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Abstract
Apolipoprotein mimetic peptides have been shown to dramatically reduce atherosclerosis in
animal models and may be an excellent mode of therapy to treat a variety of vascular
inflammatory conditions, of which atherosclerosis is one example. Published studies of
apolipoprotein mimetic peptides in models of inflammatory disorders other than atherosclerosis,
including viral influenza, asthma, chronic rejection after heart transplantation, sickle cell disease,
scleroderma, diabetes, cognitive dysfunction, and renal inflammation, suggest that apolipoprotein
mimetic peptides may have efficacy in a wide variety of inflammatory conditions.
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Introduction
Mimetic Peptides as Therapeutic Agents in Atherosclerosis

As early as 1990, Segrest and colleagues observed that the main protein component of high
density lipoprotein (HDL), apolipoprotein A-I (apoA-I), and its amphipathic helix peptide
analogues had potential as therapeutic agents [1•]. Studies involving the use of apoA-I in
animal models [2•], and in gene-expression studies [3•], suggested that apoA-I may be an
attractive therapeutic agent in patients with atherosclerosis. Segrest and Anantharamaiah
designed peptides that did not have sequence homology with apoA-I but contained class A
amphipathic helixes found in apoA-I [4–6]. These apoA-I mimetic peptides have been
shown to mimic a number of the properties of apoA-I and associate readily with
phospholipids forming complexes [5•,7]. ApoA-I mimetics also promote cholesterol efflux
[4,8•] as well as activate lecithin: cholesterol acyltransferase (LCAT), the enzyme
responsible for the maturation of plasma HDL [9]. Moreover these peptides have been
shown to interact with lipoproteins [10••] and remove hydroperoxy fatty acids from LDL
suppressing LDL oxidation in vitro [11,12]. Navab et al showed that a mimetic peptide
synthesized from only D-amino acids (D-4F) when administered orally to LDL receptor-null
(LDLR−/−) mice on a Western diet (WD), reduced aortic lesions 79% compared to controls
[13•]. Recently it was demonstrated that peptides synthesized from either D- or L-amino
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acids behave similarly. Ou et al administered D-4F and found improved arterial
vasoreactivity in LDLR−/− mice on a WD similar to results obtained with injected L-4F
[14••,15]. Van Lenten et al found that rabbits on a 1% cholesterol diet injected daily with
either D-4F or L-4F had similar reductions in lipoprotein inflammatory properties and the
percent of aorta with atherosclerotic lesions compared to controls [16•].

The efficacy of apolipoprotein mimetic peptides in atherosclerosis has not been limited to
apoA-I mimetics. Navab and colleagues [17] have shown that an apolipoprotein J (apoJ)
mimetic peptide, D-[113–122]apoJ, reduced atherosclerosis in apoE-null mice, as did
tetrapeptides too small to form helical structures [18]. Anantharamaiah and colleagues
designed a dual-domain peptide containing the arginine-rich domain of apolipoprotein E
(apoE) linked to a class A amphipathic helical peptide 18A [19]. A single administration of
this apoE mimetic peptide resulted in a dramatic clearance of very low density and low
density lipoproteins (VLDL and LDL, respectively), and restored endothelial function in
Watanabe Heritable Hyperlipidemic rabbits.

In human clinical trials, a study from Nissen and colleagues involving a small set of patients
provided evidence that administration of weekly intravenous doses of a genetic variant of
apoA-I, apoA-I “Milano”, for 5–6 weeks may achieve therapeutic benefit [20]. However, the
results from a subsequent larger short-term clinical study using a compound at a similar dose
(40–45 mg/kg) that contained wild-type apoA-I rather than a mutant form, and that included
patients with a substantially lower plaque burden, showed a reduction in atheroma volume
that was not statistically significant vs placebo, but did result in statistically significant
improvement in the plaque characterization index and coronary score on quantitative
coronary angiography. These results would suggest that longer periods of intravenous
administration will likely be required to realize significant cardiovascular improvement.

