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Abstract

Chronic constant hypoxia (CCH), such as in pulmonary diseases or high altitude, and chronic
intermittent hypoxia (CIH), such as in sleep apnea, can lead to major changes in the heart.
Molecular mechanisms underlying these cardiac alterations are not well understood. We
hypothesized that changes in gene expression could help to delineate such mechanisms. The
current study used a neonatal mouse model in CCH or CIH combined with cDNA microarrays to
determine changes in gene expression in the CCH or CIH mouse heart. Both CCH and CIH
induced substantial alterations in gene expression. In addition, a robust right ventricular
hypertrophy and cardiac enlargement was found in CCH- but not in CIH-treated mouse heart. On
one hand, upregulation in RNA and protein levels of eukaryotic translation initiation factor-2a and
-4E (elF-20 and elF-4E) was found in CCH, whereas elF-4E was downregulated in 1- and 2-wk
CIH, suggesting that elF-4E is likely to play an important role in the cardiac hypertrophy observed
in CCH-treated mice. On the other hand, the specific downregulation of heart development-related
genes (e.g., notch gene homolog-1, MAD homolog-4) and the upregulation of proteolysis genes
(e.g., calpain-5) in the CIH heart can explain the lack of hypertrophy in CIH. Interestingly,
apoptosis was enhanced in CCH but not CIH, and this was correlated with an upregulation of
proapoptotic genes and downregulation of anti-apoptotic genes in CCH. In summary, our results
indicate that 1) the pattern of gene response to CCH is different from that of CIH in mouse heart,
and 2) the identified expression differences in certain gene groups are helpful in dissecting
mechanisms responsible for phenotypes observed.
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avariery of exeeriventaL and clinical studies have demonstrated that chronic hypoxia, whether
constant (CCH) or intermittent (CIH), has major effects on heart structure and function
(8,21). Although CCH from pulmonary disease, congenital heart disease, or high altitude is
not an infrequent clinical occurrence, the molecular mechanisms that lead to cardiac injury
or adaptation are not fully established. For instance, it has not been very clear which
molecular mechanism(s) induces cardiac hypertrophy during chronic hypoxia. Furthermore,
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different tissue responses have been found in patients suffering from intermittent compared
with sustained blood gas disturbances. For example, systemic hypertension is more
frequently seen in patients with sleep apnea than in patients with chronic obstructive
pulmonary diseases (21). These differences between intermittent and sustained blood gas
disturbances, such as hypoxia, have not been studied in detail and, indeed, have been limited
to phenotypic descriptions.

Technologies like microarrays have not yet been used to study differences between CCH
and CIH in heart. Because 1) there has been a paucity of studies on the effect of chronic
hypoxia on heart in early life, which may be different from that in the adult, and 2) it is
possible that CCH and CIH have a different impact on the heart, we performed
transcriptomic analyses and compared differences in gene expression between these two
types of hypoxia using the neonatal mouse.

MATERIALS AND METHODS

Hypoxia treatment

Histology

Microarrays

CD1 mice (Charles River) were placed in a hypoxia chamber (Biospherix) with their mother
starting on the second day after birth (P2) for 1, 2, or 4 wk. In CCH experiments, an O,
concentration of 11% was applied continuously. In CIH, we alternated O, concentration
between 21% for 4 min and 11% for another 4 min. The cycling was continuous for 24 h/
day for the period desired. At the end of each period, mice were anesthetized by inhalation
of isoflurane (Baxter Pharmaceutical Products). The hearts were removed and quickly
frozen in liquid nitrogen. Parameters such as body weight, organ weight, and hematocrit
were collected. The surgical procedures and protocols were approved by the Albert Einstein
College of Medicine (AECOM) Animal Care and Use Committee.

A total of nine hearts (3 hearts/group) from animals exposed to CCH, CIH, or room air for 4
wk were obtained for histological examination. Fresh hearts were fixed in 4%
paraformaldehyde overnight and transferred to 75% ethanol with double-distilled H,O for
paraffin embedding. The sections were stained with hematoxylin and eosin. The sizes of
cardiomyocytes were measured as transverse areas (um?) of the cells in at least 10 fields of
sections (x400 magnitude) using the image AxioVision 4.1 software (Zeiss, Thornwood,
NY).

