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ABSTRACT

RNA abundance and DNA copy number are routinely measured in high-throughput using microarray and next-generation
sequencing (NGS) technologies, and the attributes of different platforms have been extensively analyzed. Recently, the
application of both microarrays and NGS has expanded to include microRNAs (miRNAs), but the relative performance of these
methods has not been rigorously characterized. We analyzed three biological samples across six miRNA microarray platforms
and compared their hybridization performance. We examined the utility of these platforms, as well as NGS, for the detection of
differentially expressed miRNAs. We then validated the results for 89 miRNAs by real-time RT-PCR and challenged the use of
this assay as a ‘‘gold standard.’’ Finally, we implemented a novel method to evaluate false-positive and false-negative rates for all
methods in the absence of a reference method.
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INTRODUCTION

MicroRNAs (miRNAs) are regulatory noncoding RNA
molecules z20–23 nucleotides (nt) long, generated by two
cleavage events mainly from RNA Pol II primary transcripts
(pri-miRNAs) via a z70-nt imperfect stem–loop interme-
diate (pre-miRNA). Over 10,000 miRNAs from 115 species,
ranging from vertebrates (Lagos-Quintana et al. 2001) to
viruses (Pfeffer et al. 2004), are currently deposited in the
miRNA registry (miRBase version 14) (Griffiths-Jones et al.
2008). These include z700 (out of up to z3400 predicted)
(Sheng et al. 2007) human miRNAs.

miRNAs mediate the translational repression, and some-
times degradation, of target mRNAs mostly by directing an
RNA-induced silencing protein complex to imperfect com-
plementary sequences in their 39UTRs (van den Berg et al.
2008). Up to z60% of human genes are putative targets of

one or more miRNA (Friedman et al. 2009). miRNAs play
a role in all major biomolecular processes, including me-
tabolism (Krutzfeldt and Stoffel 2006), cell proliferation
(Bueno et al. 2008) and apoptosis (Jovanovic and Hengartner
2006), development and morphogenesis (Stefani and Slack
2008; He et al. 2009), stem cell maintenance, and tissue
differentiation (Shi et al. 2006). miRNAs are reported to be
involved in 94 human diseases (Jiang et al. 2009), ranging
from psychiatric disorders (Barbato et al. 2008) through
diabetes (Hennessy and O’Driscoll 2008) to cancer (Medina
and Slack 2008).

Three principal methods are used to measure the ex-
pression levels of miRNAs: real-time reverse transcription-
PCR (qPCR) (Chen et al. 2005; Shi and Chiang 2005),
microarray hybridization (Yin et al. 2008; Li and Ruan
2009), and massively parallel/next-generation sequencing
(NGS) (Hafner et al. 2008), all of which face unique chal-
lenges compared to their use in mRNA profiling. In terms
of microarray analysis, the short length of mature miRNA
sequences constrains probe design, such that often the
entire miRNA sequence must be used as a probe. Conse-
quently, the melting temperatures of miRNA probes may
vary by >20°C. qPCR assays, traditionally relying on the
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specificity provided by a number of contiguous probes,
compensate for the compromised sequence specificity by a
stringent spatial constraint (39 terminal or near-terminal
sequences). A similar constraint is also imposed by stem–
loop microarray probes (Agilent). NGS of miRNAs can be
influenced by sequencing errors and often requires search
and removal of adaptor sequences before the miRNA
sequence itself can be elucidated.

A second challenge in measuring miRNA levels arises
from the existence of miRNA families, the largest encom-
passing nine variants (hsa-let-7a–i), whose members differ
by as little as one nucleotide but nevertheless exhibit dif-
ferential expression patterns (Roush and Slack 2008). The
stringency required to differentiate between these closely
related miRNA species surpasses that of conventional mRNA
microarrays. This challenge is partly addressed by ensuring
that hybridization-based assays are performed at high enough
temperatures to reject cross-hybridizing transcripts. In addi-
tion, microarrays with probes containing locked nucleic acid
(LNA) bases (Exiqon) provide higher annealing affinities,
potentially allowing the assay to discern between individual
miRNA family members and somewhat equalizing the melt-
ing temperatures of probe sequences. Finally, advances in
sequencing technology have accelerated both the discovery
rate of new miRNAs and modifications to existing miRNA
entries, reflecting subtle variations in mature miRNA se-
quences (e.g., post-transcriptional editing or terminal residue
addition) (Landgraf et al. 2007). As a result, the continued
refinement of miRNA databases necessitates frequent changes
to miRNA array probe design and annotation.

The technical merits and drawbacks of qPCR, micro-
arrays, and sequencing of miRNAs are similar to their ap-
plication for RNA or genomic DNA quantitation. The clear
advantage of high-throughput sequencing is the ability to
identify novel miRNAs. This technology is not hindered by
variability in melting temperatures, coexpression of nearly
identical miRNA family members, or post-transcriptional
modifications. However, both the RNA ligation (Bissels
et al. 2009) and the PCR amplification (see below) steps
bear inherent biases, the method is laborious and costly,
and associated tools for computational analysis are in their
infancy. qPCR is often considered a ‘‘gold standard’’ in the
detection and quantitation of gene expression. However,
the rapid increase in number of miRNAs renders qPCR
inefficient on a genomic scale, and it is probably better used
as a validation rather than a discovery tool.

As with genomic DNA and RNA analysis, microarrays are
still the best choice for a standardized genome-wide assay
that is amenable to high-throughput applications. Over 400
existing publications have utilized commercial or in-house
printed miRNA microarrays. The differences between avail-
able platforms range from surface chemistry and printing
technology, through probe design and labeling techniques, to
cost. Unlike for mRNA gene expression (Shi et al. 2006),
comparative genomic hybridization (Baumbusch et al. 2008),

or chromatin immunoprecipitation (Johnson et al. 2008)
assays, few attempts have been made to establish rigorous
parameters for the evaluation of a miRNA microarray
platform, especially in light of the specific challenges miRNAs
present.

We have undertaken a systematic comparison of six
commercially available miRNA microarray platforms rep-
resenting single- and dual-channel fluorescence technolo-
gies, using three well-defined RNA samples (Git et al.
2008), and compared the results with NGS and qPCR. This
study represents, to the best of our knowledge, the most
comprehensive comparison of the performance of methods
to detect differentially expressed miRNAs to date.

RESULTS

Microarray comparison study design

As a preface to this study, we extensively evaluated RNA
extraction and quality control (QC) methods to ensure
a high standard of quality for the RNA samples used (data
not shown). The biological samples were representative of a
realistic application of miRNA microarrays in a cancer
research institute. Moreover, biological replicates of these
samples have been previously profiled by contact-printed
and bead-based microarrays (Git et al. 2008), providing
a comparative reference for QC during preliminary stages
as well as in final analyses (e.g., tumor suppressor [TS]
miRNAs) (see Fig. 3B, below).