Mechanism of action of mimetic peptides of apolipoproteins
Atherosclerosis is a chronic inflammatory process mediated in part by phospholipid
oxidation, which in turn induces vascular cells to express various inflammatory molecules
[22,23]. The mechanism of action of apolipoprotein mimetic peptides in atherosclerosis
appears to relate to the binding of oxidized lipids and their removal from lipoproteins [24–
26]. Recent studies using surface plasmon resonance demonstrated that 4F peptides bound
oxidized lipids with a much greater affinity than did human apoA-I. However non-oxidized
fatty acids that varied in chain length and saturation were bound equally by apoA-I, D-4F,
and L-4F [27].

As will be discussed below, apolipoprotein mimetic peptides have been shown to be
effective in models of vascular disease other than atherosclerosis, and in inflammatory
processes that have an infectious etiology, suggesting that oxidized lipids may be important
mediators in a wide variety of inflammatory conditions.

Apolipoprotein mimetic peptides in models of infection and asthma
Owens et al observed in HIV-infected T cells and in recombinant vaccinia-virus-infected
CD4+ HeLa cells that apoA-I and its amphipathic helix peptide analogues inhibited the steps
of HIV infection involving membrane fusion, thus reducing viral replication [1]. Van Lenten
and colleagues, using LDLR−/− mice on a WD nasally infected with influenza A virus,
found that intraperitoneal (ip) injections of D-4F into the mice significantly reduced the
severity of viral pneumonia [28•]. The levels of IL-6 in both plasma and lung lysates were
markedly less after D-4F-treatment compared to controls. HDL taken from control mice
post-infection was pro-inflammatory whereas the HDL from mice treated with D-4F was
anti-inflammatory. Macrophage trafficking into the innominate artery and aorta was
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dramatically increased after viral infection in controls, however peptide-treatment
completely prevented macrophage infiltration. Evidence for anti-viral behavior of mimetic
peptides was also demonstrated. Lung viral titers in peptide-treated mice were half those
seen in controls. In a follow-up study [29] human Type II pneumocytes were infected in
vitro with influenza A virus. Viral infection caused significant increases in cellular content
and release into the media of parent non-oxidized phospholipid, 1-palmitoyl-2-arachidonyl-
sn-glycero-3-phosphorylcholine, as well as its oxidized products. Treatment of pneumocytes
with D-4F prevented viral-induced increases in cellular content and secretion of oxidized
phospholipids but not of non-oxidized phospholipids. There was a time-dependent increase
in the production of interferon-α and -γ post-infection that was significantly inhibited by
D-4F-treatment. Likewise, there was a dramatic time-dependent increase in the activation of
a caspase cascade involved in apoptosis post-infection that was significantly prevented by
D-4F. Viral infection dramatically increased the release of IL-6 from pneumocytes that was
inhibited by D-4F. As was the case in vivo [28] in vitro viral titers were significantly
reduced with D-4F [29].

As the studies above demonstrated, influenza infection in Type II pneumocytes resulted in
the formation and release into the media of oxidized phospholipids derived from oxidation
of arachidonic acid-containing phospholipids. D-4F-treatment of these cells, however,
suppressed the increased formation and release of these oxidized phospholipids [29]. ApoA-
I mimetics such as D-4F, by virtue of their ability to avidly bind lipids, may be important in
binding and deactivating lipid oxidation products, reducing their cellular and media
concentrations, and could therefore play a crucial role in decreasing pulmonary
inflammation. Nandedkar and colleagues [30] sensitized C57BL/6J mice with ovalbumin,
and mice were either intranasally-treated with D-4F once a day for 4 weeks, or received no
treatment for 4 weeks. At the time of sacrifice samples were collected for eosinophil
peroxidase activity (EPO) in the bronchioalveolar lavage fluid (BAL), lung histology, 15-
lipoxygenase (LOX) expression, and pro-inflammatory HDL (p-HDL) levels. D-4F-
treatment decreased EPO in BAL, and reduced histological lung inflammation, 15-LOX
expression, and p-HDL levels. The authors concluded that D-4F significantly decreased p-
HDL and other indices of airway lung inflammation in a murine model of asthma suggesting
that apoA-I mimetic peptides may provide a safe and effective alternative to inhaled steroids
in treating inflammation in asthma.