Arrays were hybridized with cDNA from four individual animals at each age (1, 2, or 4 wk)
and treatment (CCH, CIH, or normoxia), as shown in Supplemental Fig. S1A (available at
the Physiological Genomics web site).1 The slides (28,704 spots, representing 7,455 distinct
genes with known protein products in
http://genome-www5.stanford.edu/cgi-bin/source//sourceBatchSearch, with several spotted
sequences probing the same gene), 11,686 expressed sequence tags (ESTs) whose
annotation was incomplete at the date of the study (eliminated from the expression analysis),
and 192 bacterial sequences for quality control of the arrays were obtained from the
Microarray Facility of AECOM. The hybridization process was performed according to the
instructions of the core facility. Briefly, total RNA (60 pg), extracted with TRIzol
(Invitrogen), was used to synthesize a fluorescently labeled cDNA probe by direct
incorporation with either Cy3 or Cy5 fluorescent dye (Amersham Biosciences) in separate

IThe Supplemental Material for this article (Supplemental Figs. S1-S4 and Supplemental Tables S1-S6) is available online at
http://physiolgenomics.physiology.org/cgi/content/full/00217.2004/DC1.
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reactions. Fluorescent cDNA probes were prehybridized with blocking solution for 1 h
before being applied to pretreated and prehybridized microarray slides. Hybridization was
done in GeneMachines HybChamber and incubated overnight at 50°C. After incubation,
each slide was washed to remove unbound cDNAs and SDS, dried, and scanned with a
GenePix 4100A scanner (Axon Instruments) at 600 V (635 nm) and 550 V (532 nm).

We adopted an experimental strategy (experimental design and flow chart in Supplemental
Fig. S1A) similar to that used in previous studies (3). This strategy was termed “multiple
yellow” (MY'S), since most spots on the hybridized slide should appear yellow in an 8-bit
pseudocolor image (example in Supplemental Fig. S1B). As presented in the oiscussion S€ction
and in the Supplemental Material, MY'S provides a similar detection accuracy of the
regulated genes compared with the widely used dye swapping (DSS) and reference sample
(RSS) strategies (16) but has a considerable advantage in cost and flexibility. Each slide was
hybridized with heart cDNA obtained from a male mouse (labeled with Cy5) and a female
mouse (labeled with Cy3), both of which were subjected to the same treatment for the same
period of time. Thus all comparisons between hypoxia and normoxia used animals of the
same gender composition.

Images were acquired and primarily analyzed with GenePix Pro 4.1 software. The
background-subtracted signals were normalized with an in-house developed iterative
algorithm similar to those used in previous publications (12,13), alternating within-array
normalization and interarray normalization until the average-corrected ratio differed by <5%
from the previous one (14). Individual measurements of genes for all 12 mice studied in
each period (1, 2, or 4 wk) were further divided by the average of the corresponding
normoxic values, and then the results for each group of four mice (i.e., normoxic, CCH, and
CIH) were rescaled with respect to the average of that group. The ratios obtained by
proportioning the normalized green and red fluorescence intensities of a spot with hypoxic
cDNAs to the normalized green and red fluorescence intensities of a matched spot with
corresponding normoxic cDNAs were averaged for both channels. In the case of a gene
probed in multiple spots, the expression ratio was the weighted average ratios, as previously
described (12). Detection of significantly regulated genes relied on both fold changes in
expression ratio (limited by the technical noise of the method and expression variability
among animals) and the statistical significance of the two-tailed t-test with a Bonferroni-
type adjustment applied to the redundancy groups (14). The data set (series no. GSE2271)
was deposited in the Gene Expression Omnibus (GEO) database:
http://www.ncbi.nlm.nih.gov/geo/. Profiling of the data was accomplished using hierarchical
clustering algorithm, with the software available from http://rana.lbl.gov/index.htm.

Quantitative real-time RT-PCR

The two-step quantitative real-time RT-PCR (QRT-PCR) SYBR Green method (Applied
Biosystems) was used to compare and confirm the levels of selected interesting genes.
Primers were devised with the software Primer 3 and synthesized at Invitrogen. The cDNA
synthesis and QRT-PCR were done according to previously described methods (29).
Relative ratios of fluorescent intensities of products from hypoxia to normoxia were
calculated by using the 27AACt method, where Ct is cycle threshold (17), and B-actin
amplicons were used as loading control. Specific primers are listed in Supplemental Table
S5.