Three samples were analyzed in this study: a pool of
commercial RNAs from normal breast tissue (N), the lu-
minal breast cancer cell line MCF7 (M), and a breast pro-
genitor cancer cell line PMC42 (P), which exhibits many
normal-like characteristics. All three samples, extracted in
bulk and quality assured, were labeled and hybridized in
quadruplicate to six commercially available microarray
platforms in strict accordance with the protocols recom-
mended by the manufacturers (see Materials and Methods).
The microarray platforms used in this study were the Agilent
Human miRNA Microarray 1.0; Exiqon miRCURY LNA
microRNA Array, v9.2; Illumina Sentrix Array Matrix 96-
well MicroRNA Expression Profiling Assay v1; Ambion
mirVana miRNA Bioarrays v2; Combimatrix microRNA
4X2K Microarrays; and Invitrogen NCode Multi-Species
miRNA Microarray v2. For simplicity, each platform is
referenced throughout after its manufacturer name.

Microarray hybridization performance

Figure 1 depicts the distributions of several measures of
hybridization quality and consistency, such as the signal-to-
noise ratio (SNR) (Fig. 1A), the coefficient of variation
(CV) between replicate spots and arrays (Fig. 1B,C), and
pairwise correlation between arrays (Fig. 1D). Overall, the
SNR generated by the Normal samples was the highest, and
MCF7 was the lowest for each platform evaluated. This
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FIGURE 1. Analysis of hybridization performance. (A) Signal-to-noise ratio for the raw 532 nm/Cy3 (green banner) and 635 nm/Cy5 (red banner)
intensities for all spots on the individual arrays was calculated using the SSDR method. For Illumina arrays, this calculation was impossible as only the
foreground intensities were available. Purple indicates arrays with M samples; red, N, and blue, P. For clarity of presentation, the y-axis was truncated
at 15, thereby excluding some extreme outliers. The distribution of the log2 standard deviation between pixels within each spot scaled to the median
spot intensity is shown on the right (gray banner). (B) Intra-array coefficients of variation across replicated spots on each array were calculated for the
unprocessed Cy3 and Cy5 intensities (bar and banner colors as above), and the log2 ratios (M-values, yellow banner; orange bars indicates M/P; yellow;
P/N, green, N/M). Arrays with a red asterisk were excluded from subsequent analysis. (C) Interarray coefficients of variation were calculated for arrays
hybridized with the same samples (bar and banner colors as above). (D) Pairwise correlations for arrays hybridized with the same samples were
calculated (15–18 correlations). Distribution of R2 values are shown in box plots (bottom row), with the highest (top row) and lowest (middle row)
correlations shown as examples. The axis for the bottom row was truncated at 0.55 for clarity, excluding some of the values for Invitrogen.
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agrees with the observation that overall miRNA content
is reduced in cell lines compared to tissue (Lee et al. 2008;
C Blenkiron and LD Goldstein, pers. comm.). PMC42,
a normal-like cell line, demonstrated intermediate levels of
overall miRNA expression. The difference was least pro-
nounced on platforms with a high within-spot pixel variabil-
ity (Combimatrix, Invitrogen) (Fig. 1A, right panel), since the
SNR not only depends on fluorescent signal intensities but is
inversely proportional to the standard deviation of both
foreground and background pixels, so that high spot unifor-
mity contributes to higher SNR. Some typical spot artifacts
leading to low uniformity were indeed observed during
feature extraction (‘‘doughnut-shaped’’ spots for Invitrogen
indicate high signal on the outside of spots, low on the inside,
and the opposite pattern for Combimatrix) (data not shown).

We then examined the variability between replicates spot-
ted on the same array (intra-array CV) (Fig. 1B). For dual-
channel arrays, the 532-nm (Cy3, green) and 635-nm (Cy5,
red) fluorescence intensities and their log2 ratios (M-values)
were treated separately, since localized signal variations
occurring in both channels may cancel each other out. We
observed no consistent differences between single- and dual-
color platforms, and although CV’s varied considerably
between some platforms, they tended to be consistent within
platforms, with the exception of two arrays subsequently
excluded from downstream analysis.

The interarray CV’s (Fig. 1C) were calculated for each
type of probe (several different probe types might target the
same miRNA) across all replicate spots on the four replicate
arrays. These typically include 12–24 values, although some
probes (e.g., controls or empty spots) were present in greater
numbers; for example, Agilent arrays contain more than 3000
empty spots. Single-channel hybridization was more consis-
tent across replicates, as evident from the overall lower CV
values, but these differences were ameliorated when the
M-values, rather than the individual Cy3 and Cy5 intensities,
were considered for the dual-color platforms. Reproducibility
between hybridizations was also assessed by pairwise com-
parison of replicate arrays. The distribution of the resulting
R2 values as well as the most and least consistent examples
from each platform, are illustrated in Figure 1D. Although all
platforms demonstrated at least one replicate pair with
greater than 0.9 (and usually >0.95) R2 correlation, their
distribution was much wider. Notably, unlike the interarray
CV values, the dual-channel replicates with low correlation
(below an R2 of 0.8) showed poorer agreement when treated
as M-values instead of Cy3 and Cy5 intensities. This may be
due to the inaccuracy of M-values for low-intensity spots. In
particular, negative control or empty replicate spots were
considered individually for the pairwise comparison, thus
strongly affecting the distribution of M-value correlations,
but were condensed into single values across all interarray
replicates for the interarray CVs (Fig. 1C).

We then proceeded to analyze the consistency of the
detected spots for each platform. First, the frequency of

‘‘present/marginally present’’ or ‘‘absent’’ calls was calculated
for each spot on the arrays based on the intensity of negative
controls and empty spots (see Materials and Methods) (Fig.
2A). The platforms varied significantly in the consistency of
associated present/absent calls, visually represented by the
thickness of the ‘‘belt’’ region separating the red (consistently
‘‘present’’) and blue (consistently ‘‘absent’’) zones of the
bars: whereas the ‘‘belt’’ values comprised fewer than 20% of
the probes in Agilent, they accounted for over half the
probes in Invitrogen arrays. This variation stems from
interarray variability and the availability of spots to evaluate
the background distribution. For example, despite the very
similar interarray CV of the M-values in Ambion and
Combimatrix assays (Fig. 1C), the consistency of calls on
the Ambion array platform was higher.

Microarray probe mapping and hybridization
specificity

Due to the inherent difficulties associated with miRNA probe
design outlined in the introduction, the complements of
miRNAs targeted by each platform are difficult to compare.
To allow an accurate comparison between the platforms, we
reannotated all the probes against miRBase version 12 using
uniform criteria (see Materials and Methods). Although the
total number of probes varied significantly across platforms,
the number of human miRNAs represented on the array
was fairly constant and depended mainly on the miRBase
version at the time of array design. The overall characteristics
of probes represented in each platform and the effect of re-
annotation are summarized in the ‘‘probe properties’’ section
of Table 1.