Apolipoprotein mimetic peptides in a model of chronic rejection after heart transplantation
Chronic rejection of transplanted hearts is the leading cause of death among heart transplant
recipients. Using a transgenic approach, Araujo et al demonstrated that systemic rather than
local heme oxygenase-1 (HO-1) overexpression improves cardiac allograft outcomes in a
transgenic mouse model [31]. In a murine model of chronic rejection after heart
transplantation [32,33], B6.C-H2bm12 strain donor hearts were transplanted into wild-type
C57BL/6 recipient mice. The transplanted mice were injected ip with saline or saline
containing D-4F. The D-4F-treated animals showed a dramatic reduction in cardiac allograft
vasculopathy (intimal thickening leading to narrowing or occlusion of the vessels in the
transplanted heart). Treatment with D-4F also reduced the number of graft-infiltrating CD4+

and CD8+ lymphocytes and CXCR3+ T-lymphocyte subsets. In addition, HO-1 mRNA was
up-regulated in the donor hearts after D-4F treatment, and HO-1 inhibition by a competitive
inhibitor, tin protoporphyrin, partially reversed the beneficial effects of D-4F. In vitro
studies revealed that peptide-treatment reduced allogenic T-lymphocyte proliferation and
effector cytokine production by mechanisms independent of HO-1. The authors concluded
that this class of peptides with anti-inflammatory and anti-oxidant properties provides a
novel strategy for treatment of cardiac allograft vasculopathy.
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Apolipoprotein mimetic peptides in models of sickle cell disease (SCD) and scleroderma
Hypercholesterolemia and SCD impair endothelium-dependent vasodilation by different
mechanisms. Hypercholesterolemia impairs vasodilation by an LDL-dependent mechanism.
SCD has been characterized as a chronic state of inflammation in which xanthine oxidase
(XO) from ischemic tissues increases vascular superoxide anion (O2*-) generation.
Pritchard and colleagues tested the effects of the apoA-I mimetic peptide L-4F on
hypercholesterolemic mice and on SCD mice [14]. Arterioles were isolated from
hypercholesterolemic LDLR−/− mice and from SCD mice that were treated with either
saline or L-4F. Both hypercholesterolemia and SCD impaired vasodilation in the mice,
which was dramatically improved in both cases by L-4F. L-4F inhibited LDL-induced
increases in O2*- in arterial segments, decreased XO bound to pulmonary endothelium, and
increased liver XO/XDH (xanthine dehydrogenase) content compared with levels in
untreated SCD mice, a sign of decreased ischemic injury. The authors proposed that L-4F
restores vascular endothelial function in diverse models of disease and may be applicable to
treating a variety of vascular diseases. Pritchard and colleagues also studied tight-skin mice
(Tsk(−/+)), a mouse model of systemic sclerosis (scleroderma, SSc) [34]. SSc is an
autoimmune, connective tissue disorder that is characterized by impaired vascular function,
increased oxidative stress, inflammation of internal organs, and impaired angiogenesis.
Tsk(−/+) mice have a defect in fibrillin-1, resulting in replication of many of the myocardial
and vascular features seen in patients with SSc. After 6–8 weeks, saline control Tsk(−/+)
mice demonstrated impaired endothelial nitric oxide synthase (eNOS)-mediated vasodilation
that was significantly improved in mice treated with D-4F. Tsk(−/+) mice also had elevated
levels of plasma triglycerides which were normalized with D-4F-treatment. D-4F also
improved endothelium-, endothelial nitric oxide synthase-dependent, and flow-mediated
vasodilation in Tsk(−/+) mice. The hearts from the Tsk(−/+) mice contained significantly
higher levels of angiostatin and autoantibodies against oxidized phospholipids that were
reduced by half with D-4F-treatment. These investigators concluded D-4F may be effective
at treating vascular complications in patients with SSc.

