an information-rich image, composed of intense
signals corresponding to the ions of interest. Sample preparation techniques might damage
the surface of the sample to some degree. Optimization of the sample preparation can be
problematic for tissues and cells because of inherent sample-to-sample variation and
identical procedures can produce sample surfaces with varying degrees of damage.
However, if the damage is confined to the surface of the sample, this interfering layer might
be removed and the underlying, undamaged material analyzed.

Surface bombardment using cluster ion projectiles has the unique ability to remove
molecular material with minimal damage accumulation to the underlying layers when
compared to atomic projectiles [14,15]. Also, these projectiles do not significantly
redistribute material from one layer to the next. This approach has been successfully applied
for several applications including molecular depth profiling [16–20] and 3-D imaging
[12,21,22], sputtering has been used to clean inorganic materials for many years [23] but has
not yet been used as a supplemental sample preparation method for SIMS imaging
biological materials.

Here, we demonstrate that it is possible to use the unique properties of cluster ion projectiles
to increase the reproducibility of current sample preparation methods for biological SIMS
imaging. The surface specificity of SIMS makes it possible for important information to be
obscured by a matrix overlayer or by a layer of damaged material at the surface. The
approach presented here demonstrates that it is possible to uncover spatio-chemical
information (the chemical identity of a compound as determined by the mass to charge ratio
with respect to the area of the surface where the ion originated) from below the sample
surface, thus overcoming some common artifacts caused by sample preparation.

In the presence of atmospheric water, frozen hydrated samples accumulate an ice layer on
the top of the surface to be analyzed. Likewise, freeze-fractured samples can be completely
covered in ice due to the unpredictability of the position in the fracture plane[24]. This ice
might not damage the surface; however, it is a layer of material that masks the chemical
information below the ice. Controlled removal of this layer could increase the
reproducibility of these two sample preparation methods. To examine the usefulness of C60

+

for removing a water layer from a sample without damaging the underlying chemical
structure, a simulated biological sample was created by using physical vapor deposition
(PVD). Briefly, an SEM finder grid was placed on a silicon substrate and cholesterol vapor
was allowed to condense on the surface. After deposition, the grid was removed leaving
behind a relief pattern of cholesterol with known spatial dimensions. The sample was then
cooled to LN2 temperature for 1 h, which allowed water from the vacuum environment to
condense on the surface forming an ice overlayer. After collecting a SIMS image, the ice
layer was removed using a C60

+ impact with a sputter dose of 6 × 1012 C60
+/cm2. From the

measured sputter yield of amorphous ice for a 40 keV C60
+ (4000 H2O/ C60

+) and the
molecular density (3.075 × 1022 molecules/cm3) we calculate that ≤ 8 nm of ice is removed
from the surface.

A SIMS image overlay of a patterned cholesterol film on a Si substrate is shown in Figure
1A prior to ice deposition. Here the patterned cholesterol islands are visible; Si is mapped in
red and cholesterol is mapped in green. The second panel (Figure 1B) contains an image
overlay following ice deposition; water is mapped in blue and cholesterol in green. The grid
pattern has been covered by the ice and cannot be resolved. Following sputter removal, the
grid pattern can once again be resolved and it is possible to detect molecular ion signals
(Figure 1C). The intensity of line scans for cholesterol taken across one of the grid lines in
the patterned film before water deposition and after water deposition and subsequent
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removal is shown in Figure 1D. These data demonstrate that there is minimal loss of lateral
resolution following the removal of the ice over layer.

To further investigate the value of employing C60
+ in sample preparation, axial slices from a

nine-day-old mouse embryo were studied. This model system was chosen because results
from a previous study carried out by Ding et. al. revealed increased cholesterol
concentration in specific regions of the embryo [25]. The samples were freeze-dried for this
imaging experiment without the use of any matrix or cyro-protectant; tissue slices were
excised and either rinsed in 18 MΩ water or incubated in a 100 µM solution of soluble
cholesterol for 30 min prior to rinsing in 18 MΩ water. After rinsing, the tissue samples
were plunge frozen in LN2 and introduced into the analysis chamber of the mass
spectrometer at LN2 temperature. The sample temperature was raised to −80° C, allowing
the ice to sublime into the vacuum (1 × 10−8 torr) of the analysis chamber. Examination of
the non-incubated tissue yielded insufficient cholesterol signal to establish differential
distribution in the tissue slice (both sputtered and non-sputtered samples, data not shown).