Reannotated probes were divided into categories based on
information from the manufacturers and our remapping of
probe sequences (see Materials and Methods). The categories
are listed and color coded in the legend to Figure 2, B and
C, according to our approximate expectation regarding
their intensity (high/red to low/blue). Of particular interest
were human miRNAs and potential cross-hybridizing probes
(mouse miRNAs and probes with mismatches to human
miRNAs; MM_human). We counted the number of probes
called as ‘‘present’’ in each category (Fig. 2B) and examined
the distribution of their normalized signal intensities (Fig.
2C). Platforms varied both in overall signal intensity and
number of probes called ‘‘present.’’ The former property is
affected by a combination of labeling chemistry, input RNA
concentration, and hybridization efficiency, with Combima-
trix arrays producing the brightest signal. However, the low
numbers of ‘‘present’’ calls (127, 85, 105) on this platform
are similar to those produced by the low-intensity Invitrogen
arrays (49, 103, 100), underscoring the importance of dis-
tinguishing between the two metrics.

Within most platforms the signal and ‘‘present’’ rate also
varied extensively depending on spot category. As expected,
positive controls were usually among the brightest spots, and
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probes targeting human miRNAs had the broadest range
representing varying levels of expression or tissue specificity
of miRNAs. Probes matching mouse miRNAs or MM_
human miRNAs were clearly ‘‘present’’ in some platforms
and not others, indicating a degree of cross-hybridization be-
tween similar probes. For example, the intensities of mouse
probes or mismatched probes in Agilent did not differ
greatly from the negative or empty probes, and indeed, less
than 10 probes were called ‘‘present’’ in each category. In
contrast, the spread of Exiqon intensities in the mouse and
human_MM categories was large, and in the Normal sample,
‘‘present’’ calls were made for 68 mismatched probes and 43
mouse probes, representing 28% and 36% of the total
number of probes in the respective category. We note that
most of the mismatched probes identified by our uniform
reannotation are classified by Exiqon as ‘‘obsolete’’ or
‘‘not_designed_for_hsa,’’ so they may not exhibit the same
LNA spiking pattern as their perfect-match counterparts.
The distribution of signals upon removal of these probes is

available in Supplemental file ‘‘Exiqon annotation.’’ Probe
specificity is evaluated by Exiqon using synthetic RNA spike-
ins in a relatively low complexity background (yeast tRNA).
The biological relevance of the two analyses (mismatched
probes versus spike-ins) remains to be elucidated.

Worthy of mention is the considerable number of
‘‘present’’ calls made by most platforms in other categories,
such as miscellaneous or obsolete, and in particular the novel
category in Ambion containing proprietary ‘‘Ambi-miRs.’’
These results emphasize the limited information offered by
overall signal intensities or total number of detected features,
often quoted as measures of hybridization performance and
platform sensitivity.

Correlation of microarray and NGS data

We proceeded to sequence the mature miRNAs from each
of the samples using a Genome Analyzer II platform
(Illumina; hereafter abbreviated as GAseq). On average,

FIGURE 2. Analysis of detected probes. (A) Consistency of present/absent calls among human miRNAs. (Top) For each human probe, the
percentage of replicates detected (called present) by the platform was calculated and summarized (bars). The numbers above the bars indicate
number of probe replicates. (Bottom) Intensity distribution of human miRNAs (black) and the empty and negative spots used to calculate the
nonspecific binding (red), with the number of probes of each type listed below the plot. Illumina array data are missing from panels A and B, as
information regarding negative or empty spots was not available. (B) Detected spot types. Probes have been categorized based on their target
miRNAs (see Materials and Methods). The number of unique spots from each category being detected as ‘‘present’’ in >90% of its replicates across
all arrays was calculated for each of the three samples types. For categories with 10 or more present probes, the count is shown next to the figure, with
the proportion of the ‘‘present’’ calls out of the total probes in that category (%). The radius of each chart is proportional to the total number of
present spots, indicated above. The legend is shared with panel C. PosControl and NegControl are positive and negative controls, respectively;
MM_human, mismatched human. (C) Intensity range of the different spot types. For each of the spot types of panel B, the distribution of intensities
of background-corrected and normalized green or red log2 values across all arrays was calculated.
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12 million reads were obtained in each sequencing run, and
after filtering, 32%, 35%, or 63% (M, P, and N, respec-
tively) could be mapped to known miRNAs. Overall, 733
miRNAs were detectable (501 in M, 588 in P, and 608 in
N), and 472 of those had at least 10 cumulative counts
across the three samples. The number of reads obtained for
each miRNA was well-correlated to the respective micro-
array hybridization intensity (Pearson correlation 0.66 6

0.12, ranging between 0.42 and 0.87; see Supplemental file
‘‘Intensity Correlations’’). The 45 miRNAs that were not

identified in the sequencing data set, but for which expres-
sion levels were in the detection range of at least one micro-
array platform, were typically called ‘‘marginally present’’
in the latter, suggesting low cross-hybridization of the cor-
responding array probes.

To allow a direct comparison of the platforms’ perfor-
mances, we focused on the intersection of miRNAs repre-
sented on all platforms (Fig. 3A). A total of 215 miRNA
probes were included on only one microarray platform
(most often Exiqon), while 148 miRNAs were represented

FIGURE 3. Analysis of differential expression. (A) miRNA targeting by platforms. The number of reannotated miRNAs targeted by varying
numbers of platforms was calculated. Solid colors indicate miRNAs found only on the indicated platform; striped colors, miRNAs found on all
platforms except the indicated platform. The total number of human miRNAs on each platform is indicated in parenthesis. Black bar indicates 319
miRNAs represented on all microarrays. (B) Clustering of the common probe M-values. M-values of 204 human probes common to all
microarray platforms with no predicted cross-hybridization and detectable by GAseq were subjected to unsupervised clustering using Pearson
correlation. Ticks indicate the position of potential tumor suppressor (TS) miRNAs (blue) and miRNAs arising from a single genomic location
contained in a putative polycistronic pri-miRNA (black). A list of polycistrons is provided in Supplemental file ‘‘Polycistrons.’’ (C) Consistency of
DE calls by all platforms. The number of platforms calling each miRNA as DE (up-regulated, top; down-regulated, bottom) in each of the three
biological comparisons was recorded. DE calls were derived (1) using a uniform threshold of log2 fold-change>1 or (2) using optimal thresholds
calculated for each platform by the iMLE algorithm. The overall number of relevant DE calls made by each platform is indicated in parenthesis.
(D) Overlap in DE calls of five platforms. The number of miRNAs called by five platforms as up-regulated in P versus N sample using iMLE-
optimized cutoffs was plotted inside a Venn diagram. Areas are shaded according to number of DE calls and their relative sizes bear no meaning.
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on five out of the six microarrays. This was predominantly
due to their absence from the Ambion arrays, which were
designed against an earlier version of miRBase. Three hun-
dred nineteen miRNAs were targeted by all six microarray
platforms; of these, 204 had no predicted cross-hybridization
and at least 10 GA sequencing reads mapped to mature
sequences.