Apolipoprotein mimetic peptides in models of diabetes
Abraham and colleagues examined the effects of daily ip injections of D-4F on O2*-,
extracellular superoxide dismutase (EC-SOD), vascular heme oxygenase (HO-1 and HO-2)
levels, and circulating endothelial cells in rats made diabetic by administration of
streptozotocin [35]. With D-4F-treatment, both the amount of protein and the activity of
HO-1 were increased. D-4F-treatment also decreased O2*- levels compared with untreated
diabetic rats. The average number of circulating endothelial cells was higher in diabetic rats
than controls and was significantly decreased in D-4F-treated rats whereas the impaired
relaxation typical of blood vessels in diabetic rats was prevented by D-4F. Western blot
analysis showed decreased EC-SOD levels in diabetic rats that were restored by D-4F. The
authors concluded that increases in circulating endothelial cell-sloughing, superoxide anion,
and vasoconstriction in diabetic rats can be prevented by D-4F. In a subsequent study,
Abraham and colleagues [36] investigated whether chronic use of D-4F would lead to up-
regulation of HO-1, endothelial cell marker (CD31(+)), and thrombomodulin (TM)
expression and increase the number of endothelial progenitor cells (EPCs) in streptozotocin-
treated rats. D-4F or vehicle was administered by daily injection for 6 weeks. HO-1 activity
was measured in liver, kidney, heart, and aorta. After 6 weeks of D-4F-treatment, HO
activity increased in the heart and aorta and caused a significant increase in TM and
CD31(+) expression. D-4F-administration increased anti-oxidant capacity (as reflected by a
decrease in oxidized protein and oxidized LDL), and enhanced EPC function, as evidenced
by an increase in EPC eNOS and prevention of vascular TM and CD31(+) loss. In
conclusion, HO-1 and eNOS are relevant targets for D-4F and may contribute to the D-4F-
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mediated increase in TM and CD31(+), the anti-oxidant and anti-inflammatory state, and
robust vascular protection in this animal model of type1 diabetes.

Apolipoprotein mimetic peptides in a model of brain arteriole inflammation and dementia
In large arteries such as the aorta, a few sentinel macrophages are always present that
“patrol” the subendothelial space removing accumulated cellular debris as part of the innate
immune system, even in the human fetus [37–39]. In diseases such as atherosclerosis there is
an influx of monocytes into the subendothelial space of these large arteries in response to the
production of chemokines such as monocyte chemotactic protein-1, or MCP-1. With time,
the monocytes convert into macrophages and become foam cells. Arterioles are the smallest
arterial vessels ranging in size from 10 to 100 mm in diameter and without significant
subendothelial space. Thus, the sentinel macrophages associated with brain arterioles, the
microglia, are found intimately associated with their adventitia. Buga and colleagues found
that upon feeding LDLR−/− mice a WD there was a marked increase in microglia
associated with brain arterioles [40]. D-4F (but not an inactive scrambled peptide, ScD-4F)
reduced the percent of brain arterioles associated with CCL3/macrophage inflammatory
protein-1α (MIP-1α) and CCL2/MCP-1. A WD increased brain arteriole wall thickness and
smooth muscle α–actin, which was reduced by D-4F but not by ScD-4F. There was no
difference in plasma lipid levels, blood pressure, or arteriole lumen diameter with D-4F-
treatment. Neuronal cells are known to have surface receptors for MCP-1 and MIP-1α and
one might expect that neuronal/brain function might change as a result of the increased
association of these chemokines with brain cells. Cognitive performance in the T-maze
continuous alternation task and in the Morris Water Maze was impaired by a WD and was
significantly improved with D-4F but not ScD-4F. It was concluded that hyperlipidemia can
induce brain arteriole inflammation resulting in increased levels of diffusible chemokines
that can interact with surrounding brain cells resulting in cognitive impairment. However a
significant reduction in the inflammation of brain arterioles could be achieved with apoA-I
mimetic peptides commensurate with an improved cognitive function in this model [40].