Western blotting

Total protein was prepared using buffer as previously described (1). The concentration of
protein lysates was determined with the bicinchoninic acid protein assay kit. Protein samples
(20 ng) were isolated through SDS-PAGE electrophoresis using 10% Novex Bis-Tris gel
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and then electrophoretically transferred to a polyvinylidene difluoride membrane.
Nonspecific binding sites were blocked, and the membranes were incubated overnight at
4°C with primary antibodies [eukaryotic translation initiation factor (elF)-4E and elF-4E
(Ser299) from Cell Signaling, elF-2o and elF-2a (Ser®2) from Abcam, and internal control
Hsc70 from Stressgen]. The signals were visualized by incubating with horseradish
peroxidase (HRP)-conjugated secondary antibody followed by enhanced
chemiluminescence. Band densities were quantified using the Personal Densitometer S
scanner (Molecular Dynamics, Sunnyvale, CA) and analyzed with the aid of ImageQuaNT
image analysis software (Molecular Dynamics).

Apoptosis detection

RESULTS

In situ terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL)
assay (Roche Applied Science) was used to detect apoptotic nuclei and quantified as
percentage of apoptotic nuclei per total nuclei. Sections were first deparaffinized and
rehydrated, and then the manufacture’s instructions were followed. Briefly, sections were
stripped of protein by incubation with pepsin (0.25%, pH 2.0) for 15-20 min at 37°C. For
positive control, a section of normoxic control heart was treated with DNase | to produce
artificially fragmented nuclear DNA. Samples were incubated with TUNEL reaction mix for
60 min at 37°C in a dark, humidified chamber. Total nuclei were counterstained with DAPI.
Samples were first observed under a fluorescence microscope, then treated with anti-
fluorescein antibody conjugated with alkaline phosphatase (AP), and observed under a light
microscope. Nuclei were counted using the software AxioVision 4.1. Results are expressed
as mean values = SD. Differences in means were considered statistically significant if P <
0.05, using unpaired Student’s t-test.

Weights, hematocrits, and light microscopy of heart

CCH and CIH animals had a lower body weight than controls at 1 and 2 wk after initiation
of hypoxia, but a catch-up in body growth was found at ~4 wk of age in CCH mice (Fig.
1A). Heart weight and size increased significantly in CCH animals but remained unchanged
in CIH compared with normoxic controls (Fig. 1B and Fig. 2A). This increased heart weight
in CCH mice was significant after 1 wk in hypoxia, and this difference continued to be
pronounced at 2 and 4 wk of age (Fig. 1B). A similar pattern was also detected in total
protein/heart in CCH mice but not CIH mice (Fig. 2F). The ratio of heart weight to body
weight increased in both CCH and CIH, but the difference from control was greater in CCH
(Fig. 1C). Hematocrit increased in both CCH and CIH, but the difference was more
significant in CCH at all ages (Fig. 1D).

The midline sections of the heart had thicker free wall of the right ventricle in CCH and CIH
animals compared with controls, and this difference was more apparent in CCH mice (Fig.
2B). Right ventricular muscle fibers in CCH hearts were larger than those in controls or
CIH, based on data obtained from transverse sections of cardiomyocytes (Fig. 2, D and E).
The cardiomyocytes from the left ventricles in CCH also became larger than in controls, but
there was no difference in cell size between left ventricles in CIH and the controls (Fig. 2E).
To further study the influence of CIH on cardiac hypertrophy and size, we decreased the O,
concentration from 11 to 7.5% to induce a severer stress. Contrary to our expectation, heart
size became much smaller than in controls (Fig. 2C), and right ventricular hypertrophy was
not observed (Fig. 2, G and H). Another interesting feature in the muscle histopathology is
that the interstitium became broader with leukocyte infiltration in both CCH and CIH (Fig.
2D).
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Overview of gene expression using cDNA microarray

Our results showed that a substantial number of genes have altered their expression in the
hearts of both CCH- and CIH-treated mice. Both individual variability and reproducibility of
gene expression pattern of mice subjected to the same treatment are illustrated in Fig. 4A,
Supplemental Table S6, and Supplemental Fig. S4. We found that a total of 549 genes were
upregulated and 375 genes downregulated in CCH heart (Fig. 3A). A substantial number of
genes were also altered in CIH, but the majority were downregulated: 294 genes upregulated
and 440 genes downregulated (Fig. 3B). At 1, 2, and 4 wk with CCH, there were 272, 856,
and 294 upregulated genes and 110, 613, and 303 downregulated genes, respectively.
Likewise, with CIH there were 375, 440, and 150 upregulated and 440, 795, and 68
downregulated genes at these same time points. Remarkably, in both treatments, the largest
number of altered genes was after 2 wk of exposure to hypoxia. Genes that altered their
expression at all three time points are listed in Supplemental Tables S1 and S2.