For these 204 miRNAs, the log2 ratios were calculated for
the M/P, P/N, and N/M comparisons and clustered based on
Pearson correlation (Fig. 3B). Importantly, as this analysis is
limited to a subset of miRNAs, it should not be considered
as a complete comparison of the three biological samples. All
M-values clustered according to the biological comparison
rather than platform type. Data obtained from the two PCR-
based methods (GAseq sequencing and Illumina micro-
arrays) consistently clustered together, as did the data from
the three microarray platforms exhibiting greater reproduc-
ibility (Exiqon, Ambion, and Agilent). The clustering of In-
vitrogen and Combimatrix data was inconsistent.

Recent reports have demonstrated the effect of normali-
zation on the interpretation of miRNA expression data
(Hua et al. 2008; Pradervand et al. 2009), which is certainly
magnified by combining data from several platforms. We
therefore tested whether our clustered normalized data re-
flected the coregulation of biologically meaningful groups, in
particular potential TS miRNAs frequently lost in cancer (Git
et al. 2008, and references therein), and groups of miRNAs
residing in close genomic proximity and potentially cotran-
scribed as a polycistronic pri-miRNA. Figure 3B (right) in-
dicates the relative positions of these miRNAs in the overall
clustering, clearly demonstrating correlated levels of both
potential TS miRNAs and the miRNA products of many
putative polycistronic transcripts. Among the latter category,
those groups that do not demonstrate coregulation may not
in fact be polycistronic or may be individually regulated by
post-transcriptional mechanisms.

We identified the differentially expressed genes on each
platform using a uniform arbitrary fold-change threshold
of 2 and corrected P-values of <0.05 (Fig. 3C, bars coded
‘‘a’’) and examined the agreement between platforms.
Surprisingly, the actual overlap between the differentially
expressed (DE) calls of the platforms was very low. Con-
sistent with the low rate of ‘‘present’’ calls, Invitrogen and
Combimatrix results were most frequently in disaccord
with the other microarray platforms, while GAseq, Illu-
mina, and Exiqon assays produced the highest numbers of
unsupported DE calls.

To eliminate the possibility that the low degree of over-
lap between platforms resulted from applying an arbitrary
uniform cutoff, we developed a novel iterative maximal
likelihood estimate (iMLE) algorithm to establish the op-
timal cutoff for each platform in view of the combined data
of all platforms. The overlap of the resulting DE calls is
presented in bars ‘‘b’’ in Figure 3C. Although the optimized
cutoffs increased the number of the fully overlapping DE

calls in all six sample comparisons, the vast majority of the DE
calls were still not unanimous across platforms. Whether this
disagreement ensues from nonspecific contributions, varying
degrees of cross-hybridization of miRNA family members or
reduced discrimination between unprocessed and mature
forms of the miRNAs (only Agilent’s probes are mature-
specific) is at present unknown and will necessitate the use of
specific synthetic spike-in oligonucleotides.

The difference in DE calls for each comparison is the net
result of sensitivity and specificity characteristics inherent
to each platform, and those exhibiting the highest sensi-
tivity are expected to make some unsupported DE calls and
to generate increasingly large overlaps with platforms of
lower sensitivity, evident as DE calls made by two to four
platforms (Fig. 3C, gray bars). We therefore examined the
nature of the overlap in DE calls. Figure 3D shows an
example of the overlap between GAseq and four of the six
microarray platforms tested (Invitrogen and Combimatrix
were excluded for ease of plotting) in identifying miRNAs
up-regulated in the P/N comparison. Here, 53 miRNAs
were called up-regulated by all platforms, and both GAseq
and Exiqon yielded a large number of unique DE calls (13
and eight, respectively), suggesting that at least one of the
platforms exhibits high false-positive (FP) calls (i.e., re-
duced specificity). Similarly, 10 and six miRNAs were called
significantly up-regulated by all platforms except Ambion
and Agilent, respectively (false negatives [FNs]), indicative
of lower sensitivity. In more complex overlap patterns, the
same number (seven) of Exiqon and Illumina’s overlapping
DE calls was supported or rejected by GAseq. Since all
platforms were given equal status, such data could not
easily be translated into specificity (true negative [TN]) and
sensitivity (true positive [TP]) values.

Correlation with qPCR results

Microarray and NGS data are regularly validated by qPCR.
We analyzed the expression of 89 miRNAs from multiple
overlap categories using either TaqMan or SYBR Green
assays. The log2 ratios of this miRNA subset for all plat-
forms were sorted according to the corresponding qPCR
values (Fig. 4A). Although the trend of M-values follows
that of the qPCR data, the magnitude of the M-value is
clearly different between platforms (ratio compression).
Occasional spurious values in single platforms are notice-
able as red or blue ‘‘islands.’’

The ratio compression can also be visualized by the slope
of the concordance between each platform and qPCR data
for each of the three biological comparisons, exemplified
for GAseq data in Figure 4B (average slope z1; i.e., no com-
pression). The average slopes for the microarray platforms
are listed in Figure 4B and range between 0.24 (Invitrogen)
and 0.61 (Ambion). Also evident in this plot is the shift in
the y-axis intercept, representing a consistent drift in the
measured ratio, also evident in microarray/qPCR plots
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(data not shown). This shift arises from the inherently
different ratio of the overall miRNA population and ex-
ternal reference genes used in qPCR normalization (e.g., 5S
rRNA). It has been repeatedly observed by ourselves and
others (Lee et al. 2008; C Blenkiron and LD Goldstein, pers.
comm.) that cell lines have a lower miRNA content per
total RNA (>85% of which is rRNA species) than tissue
samples. This trend is supported by the fact that despite
similar quality and quantity of RNA input the overall
hybridization signal in MCF7 arrays is lower than
in normal breast tissue arrays (Fig. 1A) with the normal-
like cell line PMC42 showing intermediate values. NGS
and microarrays are for the most part blind to such fluc-
tuations as they employ normalization techniques within
the miRNA population. As a result, every miRNA appears

to be better-expressed in M samples when measured by
GAseq compared with equivalent qPCR measurements,
where its levels are normalized to high 5S content, thus
consistently shifting the GAseq N/M ratios down (intercept =
�3.1). Similarly, M/P and P/N correlations are shifted
by +0.92 and +1.9, respectively.