Apolipoprotein mimetic peptides in a model of hyperlipidemia-induced renal inflammation
In addition to hyperlipidemia, feeding a WD to LDLR−/− mice results in insulin resistance
and elevated plasma glucose levels [41–43]. A major problem facing Western societies is an
increase in chronic renal disease that appears to be associated with dyslipidemia and
diabetes in addition to hypertension [43]. Oxidized phospholipids have been identified as
potent mediators of inflammation [22,44]. Buga et al [45] asked if feeding a WD to LDLR−/
− mice would induce the formation of oxidized phospholipids in the kidney resulting in
renal inflammation, and would D-4F-treatment inhibit this inflammation. Based on previous
work from Jiang and colleagues [46] and Berliner and colleagues [47,48] Buga et al also
asked if the Western diet would increase SREBP-1c mRNA levels and if D-4F would
repress the increase in renal triglycerides. Indeed, the authors found that feeding a WD to
LDLR−/− mice for 7 weeks induced hyperlipidemia with elevated plasma glucose levels
associated with increased renal SREBP-1c mRNA levels, increased renal triglyceride levels,
increased renal oxidized phospholipid levels, and renal inflammation. D-4F-treatment
significantly reduced the formation of oxidized phospholipids and significantly prevented
the increase in SREBP-1c mRNA expression elicited by the WD. Moreover, D-4F prevented
triglyceride accumulation in the kidneys and significantly reduced renal inflammation
without altering plasma lipids, lipoproteins, glucose or blood pressure. It was concluded that
D-4F-treatment reduced renal oxidized phospholipids resulting in lower expression of
SREBP-1c which in turn resulted in lower triglyceride content and reduced renal
inflammation [45].
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Conclusions
In the present review, anti-inflammatory properties of apolipoprotein mimetic peptides have
been demonstrated in a number of animal models for disease including atherosclerosis. As a
therapeutic agent with the potential for reversing atherosclerosis, apoA-I has been shown in
animal models and humans to have promise. However, because of its size, apoA-I must be
administered intravenously, making it commercially both difficult and costly. Moreover,
from clinical trials data [20,21], it would appear that since the doses of apoA-I compounds
used were similar in both studies cited (40–45 mg/kg), coupled with the observation [27]
that 4F apolipoprotein mimetic peptides have a much greater binding affinity than native
apoA-I for oxidized lipids, which may be important in promoting the atherosclerotic
process, the pharmacokinetics would suggest it will likely take a longer period of treatment
to effect significant reductions in plaque volume with larger apoA-I compounds, given that
higher doses may be toxic [21]. 4F is a small, apoA-I mimetic peptide that in addition to
being anti-atherogenic, reduces the effect of pro-inflammatory molecules generated by
oxidized lipids. Because it is a small peptide, it can be produced economically.

Why these peptides are so effective in such a wide variety of disease states may be due to a
common mechanism of action. In vitro, D-4F caused a dramatic redistribution of apoA-I
from α-migrating to β-migrating particles in apoE-null mouse plasma, suggesting that D-4F
is acting directly on HDL or some plasma component that in turn remodels HDL. In vivo, in
apoE-null mice, despite the small amount of D-4F absorbed 20 minutes after an oral dose,
D-4F rapidly caused the formation of cholesterol-containing particles with pre-β mobility
that were enriched in apoA-I and paraoxonase activity. As a result, lipid hydroperoxides in
lipoproteins were reduced, HDL became anti-inflammatory, and HDL-mediated cholesterol
efflux and reverse cholesterol transport from macrophages were stimulated [24]. In addition,
we have reported that D-4F was much more anti-inflammatory than human apoA-I in LDL
receptor null mice with influenza A viral pneumonia [28]. Since the maximum plasma levels
of D-4F achieved in mice after administration are only about ~ 130 nM [24], and plasma
levels of apoA-I in mice are ~ 35 µM, it has been difficult to understand how 4F peptides
might achieve their beneficial effects in vivo. The dramatic difference in binding affinities
for oxidized phospholipids between the mimetic peptides and apoA-I could explain how
these apoA-I mimetic peptides exert their potent biological activities, even when surrounded
by a “sea” of apoA-I [27]. That oxidative stress may be a common thread running through
the disease states discussed in this review, suggests that a strategy seeking to design anti-
inflammatory apoA-I mimetic peptides should not focus on the binding properties of the
peptides for non-oxidized lipids, but rather should focus on developing peptides that bind
oxidized lipids with very high affinity.
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