We first categorized the altered genes based on magnitude of change and found that most
differentially expressed genes changed approximately two- to threefold (Fig. 3, A and B).
However, in CCH, there were 6 genes that were highly upregulated and 21 genes that were
highly downregulated, i.e., over fivefold. Similarly, in CIH, there were 20 upregulated and 6
downregulated genes, over fivefold (Supplemental Tables S3 and S4). To characterize the
major influence on biological processes after CCH or CIH treatment, we used MAPPFinder
(a component of GenMAPP version 2.0) (2, 5, 6). MAPPFinder produced a statistically
ranked list (based on P value) of Gene Ontology (GO) categories associated with each
treatment from which the significant categories are listed. In each treatment, several highly
significant, nonsynonymous, biological process categories were identified and are listed in
Table 1 (permutation P < 0.05). Most of the significantly altered gene clusters were related
to signal transduction and metabolism. The gene cluster related to regulation of translational
initiation was found to be significant when comparing CCH- with CIH-treated animals
throughout all time points (Table 2).

Eight interesting genes were chosen from different functional categories in CCH or CIH for
further quantitative real-time PCR analysis (Fig. 3, C and D). The PCR reactions for each of
these genes were repeated at least three times using 2-wk-treated samples. Variation in the
number of Ct for a gene was <1. Results of QRT-PCR for the selected genes were consistent
with the microarray data.

The experimental design allowed us to compare gene expression in the two genders. Fig. 3E
presents the fold-change difference between male and female mice subjected to 1 wk of CIH
in the entire set of four mice. We found no difference in the type of regulation between the
two genders (all differences <50% fold change) and no significant bias of fold change
toward one gender or another (symmetrical distribution of differences).

Similarities in gene expression between CCH and CIH

During chronic hypoxia, whether CCH or CIH, some of the regulated genes responded
qualitatively in a similar fashion in the heart (Table 3). These included stress-responding
genes (e.g., heat shock and redox genes), genes involved in vascular dilation, angiogenesis,
and heme biosynthesis. For example, the gene that encodes a thioredoxin-interacting protein
inhibits the function of thioredoxin; therefore, downregulation of this gene by 2.3-fold in
CCH and 1.6-fold in CIH suggests enhancement of antioxidant function. A recent report has
shown that a downregulation of this gene is involved in cardiac hypertrophy (28). The gene
EGL nine homolog 1, which is involved in the degradation of the protein of hypoxia-
inducible factor (HIF), was upregulated by 5-fold in CCH and 2.4-fold in CIH, whereas EGL
nine homolog 3 was downregulated by 1.7-fold in CCH and 1.8-fold in CIH (7).
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Most genes related to fibrosis were upregulated in both CCH and CIH, and this synergistic
upregulation of the collagen gene family suggested that fibrosis would be enhanced during
hypoxia (Supplemental Fig. S2F). Genes related to immune response were also upregulated
in both CCH and CIH. Chemokine (C-X-C motif) ligand 12, immunoglobulin heavy chain
(J558 family), interferon-stimulated protein, FK506 binding protein 4, and beclin 1 (coiled-
coil, myosin-like BCL2-interacting protein) are some genes regulating diverse biological
functions, the expression levels of which were significantly altered by chronic hypoxia
treatment. Lastly, solute carrier family 6, member 8 (creatine transporter), and solute carrier
family 12 (sodium/potassium/chloride transporters) were upregulated in both CCH and CIH,
suggesting that ionic homeostasis may have been altered, as would be expected in hypoxia
(20, 23).