The concordance of each platform with qPCR data was
measured as either Pearson correlation of all array
M-values against the matching qPCR M-values (comparing
columns in a traditional table layout) (Fig. 4B, R^2 values)
or the distribution of correlations of the M-values of in-
dividual miRNAs in the three comparisons (comparing
rows in a traditional table layout) (Fig. 4C, box plots). The
two measures do not necessarily agree (e.g., Invitrogen’s
median correlation is 0.93, although the overall average

FIGURE 4. Validation by real-time RT-PCR. (A) M-values of miRNAs tested by qPCR. Eighty-nine miRNAs validated by qPCR (rows) are
sorted by their qPCR M-values. Platforms (columns) are clustered by Euclidean distance. (B) Overall correlation between GAseq and qPCR data.
For each biological comparison, the ratios of miRNA expression calculated from GAseq were plotted against those derived from qPCR. Best linear
regression fit (solid lines; R^2 values, intercept with y-axis and slope indicated in legend); Y = X (dotted line). Average correlations and slopes
across the three comparisons are listed for each platform compared to qPCR. (C) Correlation between microarray/NGS and qPCR data. Boxes
depict the distribution of correlation for the M-values generated by qPCR and indicated platforms for each miRNA in all three comparisons (MP,
PN, NM), and the median value (Cor.median) is indicated above. Examples of consistent outliers are circled; hsa-miR-484 (red), hsa-miR-15a
(green), and hsa-miR-215 (blue). (D) Effect of DE cutoff on the TP and FP rate of each platform. The number of TP and FP DE calls, compared
with qPCR calls at fold-change >2 was calculated across a range of thresholds (0–5 in 0.1 increments). Only miRNAs with P-value <0.05 were
included for each platform; hence, the ROC curves do not cover the entire range of TP and FP rates. (E) True and false call rates of each platform at
optimal cutoffs. The number of TP and FP and FN DE calls was calculated at the optimal log2 cutoffs calculated based on a qPCR reference or on the
iMLE algorithm with qPCR as an unknown platform. The number of DE (equivalent to TP) and non-DE (equivalent to TN) calls made by these
references is shown with a thick frame. A horizontal black thick line separates true calls (below) from false calls (above). Abbreviations as in panel C.
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correlation is only 0.68). Discrepancies could arise due to
a relatively small number of poorly correlating outliers
(counted once for box plots but strongly skewing an overall
linear fit) or as a result of differences in the correlation
slopes of individual probes (i.e., rows), which—while pos-
sibly scoring well in a box plot analysis—reduce the quality
of the overall (i.e., columns) linear fit.

We then extended our analysis from continuous
M-values to discrete DE calls. Using the calls generated by
qPCR as a standard reference (195 DE/positive and 72 non-
DE/negative calls across all three comparisons), we counted
the number of TN and TP calls made by each platform at
multiple threshold values. The resulting ROC curves (Fig.
4D; Supplemental file ‘‘4D-Detailed’’) exemplify the effect
of a chosen cutoff on the perceived sensitivity and speci-
ficity of each microarray platform. The threshold values
generating the highest overall number of TP calls for each
platform was determined to be optimal and is consistent
with the ratio compression of each platform such that the
platforms exhibiting greater compression (e.g., Combima-
trix) perform better at lower cutoffs than those with lower
compression (e.g., Ambion). The number of TP and FP DE
and non-DE calls made by each platform is presented in
Figure 4E (qPCR bars).

Unexpectedly, some outliers in Figure 4C are miRNAs
that correlate poorly with qPCR across all platforms (colored
circles), suggesting that the FPs were generated by qPCR
(similarly to a recent observation by Ach et al. 2008), rather
than consistent errors across platforms incorporating differ-
ent probe design, hybridization conditions, and labeling
chemistries. We therefore repeated the DE analysis with the
qPCR data incorporated into the iMLE algorithm. Figure 4E
contrasts the number of true and false calls made by each
platform at the optimal cutoffs calculated using qPCR either
as a reference or integrated into iMLE. Consistently across
all platforms, the number of true calls calculated under the
iMLE algorithm was greater than those calculated using
qPCR as a gold standard. The iMLE (TP/TN) rates are as
follows: Agilent, 0.90/0.86; Exiqon, 0.82/0.85; Illumina, 0.87/
0.71; Ambion, 0.91/0.91; Combimatrix, 0.59/0.95; Invitro-
gen, 0.61/0.67; qPCR, 0.83/0.71; and GAseq, 0.85/0.56.
Omission of ‘‘obsolete’’ or ‘‘not_designed_for_hsa’’ Exiqon
probes resulted in minimal changes to these numbers
(60.2 in optimal fold-change cutoff and 60.04 in TP/TN
rates; data not shown). The low sensitivity (TP) of GAseq
contradicts the commonly expressed expectation of digital
miRNA profiling and was also recently reported in a com-
parative study using a pool of synthetic RNAs (Willenbrock
et al. 2009).

DISCUSSION

We present a comparison of the suitability of six micro-
array platforms and one NGS technology to detect differ-
ential expression of miRNAs. In our hands, Ambion,

Agilent, and Exiqon microarrays ranked highest in the rate
of true DE calls. During the course of this study, several
changes occurred in the handling protocols and microarray
design, some of which are summarized by the manufac-
turers in the Supplemental file ‘‘Manufacturers Com-
ments.’’ Moreover, NGS and miRNA microarrays are
now available from several additional manufacturers (e.g.,
Affymetrix microarrays, whose performance in comparison
to Agilent and Exiqon is currently under evaluation by
ABRF) (Web-report 2009). We therefore delineate generic
key criteria for the evaluation of current miRNA platforms,
including common aspects of microarray technology, such
as reproducibility, and aspects particular to miRNAs, such
as probe annotation and the utility of qPCR for validation.

Several practical considerations are worthy of mention
in miRNA microarray platform selection (Table 1). The
choice of single- or dual-channel platform depends on
the nature of the biological question investigated, and
reliable data were generated by all three single channel
platforms and the Ambion dual-channel platform. We
found that despite the overall lower signal intensity of cell
lines, all platforms were equally applicable to cell line and
tissue samples (to be corroborated in additional tissues).
The platforms vary widely in their input sample require-
ment, ranging from 100 ng of total RNA (Agilent) to small
RNA-enriched fractions equivalent to z10 mg total RNA
(Ambion and Combimatrix). Thus, despite Ambion’s
excellent TP and TN rates, the platform is not suitable
for studies where input material is limited. Similarly,
Ambion’s performance in detection of DE may be second-
ary to ease of handling or slide layout in studies with large
numbers of samples, or in a high-throughput core facility,
for which the labeling and hybridization protocols of
Agilent and Combimatrix would be better suited. Platforms
also varied in the reproducibility of hybridization, enu-
merated as CV across replicates (Fig. 1B,C) and consistency
of present/absent calls (Fig. 2A). Lower reproducibility
might prescribe a larger number of replicate arrays,
affecting the experimental design, computational analysis
and costing. Cross-hybridization can be estimated by the
signal distribution and present calls from mouse and
mismatched human probes as a surrogate measure (Fig.
2B,C). Surprisingly, the LNA probes used by Exiqon were
among the poorest in discriminating the groups of probes
classified using our uniform reannotation, although the
contribution of suboptimal LNA spike patterns could not
be evaluated. Finally, unique features such as the ability to
customize the microarray probe sets for specific applica-
tions (Agilent and Combimatrix), or supported array
stripping and reuse procedures (Combimatrix), come into
play for particular experimental needs.

