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Abstract
Gaze changes and the resultant fixations that orchestrate the sequential acquisition of information
from the visual environment are the central feature of primate vision. How are we to understand
their function? For the most part, theories of fixation targets have been image based: The
hypothesis being that the eye is drawn to places in the scene that contain discontinuities in image
features such as motion, colour, and texture. But are these features the cause of the fixations, or
merely the result of fixations that have been planned to serve some visual function? This paper
examines the issue and reviews evidence from various image-based and task-based sources. Our
conclusion is that the evidence is overwhelmingly in favour of fixation control being essentially
task based.
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Yarbus’s original work in understanding gaze recordings (Yarbus, 1967) in the 1950s and
1960s revealed the enormous importance of gaze in revealing the underlying structure of
human cognition. In his most compelling demonstration, he showed that a subject viewing a
painting responded with markedly different eye fixation patterns when asked different
questions about the image. Although earlier work by Buswell and Dodge (Buswell, 1935;
Erdmann & Dodge, 1898) had implied such cognitive influences on the choice fixations,
Yarbus’s demonstrations left no doubt about the role of cognition directing gaze.

From this perspective of this pioneering work, it is somewhat surprising that the first
significant computational theory of vision (Marr, 1982) avoided the study of gaze as well as
any influence of cognition on the extraction of information from the retinal array. In his
“principle of least commitment”, Marr argued the case for the role of the cortex in building
elaborate goal-independent descriptions of the physical world. Marr was no doubt
influenced by the groundbreaking work of Hubel and Weisel (1962), who showed that
striate cortex was organized into a retinotopic map of the visual world, centred on the point
of gaze. Subsequent work revealed that all of visual cortex was hierarchically organized into
a series of retinotopic maps containing ever more abstract properties of the visual world. At
almost the same time work in visual search revealed a stunning difference in search times
between displays containing several items with just one feature defining differences between
items and displays with conjunctions of two features defining the difference (Treisman &
Gelade, 1980), suggesting that groups of features at retinotopic locations was a natural way
of organizing the visual stimulus.
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As a consequence of the focus on retinotopy, when researchers took on the task of defining
computational mechanisms for directing gaze deployment, these turned out to be
predominantly image based. Koch and Ullman defined the saliency map: A retinotopic
accounting of different retinotopic organizations of specific image features such as colour,
texture, and motion (Itti & Koch, 2001; Koch & Ullman, 1985). Retinotopic locations rich in
such features were calculated to be salient and potential fixation points. Subsequent
additions allowed these locations to be modulated to account to different tasks
(Navalpakkam & Itti, 2003; Wolfe, 1994) and the statistics of such features (Itti & Baldi,
2005), and the concept of the saliency map has become a central organizing focus of models
of gaze control.

Saliency theories have been compelling, but have many drawbacks. They usually cannot
predict the exact fixation points and can leave more than half of the fixations unaccounted
for (e.g., Foulsham & Underwood, 2008). It seems likely that the central problem is that
they are correlated with fixation behaviours but not their cause. This point has been made by
Einhauser, Rutishauser, and Koch (2008), Henderson (2007), and Tatler (2007). Other
compelling reasons for this are (1) the dominating role of cognitive goals dictates many
image calculations that cannot be expressed in terms of the saliency of conjunctions of
features and (2) the situated nature of the human visual system’s limited view in a three-
dimensional world means that many fixation targets are remembered locations that are not
visible when the saccade is initiated.

Recent work has begun to tackle the problem of describing a theory that accounts for the
role of the cognitive process and spatial environs that are controlling the subject’s
behaviours, and there is mounting evidence that such a theory must be central. Experiments
using lightweight head-mounted eyetrackers show that fixations are extracting very specific
information needed by the human subject’s ongoing task (Droll, Hayhoe, Triesch, &
Sullivan, 2005; Jovancevic, Sullivan, & Hayhoe, 2006; Triesch, Ballard, Hayhoe, &
Sullivan, 2003). The task context introduces enormous economies into this process: If a
subject needs to locate a red object near a blue object, the search for that object can be
limited to just blue portions of the image followed by a local search for red; vast amounts of
extraneous detail can be neglected (Ballard, Hayhoe, Pook, & Rao, 1997; Roelfsema,
Khayat, & Spekreijse, 2003; Swain & Ballard, 1991). The visual information-gathering
component of almost every task will introduce similar economies.

The purposes of this paper are twofold. We first selectively review research on the
deployment of gaze with the view to highlighting difficulties in saliency models. Next we
introduce a cognitive model for directing fixations based on learned reward. Rather than
offer a rapprochement between image-based and task-based approaches, we continue an
earlier argument advanced by Ullman (1984) in his classic visual routines paper. That is,
that the cognitive processes that operate on image data in order to support cognition have a
fundamentally different character than the image structures they use in that process.

EVIDENCE FROM SPORTS
One obvious venue for studying eye movements is sports. Given the time-critical
coordination of movements involved, one would suspect that this is a case where eye
movements are entirely task based and in fact this turns out to be the case. In classic studies
of cricket, Land has shown that batters fixate the area on the pitch where the ball is expected
to bounce after first fixating the pitch release to get information on the ball’s upcoming
trajectory. The best batter’s gaze change tends to be about 100 ms before those of average
batters (Land & McLeod, 2000). This venue provides an ideal setting to contrast the
information gained from saliency methods with information gained by understanding the
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task. The bowler is of course very salient so it would be easy to produce a high valued
saliency measure for the visual area containing him, although perhaps more difficult to
highlight the crucially important hand area. On the other hand the area where the ball
bounces is virtually featureless, gaining its importance from the surrounding context and the
batter’s prior knowledge of where pitches typically land. Thus, a saliency model would be
able to predict half the fixations but would miss the essence of them. The first fixation’s
purpose is to measure information that would predict the landing point and spin of the ball;
the second fixation is to plan the batter’s response.