Divergent transcriptomic effects of CCH and CIH

Some gene families were differently altered in the two conditions. These genes are likely to
be involved in inducing distinct phenotypes between CCH and CIH hearts. For example,
genes encoding eukaryotic initiation factors and genes encoding ribosomal protein subunits
were mostly upregulated in CCH and downregulated in CIH. We identified a total of 23 elFs
that were regulated by hypoxia in the mouse heart, with more upregulated genes in CCH and
more downregulated genes in CIH hearts. This may explain the increased protein synthesis
in CCH heart and subsequent myocardial hypertrophy (Fig. 2F and Fig. 4A). Indeed,
previous studies have indicated that elFs and their phosphorylation are important in cardiac
hypertrophy (4). CCH and CIH induced similar regulation of genes such as elF3s, elF4g2,
and elF4el3 but opposite regulations of genes such as elF3s10, elF3s2, and elF2c2. To
determine whether elF proteins increase and possibly play a role in cardiac hypertrophy,
elF-20 and elF-4E were studied in this work. Western blotting showed that both elF-2a and
elF-4E increased ~1.5-fold at 1 wk in CCH. We also showed that phosphorylated elF-4E
(Ser299) increased by ~1.8- to 2.0-fold at 1 and 2 wk in CCH, and this increase was more
remarkable than the increase in total protein level of elF-4E. The changes of total as well as
phosphorylated elF-20 and elF-4E in CIH heart were not significant. The gene elF-4E,
along with the upregulation of elF-4E binding protein 2, an inhibitor of elF-4E, control the
translation efficiency and are likely to be important in cardiac hypertrophy in CCH (4).

The divergent effects of CCH and CIH on heart gene expression were also observed when
apoptotic and Rho/MAPK signaling genes were considered. For example, most of the
proapoptotic genes were upregulated and most of the anti-apoptotic genes were
downregulated in CCH but not in CIH (Fig. 5, A and B, and Table 4). This suggested that
myocardial apoptosis might be enhanced in the CCH model. To further test this hypothesis,
TUNEL staining was performed in both CCH and CIH heart sections. At least 20
consecutive high-magnification images were captured from each section of CCH, CIH, or
control hearts. The ratio of apoptotic nuclei to total nuclei was significantly higher in the
heart after 4 wk of CCH treatment (0.86%) compared with the age-matched normoxic
controls (0.34%, P < 0.05; Fig. 5, C and E). No significant difference was found in the heart
samples after 4 wk of CIH treatment (0.44%, P > 0.05; Fig. 5, C and F). This result
correlated well with the changes in proapoptotic gene as well as anti-apoptotic gene
expression in CCH and CIH. Furthermore, some genes, the function of which is related to
either the Rho pathway or MAPK pathway, were differentially regulated in CCH and CIH
hearts. Most members related to the Rho pathway were upregulated in CCH, but all were
downregulated in CIH (Supplemental Fig. S2C); most of the altered MAPK pathwayrelated
genes were upregulated in CCH but not in CIH (Supplemental Fig. S2D).

There were also other examples showing divergent effects on gene expression in CCH- and
ClIH-treated hearts. For instance, MAD homolog 4 (Drosophila) and Notch homolog 1
(Drosophila), genes that are important in cell fate and cell proliferation, were upregulated by
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~1.5- to 2.3-fold in CCH but downregulated by a similar magnitude in CIH. The
homeodomain-interacting protein kinase 1, a suppressor of homeodomain transcription
factor, which is involved also in development, was downregulated by 2.2-fold in CCH but
upregulated by ~1.6- to 2.2-fold in CIH. In addition, the upregulation of GATA-2 in CCH
but its downregulation in CIH may explain the different effects of CCH and CIH on cardiac
muscle size (19). Furthermore, the small optic lobes homolog gene, which contains a calpain
domain, was upregulated 7.0-fold in CIH but downregulated 5.8-fold in CCH. This suggests
that the small optic lobe gene may be important in hypoxia-reoxygenation-induced injury or
proteolysis (26).