Periodic changes to miRBase necessitate a reannotation
of microarray and qPCR probes prior to analysis. For
example, 35 novel miRNAs of each Ambion and Exiqon
match recent additions to miRBase. Our arrays, although

Comparison of miRNA measuring methods

www.rnajournal.org 1001



acquired within a few weeks of each other, were designed
and annotated against different versions of miRBase, re-
sulting in a low number of initially overlapping miRNA
identifiers. A substantial fraction of the discrepancies result-
ing from changes in miRNA nomenclature can be resolved
by consulting the tracking files available on miRBase without
further computational manipulation. However, changes to
the actual sequences of miRBase entries expose potential
cross-hybridization between previously unrelated probes and
therefore must be identified computationally. Unfortunately,
the sequence information provided by the manufacturers is
often partial (e.g., miRNA target rather than probe, or probe
without proprietary linker). At the two extremes, Combi-
matrix provides all probe sequences whereas Exiqon offers
only proprietary reannotation against miRBase updates,
reserving probe sequence information for users bound by
confidentiality agreements. This model restricts the inclusion
of sequence information in published research studies.
Laboratories with no access to fully exploratory methods
(such as deep sequencing) may benefit from microarray
platforms that include novel miRNAs (Ambion, Exiqon;
annotated by the manufacturers), provided that the un-
derlying probe sequences are disclosed.

High-throughput sequencing of miRNAs is coming into
wider use and is unmatched for the discovery and exper-
imental validation of novel or predicted miRNAs. However,
library preparation methods seem to have systematic
preferential representation of the miRNA complement,
resulting in different DE calls (Linsen et al. 2009) and the
approach awaits rigorous evaluation. We therefore focused
on the differential expression of 204 miRNAs represented
by all six microarray platforms as well as detected by
sequencing. We observed a low degree of overlap in the DE
miRNAs (consistent with Sato et al. 2009), not easily
attributable to the strength or weakness of singular plat-
forms. We implemented a novel algorithm (iMLE) in-
tegrating partial overlaps of DE calls in the calculation of
TP and TN rates. Furthermore, we show that qPCR is not
an infallible validation method of miRNA microarray data,
especially where the array technology itself incorporates
PCR-based amplification (e.g., Illumina). The question of
an ‘‘industry standard’’ in miRNA expression awaits further
advances in both technology (e.g., deep sequencing) and
computation (normalization and DE algorithms). iMLE-
based assignment of true values can also potentially help
amalgamate other binary datasets, such as peak-calling or
miRNA target predictions by different algorithms with no
need for a standard reference.

We illustrate the effect of using non-miRNA reference
genes for qPCR normalization on the perceived differential
expression of tested miRNAs. This effect is pronounced when
the overall abundance of miRNAs varies, e.g., in experiments
affecting the miRNA processing machinery, or in compari-
sons involving multiple tissues (such as demonstrated by Sato
et al. 2009) or combinations of tissues and cell lines. In such

cases, it is advisable to perform qPCR measurements of
numerous miRNAs, including those identified as stably
expressed, to obtain a measure of the linear correlation
intercept prior to assignment of validated DE values. Alter-
natively, microarrays and NGS can be used for mutual
validation, circumventing the need for external references.

To our knowledge this is the first systematic study
scrutinizing the relative performance of miRNA microarrays,
NGS, and qPCR across several well-studied biological sam-
ples. While our analysis is not intended to serve as a recom-
mendation for any particular platform, we present practical
criteria and metrics to evaluate the reproducibility, specificity,
and reliability of methods measuring miRNA expression.

MATERIALS AND METHODS

Preparation of total RNA and small-RNA
enriched samples

A pool of commercial normal breast tissue (hereafter termed
Normal) total RNAs was created from 78 mg comprising a five-
donor pool (BioChain Institute, lot no. A512460), 130 mg Hm
breast total RNA (Ambion AM6952, lot no. 02060262), and 75 mg
MVP human adult breast total RNA (Stratagene 540045-41, lot
no. 0870161). The breast cancer cell lines PMC42 (a gift from
Michael O’Hare, University College London) (Whitehead et al.
1983, 1984) and MCF7 (from ATCC) (Soule et al. 1973) were
cultured in RPMI or DMEM media (Invitrogen), respectively,
supplemented with 10% bovine calf serum (Invitrogen). RNA was
extracted from subconfluent cultures (estimated 85% density) that
were refed with fresh medium 24 h prior to harvesting. In brief,
cultures were washed once with cold phosphate-buffered saline
(PBS). Upon complete removal of the PBS, cells were lysed
directly in 8.4 mL of QIAzol (Qiagen), and total RNA was
extracted using 10 miRNeasy columns (Qiagen) according to
manufacturer’s recommendations.

Several 100 mg aliquots from each total RNA were further
separated into large- and small-RNA enriched fractions (cutoff
z200 nt) using the miRNeasy columns and reagents. The yield and
quality of the total RNA were monitored by spectrophotometry at
260, 280, and 230 nm, by Agarose gel electrophoresis, and on
a Bioanalyzer Eukaryote Total RNA Nano Series II chip (Agilent).
RNA integrity number (RIN) values were 9.4 (MCF7), 10.0
(PMC42), and 7.6 (Normal). The yield and quality of the small-
RNA enriched fraction (sRef) were monitored by spectrophotom-
etry (as above), urea/polyacrylamide gel electrophoresis (Git et al.
2008), and on a Bioanalyzer Small RNA Series II chip (Agilent).
sRef were extracted with a near 100% efficiency, contained pre-
dominantly tRNA and small rRNA, and comprised a different but
reproducible proportion of the total RNA in each sample: 14 6 1%
in MCF7, 12.5 6 0.5% in PMC42, and 6 6 0.2% in normal breast
tissue. The miRNA contained within these fractions was <0.5 ng per
10 mg total RNA (Git et al. 2008; data not shown).

Microarray study design

For single-channel platforms (Agilent, Illumina), each sample was
hybridized in quadruplicate (samples are termed M, MCF7; P,
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PMC42; and N, Normal throughout the text). For dual-channel
platforms, a balanced-dye design was employed in which quadru-
plicate hybridizations were set up in the following combinations:
Cy3-MCF7 with Cy5-PMC42 (sample MP), Cy3-PMC42 with
Cy5-Normal (sample PN), and Cy3-Normal with Cy5-MCF7
(sample NM).

The hybridizations for each quadruplicate were carried out on
two different days. Where possible replicates that were labeled side-
by-side were hybridized on different days, and those labeled on
different days were hybridized side by side. For microarray plat-
forms requiring near immediate application of the labeled samples
(Combimatrix, Exiqon), independent labeling reactions were car-
ried out on the day of the hybridization. For Ambion assays, two
independent sets of duplicate dried polyadenylation reactions were
frozen for <48 h, and labeling of individual replicates was com-
pleted immediately prior to hybridization.

RNA labeling and microarray hybridization

RNA input and labeling kits were chosen and used according to
the recommendations of each microarray manufacturer (Kreatech
labeling for Combimatrix arrays and the manufacturers’ labeling
kits for others). Arrays were hybridized for 16–20 h in an Agilent
G2545A hybridization oven and washed according to the manu-
facturer’s instructions. To minimize bias due to seasonal changes
in ultraviolet light and ambient ozone, we completed all in-house
experimental work at one location over a span of 6 wk.