SIMS images of the cholesterol-incubated tissue were taken directly after freeze-drying. In
these images the cholesterol signal was weak and did not localize to any specific area of the
tissue (Figure 2B). The C60

+ probe was used to sputter-clean the surface to expose the
presumably undisturbed bulk of the tissue. The tissue was sputtered with a dose of 1 × 1013

C60
+/cm2, which removed approximately 50 nm of tissue from the surface. The thickness of

the amount removed was calculated using an estimated sputter yield of 500 molecules/ C60
+

and an estimated molecular density of 1 × 1021 molecules/cm3. These values were taken
from experiments performed using the disaccharide trehalose [16]. The amount of material
removed to uncover cholesterol localization is relatively small compared to the thickness of
the tissue slice (~ 300 µm). The subsequent image (Figure 2C) shows increased cholesterol
signal as well as localization to the genital ridge of the tissue in agreement with previously
published results [25]. These results suggest that the damage created during preparation of
the tissue samples without fixation, might only be confined to the shallow depths (tens of
nanometers) below the surface.

The changes in signal observed after removal of the surface of the tissue are shown in Table
1. After normalizing to total signal and image pixels, the cholesterol signal increased by 110
% and the phosphocholine (PC) signal decreased by 40 %. An increase in cholesterol signal
following sputtering is an unexpected result, as it has been shown that depth profiling of
cholesterol leads to an 1.2 to 4.5 fold drop in signal before a steady state is reached
[21,22,26]. It is important toemphasize that these experiments were carried out at cold
temperatures (T ≤ −80 °C), because it has been shown that there is significant migration of
cholesterol in tissue at temperatures above 0 °C in vacuum conditions [22,27]. The observed
increase suggests the sample prep method affects the surface distribution of molecules in the
pre-sputtered sample to a significant degree. The decrease in PC is expected; however, the
magnitude is less than expected based on depth profiling of a pure
dipalmitoylphosphatidylcholine (DPPC) film in which signal decreases by approximately
3.5 times less than the initial value [18]. These changes suggest that there are more intact
cholesterol and DPPC molecules available for ionization after sputtering than before due to
the removal of sample damage.

We have used a C60 ion beam as a nanotome to remove nanometers of interfering surface
material from biologically relevant samples without significant damage to the underlying
surface. The information uncovered would otherwise be unobservable with a surface
technique such as ToF-SIMS imaging. Using known and estimated sputter yields and
molecular densities, it is possible to remove material in a controlled and quantifiable
manner. This method of controlled etching might increase the number of analyzable
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biological samples for ToF-SIMS imaging. By removing the uppermost area of the surface,
where much of the sample-preparation-induced damage occurs, reproducibility between
samples might be significantly improved.
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Figure 1.
(A.) Positive SIMS image of patterned cholesterol film on silicon created using physical
vapor deposition, m/z 369 shown in green and m/z 28 in red. (B) The film was then cooled
in vacuum (−196°C) and water was allowed to deposit, m/z 18 shown in blue and m/z 369 in
green. The cholesterol layer is almost completely covered in water. (C.) After etching with a
dose of 1013 C60

+ ions/cm2 the patterned film beneath is revealed with maintained spatial
integrity. (D.) Line scans across the film features reveal that the distribution of cholesterol
on the surface is maintained when C60

+ is used to remove the water overlayer versus when
the surface is not cleaned with the C60

+ nanotome. Scale bars are 25 µm.
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Figure 2.
(A.) Scanning ion image (SIM) of an axial slice from a 9 day old mouse embryo. The gut
and the genital ridge are identified by white arrows. The images in (B) and (C) are SIMS
images of cholesterol (m/z 366–370) from the tissue in the SIM image. The image in (B)
was taken prior to a sputter dose of 1 × 1013 C60

+/cm2 and the image in (C) was taken after
nanotome sputtering. Scale bars are 100 µm.
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Table 1

Normalized ion signal following a sputter dose of 1 × 1013 C60
+/cm2

PC (m/z 184)* Cholesterol (m/z 366–370)**

Tissue Slice 1 70.4 202.6

Tissue Slice 2 52.1 207.8

Tissue Slice 3 58.4 221.4

Average 60 ± 9 211 ± 10

For comparisons of normalized signal before and after sputtering

*
p < 0.001

**
p = 0.01 (Students t-test).
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