DISCUSSION

We used cDNA microarray to study the alteration of gene expression in hearts of neonatal
mice subjected to CCH and CIH vs. normoxia on a large genomic scale, identifying also
transcriptomic similarities and dissimilarities between CCH and CIH. The multiple yellow
strategy that we used was validated in previous studies (3). It improves intrachip
normalization, since the mRNA content of the starting total RNA was affected only by the
biological variability among animals, matched by gender, age, and condition. Indeed, the
green and red fluorescence signals, which were obtained with the same scanner setting for
all slides, were compared separately, thus avoiding the inherent nonuniform bias toward one
tag. This allowed all possible comparisons among conditions, time points, and genders. Our
results show for the first time that CCH and CIH have dramatic effects on the mouse heart
transcriptome, exhibiting both similar and opposite alterations of gene expression. It should
be emphasized that Supplemental Table S6 illustrates 1) the reproducible pattern within each
set of four animals subjected to the same condition, 2) variability among individuals in each
set of animals, and 3) distinct expression profiles among the three experimental treatments,
namely, normoxia, CIH, and CCH for the same duration.

In the current study, several clusters of genes that are related to certain specific biological
processes were significantly altered by the hypoxia treatments. One of the altered gene
clusters is related to the translational initiation factors in CCH and CIH. In CCH, genes
encoding elFs as well as ribosomal proteins were mostly upregulated, as measured by
microarrays and QRT-PCR as well as by Western blot analysis [elF-2a, elF-2a (Ser®?),
elF-4E, and elF-4E (Ser209)]. Upregulation of these genes and their proteins enhances
protein synthesis. Protein levels and phosphorylated proteins of elFs may also have an effect
on translation and protein synthesis. While the relation between phosphorylated elF-2¢ and
protein synthesis may not be well understood, that of phosphorylated elF-4E is well known.
For example, Tuxworth et al. (25) found that elF-4E phosphorylation and protein synthesis
are increased concomitantly in response to stimuli that induce hypertrophic growth in adult
cardiocytes (25). This is consistent with our in vivo results: both elF-4E protein level and
phosphorylated elF-4E (Ser209) increased in CCH after 1 and 2 wk, an increase that is
expected to promote protein synthesis. In CIH, elF-4E was downregulated at both 1 and 2
wk, a condition that explains the absence of cardiac hypertrophy. Therefore, we raise the
distinct hypothesis that the enhanced protein synthesis machinery (via elFs) plays an
important role in the hypertrophy of heart in CCH. The elF RNA and protein results and the
hypothesis of increased protein synthesis in CCH are further supported by our other data
showing increased cell size of cardiac myocytes as well as increased total protein (Fig. 2F).

Signaling pathways that induce hypertrophy and enlargement of heart size include two gene
families: the Rho GTPases and the MAPKSs. Because 1) several members of Rho GTPases
have been reported to be involved in cardiac hypertrophy (11), and 2) two members of the
Rho GTPases (Arhgap10 and Arhgapl18) were upregulated in CCH, we believe that such
pathways actually contributed in inducing cardiac hypertrophy in CCH. Indeed, most
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members of MAPK have been identified in our work to be upregulated in CCH but not in
CIH. Such changes may be related to increased heart mass in CCH (24). Combined with
other results from our microarray study, such as the downregulation of thioredoxin-
interacting protein and upregulation of GATA-2, which are already known to be involved in
cardiac hypertrophy (28,19), we believe that hypertrophy of cardiac myocytes in CCH is the
result of coordinated regulation on expression of various gene families.

Of great interest is the fact that the increase in protein synthesis in the heart in hypoxia
contrasts to the decrease in protein synthesis in most organs (such as brain and kidney;
Supplemental Fig. S3, A and B). The question of how different is protein synthesis in the
hypoxic heart compared with other organs is intriguing. We have indeed alluded to this
difference in our previous work (18). Interestingly, the lungs also increase in weight or at
least do not reduce their weights in hypoxia, as do the kidneys and to a lesser degree the
brain (Supplemental Fig. S3, C and D, and unpublished observations), suggesting that the
heart and lungs behave in a similar manner and enhance protein synthesis for adaptation to
the hypoxic stress. Although muscle fiber stretching such as in hypertension or overload can
induce cardiac hypertrophy, we believe that hypoxia directly induces the hypertrophy. This
partly agrees with in vitro studies showing that mild hypoxia (10% O,) induces hypertrophy
of cardiomyocytes of rat (15).

Because hypoxia can change cell fate, we further asked whether programmed cell death
takes place, especially because we have evidence that, in CCH heart, the genes involved in
apoptosis are regulated. In situ TUNEL staining confirmed that changes in gene expression
paralleled those in apoptosis. This result further supports the notion that, during CCH, the
heart undergoes remodeling that is not restricted only to hypertrophy. There is indeed a more
complicated process that induces apoptosis (9,27).