Agilent

One hundred nanograms of total RNA samples was dephosphory-
lated, 39 end-labeled with Cy3-pCp, purified on Micro Bio-Spin
columns, dried, and hybridized using miRNA Microarray System
labeling kit and arrays (Agilent) (Wang et al. 2007).

Ambion

sRef samples equivalent to 10 mg total RNA were polyadenylated,
purified, dried to completion, coupled to Cy3 or Cy5 amine-
reactive dyes (GE Healthcare), purified, dried, and hybridized using
mirVana miRNA Labeling and Bioarrays Version 2 (Ambion)
(Shingara et al. 2005).

Combimatrix

sRef samples equivalent to 10 mg total RNA were coupled to Cy3-
or Cy5-ULS reagent using ULS Small RNA Labeling kit (Kreatech)
and hybridized to MicroRNA 4X2K Microarrays (Combimatrix).

Exiqon

One microgram total RNA samples was dephosphorylated, Hy3-
or Hy5- end-labeled, and hybridized using miRCURY LNA
microRNA Array Power Labeling kit and microarray kit (Exiqon).

Illumina

Two hundred nanograms of total RNA samples were processed by
Illumina using a Sentrix Array Matrix 96-well MicroRNA Expres-
sion Profiling Assay v1 (Chen et al. 2008). In brief, samples are
polyadenylated and reverse-transcribed, and the cDNA is hybrid-
ized to a specific primer pool and extended to incorporate address

tags and universal sequences. PCR-amplified samples are then
hybridized to address-coded beads on a solid support.

Invitrogen

One microgram of total RNA samples was polyadenylated, 39

splint-ligated to Cy3- or Cy5-labeled oligonucleotides, and hy-
bridized using NCode Rapid miRNA Labeling System and NCode
Multi-Species miRNA Microarray v2 (Invitrogen).

Microarray scanning and feature extraction

Illumina bead-based arrays were processed at the manufacturer’s
facility in San Diego, California. In brief, arrays were scanned on a
BeadScan instrument, and fluorescence intensities were extracted
and summarized using the BeadStudio software (Illumina), re-
sulting in a set of summarized fluorescence measurements (Sup-
plemental file ‘‘MPN_miRNA_Illumina’’). Agilent, Ambion, Exi-
qon, and Invitrogen arrays were scanned on a G2505B Microarray
Scanner (Agilent Technologies), and Combimatrix arrays were
scanned on the InnoScan700 (Innopsys). Feature recognition and
alignment of all in-house scanned images were carried out using
GenePix Pro 6.1 and, where necessary, adjusted manually by the
same operator. To minimize variation in alignment correction,
arrays from each platform were processed in a single session. Data
from Agilent, Ambion, Combimatrix, Exiqon, and Invitrogen
arrays have been deposited in ArrayExpress (http://www.ebi.ac.
uk/microarray-as/ae/; accession E-MTAB-96).

Microarray normalization and processing

Data analyses were carried out within the R statistical computing
framework version 2.8.0 (http://www.R-project.org) (R Develop-
ment Core Team 2008). Following quality control assessment, two
out of the 60 arrays hybridized in-house were excluded (see Fig. 1B)
due to either low intensity (Exiqon, sample M) or array-specific
artifacts (Combimatrix, sample PN). The overall Cy5 intensities in
Exiqon arrays were too low for reliable analysis, and the data from
the Cy3 channel was treated as a single-channel assay.

The limma package (Smyth 2005) was used for microarray
processing. Different methods for background correction were
tested for all platforms except Illumina (none, subtract, half,
minimum, movingmin, normexp) and normalization (none, vsn,
quantile), depending on whether the platforms were used for a
single- or dual-channel assay. Ultimately, normexp was chosen due
to its superior performance in correcting spatial artifacts, maxi-
mizing the uniformity of foreground and background signal, and
minimizing the variability within and between arrays. All plat-
forms were background-corrected using normexp, except for
Combimatrix, where minimum was used due to constraints
specific to the array layout. Dual-channel platforms (Ambion,
Combimatrix, Invitrogen) were normalized using loess spatial
correction within arrays, and single-channel platforms (Agilent,
Exiqon) were quantile normalized between arrays. Spike-in
controls were not used for normalization purposes as they were
only available for some of the platforms, and where present were
too few to be reliably utilized.

SNR was calculated using the SSDR method (He and Zhou
2008), mi/(siF + siB) (where m equals spot intensity; s, pixel
standard deviation; i, spot; F, foreground; and B, background).
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Microarray probe reannotation

All probe sequences were mapped to mature human and mouse
miRNA sequences from miRBase version 12 (Griffiths-Jones
et al. 2008) using WU-BLAST (Lopez et al. 2003). Ungapped
alignment was performed, using word length shorter than the
default when necessary. For ‘‘long probe’’ platforms (Ambion,
Invitrogen, Combimatrix, Illumina), all perfect match hits with
length greater than 15 were retained and filtered as described
below. For ‘‘short probe’’ platforms (Agilent, Exiqon), probes
with length greater than 15 were treated similar to the ‘‘long
probes’’ platforms, whereas for short probes only perfect match
hits with alignment length equal to probe length were considered.
Where alignments $20 bases were found, shorter alignments
were discarded. For alignments <20 bases, the longest was as-
signed to the given probe, or multiple miRNAs in the case of
matches of equal length. For alignments $20, there were occa-
sionally several possible miRNAs targets, and these were all
assigned to the probe to account for potential cross-hybridization.
A complete list of reannotated probes can be found in Supple-
mental file ‘‘Reannotation.’’

In cases where a probe sequence aligned to both a human
and mouse miRNA, targets were assigned to the probe under the
following priorities: human perfect match > human with one
mismatch > mouse miRNAs. Probes were finally grouped into the
following categories: PosControl, NegControl, and Novel: positive
or negative controls and putative novel miRNAs, respectively, as
defined by array manufacturer; Empty indicates spots with no
printed probes; Human and MM_human, probes targeting
human miRNAs with perfect complementarity or with a single
internal mismatch, respectively; Mouse, probes targeting mouse,
but not human, miRNAs; Obsolete, probes that were designed to
target miRNAs but do not map to targets in the current version of
miRBase; and Miscellaneous, probes outside the aforementioned
categories, such as probes targeting miRNAs from other species,
spike-in controls, and all unidentifiable probes.

We examined the signal intensities across probes of different
lengths and GC content. Some variation was observed (data not
shown), but since the binding kinetics for individual platforms are
affected by numerous factors, we did not attempt to correct for
these in the analysis.

Putative polycistronic miRNAs were defined as sets of miRNAs
sharing a genomic locus with no more than 500 bases between any
two adjacent miRNAs, and were obtained via the Clusters in-
terface of miRGen (Megraw et al. 2007).

Assignment of microarray present and absent spots

Spots were called as ‘‘absent,’’ ‘‘marginally present,’’ or ‘‘present’’
using a modified version of the R package ‘‘panp’’ (Warren et al.
2007). A probability distribution of signal intensities from empty
and negative control spots was calculated, and the cumulative
distribution function (CDF) generated. Each spot was called as
present or absent based on expression value cutoffs defined from
the survivor distribution (1-CDF) for each individual array, using
P-values of 0.05 (present) and 0.1 (marginally present). For dual-
channel arrays (Ambion, Combimatrix, and Invitrogen), each
channel was treated separately, and the percentage of present calls
for each miRNA was taken across both the Cy3- and Cy5-labeled
fluorescence data.

Identification of differentially expressed miRNAs

For single-channel platforms, M-values were calculated based on
the individual Cy3 data from each sample (hereafter also referred
to as M-values). Ratio compression was taken as the slope of the
linear least-squares regression of microarray versus qPCR across
all three biological comparisons. All M- and P-values are available
in Supplemental file ‘‘M_pValue_204probes.’’ The empirical Bayes
moderated f-statistics implemented in the R package limma was
used. Differentially expressed genes were identified using the
limma nestedF procedure, applying a significance threshold of
0.05 in combination with Benjamini–Hochberg false-discovery
rate control and unless otherwise specified, a minimal cutoff of 2.
Where multiple probes targeting the same miRNA did not agree,
one of two approaches was chosen for clarity of presentation: For
Figure 4D, we have assigned the corresponding miRNA with an
‘‘NA’’ value, while for Figure 4E, the miRNA was assigned with
the value of the probe that showed differential expression, as long
as the two calls were not contradictory (up- and down-regulated)
in which case the miRNA was assigned ‘‘NA.’’

Next-generation sequencing

sRef samples equivalent to 2 mg total RNA were ligated to a
preadenylylated 39 adapter v1.5 (59-rApp-[desoxy]ATCTCGTATG
CCGTCTTCTGCTTG-[didesoxy]ddC-39; Illumina or Dharmacon)
in 13 T4 RNL2 truncated reaction buffer (NEB), 10 mM MgCl2
(Ambion), 20 units of RNaseOUT (Invitrogen), and 300 units
truncated T4 RNA ligase 2 for 1 h at 22°C. The reactions were then
supplemented with 12.5 nmol 59 adapter (all RNA; GUUCA
GAGUUCUACAGUCCGACGAUC; Dharmacon), 1 mM ATP
(Ambion), and 20 units of T4 RNA ligase (NEB) and the second
ligation allowed to proceed for 6 h at 20°C. The double-ligation
products were reverse-transcribed by SuperScriptII reverse tran-
scriptase (Invitrogen) in the presence of primer GX1 (all desoxy;
CAAGCAGAAGACGGCATACGA; Sigma) following manufac-
turer’s instructions. The cDNA was PCR-amplified by Phusion
DNA Polymerase with Primers GX1 and GX2 (all DNA; AATG
ATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA;
Sigma) for 19 cycles of [10 sec at 98°C, 30 sec at 60°C, and 15 sec at
72°C]. The amplification products were separated on a Novex 6%
TBE gel (Invitrogen), and the 90–100 base-pair bands were excised,
eluted into 0.3 M NaCl, and ethanol precipitated. Following quality
control on a Bioanalyzer 1000 DNA chip (Agilent), the purified
DNA fragments were used directly for two independent repeats of
sequencing via 36 alternating cycles of enzymatic synthesis and
optical interrogation using the Illumina Cluster Station and GAII
Genome Analyzer following manufacturer’s protocols. Sequencing
reads were extracted from the image files generated by Genome
Analyzer II using the GAPipeline software, version 1.4 (Illumina).

NGS data analysis

39 adapters were trimmed from sequencing reads using an in-
house script (available upon request). Reads of length <15 nt after
adapter trimming and comprising more than 50% polyA stretches
were excluded from further analyses. The remaining reads were
mapped to known mature miRNAs (miRBases version 12) using
the ‘‘ssaha2’’ program (Ning et al. 2001), where 100% identity
between reads and known miRNAs sequences was required.
miRNAs with an aggregate count of less than 10 in all samples
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were eliminated (see Supplemental file ‘‘GA_Read_Counts’’); then
the total read count for each lane was scaled relative to the library
size (total number of reads that mapped to known miRNAs). Read
counts of technical replicates were then merged, and log2 (fold-
change) values were calculated for each miRNA. P-values were sub-
sequently calculated using a binomial approximation to Fisher’s
exact test for each miRNA.

Real-time RT-PCR (qPCR)

For SYBR green-based assays, sRef samples equivalent to 10 mg
total RNA were polyadenylated, reverse-transcribed using a tagged
and anchored oligo-dT primer, and then amplified using a gene-
specific forward primer and universal reverse primer (see Supple-
mental file ‘‘qPCR Primers’’) in the presence of SYBR green as
described by Git et al. (2008). For TaqMan assays (ABI), total
RNA samples were reverse-transcribed using a pool of gene-
specific primers and amplified using individual gene-specific
assays. All RT reactions were performed with three different
RNA inputs, and all PCR reactions were carried out in triplicate.
RNU48 and 5S rRNA were used as non-miRNA reference genes
for TaqMan and SYBR green qPCR, respectively. The measured Ct
values were M:11.24, P:11.63, N:11.70 (RNU48) and M:16.20,
P:16.50, N:16.27 (5S rRNA), and the magnitude of the variance
did not warrant DDCt normalization. Where miRNAs were tested
by both methods, the average correlation was 0.94.

iMLE algorithm

The input for the algorithm is a table of discrete DE calls (up-
regulated, +1; not DE, 0; down-regulated, �1) for each miRNA/
comparison combination (rows) made by each experimental plat-
form at a particular threshold value with P-value <0.05 (columns).
An initial ‘‘truth’’ value was assigned for each row according to the
majority of calls. A matrix (i,j) was then generated for each platform,
representing the proportion of cases where the assay called various
j for each Truth i, e.g., P(�1,�1) + P(�1,0) + P(�1,+1) = 1.
Subsequently the algorithm reiterated two steps until Truth values
converged: (1) selected for each row the Truth (�1/0/+1) with the
highest maximal likelihood estimate [MLE, defined as the product
of all platform probabilities to have given this Truth call under the
existing (i,j) parameters], followed by (2) a recalculation of the
platform matrices.

To determine the optimal cutoffs for each platform, the iMLE was
performed in an iterative fashion, where cutoffs were fixed for all but
one tested platform at a time, for which a series of discrete cutoffs
was tested, and the cutoff that yielded the highest number of correct
calls was fixed as a temporary optimum. This was repeated across all
platforms until each platform cutoff converged to a stable value. The
following measures were then extracted from the platform matrices:
TP [the average of (1,1) and (�1,�1)]; TN (0,0); FP [average of
(0,1) and (0, �1)]; FN [average of (1,0) and (�1,0)]; reverse
[average of (1, �1) and (�1,1)].

An outline of the algorithm is included in Supplemental file
‘‘iMLE Algorithm,’’ and the code for the implementation of the
algorithm is available from the authors upon request.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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