Although the increase in cardiac and cell size in CIH was not impressive, we did additional
experiments to determine whether a more severe hypoxia in the intermittent model (7.5% O,
instead of 11% O,) would induce a hypertrophy similar to CCH. With this more severe
paradigm, the heart and cell size were even much smaller than in controls, suggesting that
the lack of hypertrophy in CIH is due to the nature of this particular stress model.
Downregulation of most subunits of mitochondrial complex I in CIH but not in CCH
suggested possible mitochondrial functional inhibition and a resultant shortage of ATP
supply in the organ (10). Along with down-regulation of several genes involved in cardiac
development (Supplemental Figs. S2, E and G), these may constitute the underlying
molecular mechanisms in CIH.

In conclusion, our results show that CCH and CIH have different impacts on heart
phenotype and that the respective genetic responses provide a molecular basis for these
phenotypic differences. In CCH, the heart is characterized by a robust right ventricular
hypertrophy and larger cardiac mass. This phenotype creates an imbalance with the
continuous relative shortage of O, supply and with an induction of proapoptotic genes,
which may constitute a major mechanism for heart failure. By contrast, in CIH,
mitochondrial dysfunction and cardiac growth inhibition in early life may be more
important.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Changes in body weight, heart weight, and hematocrit in mice with chronic constant hypoxia
(CCH) and chronic intermittent hypoxia (CIH). A: growth of mice was decreased in both
CCH (n = 8/treatment) and CIH (n = 8/treatment) compared with normoxic control (NC; n =
16/age-matched group), but there was a catch-up growth in CCH treatment for 4 wk. B:

heart weight was much higher in CCH, but CIH mice were similar to NC mice. C and D:
ratios of heart weight to body weight and hematocrit increased in CCH and CIH but more so
in CCH. Statistical significance was calculated by Student’s t-test. VValues are means + SD.
*P < 0.05 and **P < 0.01, CCH or CIH compared with NC. +P < 0.05 and ++P < 0.01,
CCH compared with CIH.

Physiol Genomics. Author manuscript; available in PMC 2010 April 20.



duasnuely Joyiny vVd-HIN 1duosnuey JoyIny vd-HIN

duasnuely Joyiny vd-HIN

Fanetal.

s . -
el i E R BB EE S
._...I'

Physiol Genomics. Author manuscript; available in PMC 2010 April 20.

Page 12



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Fan et al.

Page 13

m
m

@ @ s o
g &8 8§
S 8 8
*

*

Total protein/heart (mg)

@
S

_

o

Right ventricle Left ventricle 1 week 2 week 4 week
Hypoxia time
G H
60 oNC
o =300 @ CH (7.5% 02)
o BE
e 0 ONC @ 35 *
il | 2 CIH @
BO 40 °8
Epe o520
En 30 W 98
& & > 150
?E 3E
2% 20 22 400
r 2T
3 " S 50
-
0 I | 0
Hypoxia time (1 week) Right ventricle

Fig. 2.

Effect of chronic hypoxia treatment on heart size/weight and cardiomyocyte size in mice. A:
representative images show larger heart size in CCH compared with age-matched NC. B:
coronal midline sections show the apparently thicker right ventricular wall in CCH but little
change in CIH (arrows) compared with age-matched NC. C: in CIH with a 7.5% O level as
the nadir in each cycle, heart size became even smaller after 1 wk of hypoxia exposure
compared with age-matched NC (death occurred in prolonged hypoxia period). D: light
microscopy (x400) shows markedly thicker right ventricular muscle fibers in CCH but not
CIH and broader interstitium with leukocyte infiltration in both CCH and CIH. E: in
transverse section of cardiomyocytes, the cell size (mean * SE) in the right ventricle was
robustly thicker in CCH (P < 0.05) and thicker, but to a much lesser extent, in CIH
compared with NC. F: total protein/heart changes over time under NC, CCH, and CIH.
Neonatal P2 mice (2nd day after birth) were weighed, and mice of similar weight were
separated into 3 groups and treated under NC, CCH, or CIH. Hearts were obtained after 1, 2,
and 4 wk of hypoxia, and total proteins were measured in individual hearts (n = 4). Hearts of
mice treated with CCH contained much more protein compared with NC and CIH hearts at
the same time points. G and H: heart weight (n = 8) was lower in CIH than in NC when
7.5% O, rather than 11% O, was applied. The size of cardiomyocytes in the transverse
section was smaller than in NC after 1 wk of hypoxia exposure. Values are means = SD. *P
< 0.05 and **P < 0.01, CCH or CIH compared with NC.
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Fig. 3.

A and B: profiles of gene expression in mouse heart subjected to CCH or CIH. More genes
were upregulated in CCH, and more genes were downregulated in CIH. C and D: results of
microarray and quantitative RT-PCR are consistent for 8 selected genes from mouse hearts
at 2 wk after CCH or CIH treatment. Bnip3l, Slc6a8, and Slc12a2 were all upregulated in
CCH and CIH. Note the opposite alterations of Madh4 and Solh in CCH- and CIH-treated
hearts. E: percent differences between the fold change in male and female mice subjected for
1 wk to CIH plotted against the significant regulation ratios 11/N1 (negative values for
downregulation) of the entire set of 4 mice. Note that no difference exceeds 50% of the
average fold change for the entire set of 4 mice (meaning that both genders were regulated
in the same sense), most of the differences do not exceed 25% (no statistically significant
difference between the fold change in the 2 genders), and the approximate symmetry of the
differences i.e., the no. of genes with a higher fold change in males than in females (points
above the horizontal axis) is close to the no. of genes with a higher regulation in females
than in males (points below the horizontal axis) for both types of regulations (upregulations
in the positive side of the horizontal axis and downregulations in the negative one).
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Fig. 4.

Alteration in gene expression and protein level of eukaryotic translation initiation factors
(elFs) after chronic hypoxia treatment. A: profiles of gene expression and regulation of elFs
in 4 individual mice subjected to normoxia (N1-N4), CCH (C1-C4), and CIH (11-14) for 1,
2, or 4 wk. Each value is represented by a colored square. Duration of the treatment is
indicated before the letter of treatment, (e.g., 112 = 1 wk CIH, 2nd mouse), while the green/
red color of the square shows down/upregulation, with brighter colors for higher regulation.
Note both the variability and the reproducible pattern among the mice subjected to the same
treatment. Note also the darker colors of the normoxic values, since they were closer to the
average used in normalization. B: Western blot analysis of elF-2a and phosphorylated
elF-2a (Ser®2) in CCH, CIH, and age-matched NC. Results were reproduced in 3

Physiol Genomics. Author manuscript; available in PMC 2010 April 20.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Fan et al.

Page 16

independent experiments and averaged. C and D: statistical analysis (t-test) of densitometric
analyses of Western results of elF-2a and phosphorylated elF-2o. (Ser®?). The y-axis depicts
the relative protein expression level as a ratio of the protein to its HSC70 density per 40 pg
of total protein. Values are means = SD (n = 3). E: Western blot analysis of elF-4E and
phosphorylated elF-4E (Ser2%9) in CCH, CIH, and age-matched NC. F and G: statistical
analysis (t-test) of densitometric analyses of Western results of elF-4E and phosphorylated
elF-4E (Ser209), *P < 0.05 compared with normoxic control. **P < 0.01 compared with
normoxic control. TP < 0.01 compared with CIH.
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Fig. 5.

Alteration in proapoptotic and anti-apoptotic genes in CCH- and CIH-treated mouse heart. A
and B: proapoptotic genes were mostly upregulated in CCH hearts, whereas the anti-
apoptotic genes were dominantly upregulated in CIH-treated hearts. C: ratio of apoptotic
nuclei to total nuclei shows that apoptotic nuclei were significantly increased in CCH-but
remained unchanged in CIH-treated mouse hearts. After treatment with converter-alkaline
phosphatase, the apoptotic nuclei could be detected as dark spots (arrows in E, F, G) under a
light microscope: apoptotic nuclei are clearly seen in CCH-treated (E) but are rarely seen in
age-matched NC (D) and CIH-treated (F) mouse hearts. In C, **P < 0.01 and +P < 0.05. G:
positive control. A heart section from an NC mouse treated with DNase I. Many nuclei with
fragmented DNA were labeled by TUNEL. H: fluorescent microscope picture of apoptotic
nuclei in CCH that were stained with green fluorescein and colocalized with the nuclei dye
DAPI (blue). Scale bars = 20 pm.
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