The use of fixation to plan motor responses in saliency-poor areas is ubiquitous in ball
sports. Land and McLeod (2000) have shown that players fixate the predicted bounce point
in table tennis, and Hayhoe (McKinney, Chajka, & Hayhoe, 2008) has shown that players
fixate the featureless front wall for squash returns. Back wall returns are even more
impressive; players fixate a point in empty three-dimensional space that is predicted to be
the contact point between the ball and the racquet. In another venue where normal, unskilled
subjects have to catch a bounced ball, subjects fixate a three-dimensional point above the
bounce point. None of these points could be predicted by a saliency model as the local
image features are meaningless for these tasks. Of course the path of the ball, the placement
of the player/catcher and their positions in three-dimensional space are all important, but
none of this information is part of saliency models.

EVIDENCE FROM COMPLEX TASKS
Sports are interesting in part because the performance of the players is time critical, so they
leave open the possibility that in other normal behaviours that are not so demanding, the use
of fixations could be less predictable with task information. However, all the emerging
evidence implies that this is not the case. It is far more likely that each fixation has a specific
purpose even when the observer may not be conscious of it. In studies of car following in a
virtual environment, Shinoda, Hayhoe, and Shrivastava (2001) showed that the percentage
of fixations on a lead car dropped from 75% to 43% when subjects had to also pay attention
to intersection signs. Although it might be possible to adjust a task-based modulation of a
saliency map to account for these changes the difficulties are formidable. The visual targets
vary hugely in scale as the driver progresses and subjects tend to look at signs at different
times.

In a classic experiment, subjects copied patterns of coloured blocks on a display, moving
blocks used in the copy from a reservoir of extra blocks with a computer cursor. In this task
the modal behaviour was to fixate the pattern to choose a block, remember its colour, find
and select the block to be used in the copy, and then use another fixation of the pattern to
determine the placement of the selected block in the copy. Even though subjects could
obtain both pieces of information (position, colour) with a single fixation, they preferred to
use two separate fixations, presumably with the goal of avoiding the carrying cost of
remembering the relative position for as long as possible. Thus the first fixation was to
determine the colour of the block in turn to compute the subsequent fixation to the reservoir,
and the second fixation was to obtain the relative position of the block in the pattern
(Hayhoe, Bensinger, & Ballard, 1998).

The focused use of fixations in the block copying task is also a hallmark of subsequent
experiments studying natural behaviour in that knowing the task allows the purpose of the
fixation to be understood. We will describe these experiments to illustrate this point but
before we do let us return to the issue of saliency maps to illustrate their conundrums in this
case. One could certainly produce a saliency map for the blocks images and compute points
of saliency, but without understanding the task at hand it would be virtually impossible to
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predict the sequence of eye movements for this task as the static images contain no
information as to which salient location is to be preferred over any other.

Another complex task studied by Hayhoe is that of making a peanut butter and jelly
sandwich and filling a cup with Coke (Hayhoe, Shrivastrava, Myruczek, & Pelz, 2003). This
is a common everyday task but is laden with complexities in eye–hand coordination that
challenge the notion of saliency. For example in placing peanut butter on the bread, subjects
take advantage of the fact that peanut butter reliably sticks to the knife and make a gaze
targeting fixation to the point on the bread where the tip of the knife is to end up to begin
spreading. In contrast, jelly is less viscous and more precarious on the knife and thus is
guided to the bread with a pursuit eye movement. This kind of knowledge, which is
ingrained in any sandwich maker, is way beyond the reach of the capabilities of saliency
maps as the knowledge is simply not image based.

At this point it might be germane to discuss one of the ways proposed to extend saliency
maps and that is to modulate them with task information. If the information in tasks can be
related to image features then, the features themselves can provide a basis for modulating
the saliency map. If it is known that jelly is an important component of the task, then one
can increase the weight of jelly’s dark purple colour in the saliency computation, thus
biasing the choice of fixation points. There are lots of difficulties making this work in
general but the one that is appropriate for discussion here is that jelly is only important at a
few points in the overall task: Finding the jelly jar, extracting the jelly from the jar, and
replacing the jelly jar’s lid. Thus, any method for routinely increasing saliency would create
false targets for all the other moments of sandwich construction and drink pouring. Of
course one could introduce knowledge of possible sequences of sandwich making and
selectively enhance purple when jelly was important but at this point the idea of task
knowledge has been ceded.

Another point that proves problematic for saliency is that of task-based memory. We
illustrate this point with another copying example, this time from Aivar, Hayhoe, and
Mruczek (2005). Subjects copy a toy model in a virtual environment. The toy is made from
German Baufix parts that subjects manipulate with a cursor, as in the previously described
block copying task. The important differences here are that (1) subjects copy the same toy
repeatedly so that they can learn where the parts are in the reservoir and (2) the distance
between the construction site and reservoir is such that when adding parts to the
construction, the reservoir is not in view. Nonetheless when subjects have repeated the task
they are able to make saccades to the point in virtual three-dimensional space at which the
next part is suspended. This is tested by moving the placement of the part when not in view
and observing that the initial saccade goes to the vacated spot. Of course this cannot be
handled by saliency. In the first place the image is not available at the beginning of the
saccade, but even if it were the part is no longer at that position so the resultant saliency of
that location is zero. One could try to overcome this difficulty with baroque manipulations
of the saliency map, but they would only be shoehorning implicit knowledge of the task into
the image-based representation. Furthermore there are other issues not included at this point
which are about to be addressed.

Since many aspect of ordinary visually guided behaviour are clearly dominated by the
information that is required for the momentary visual operation, what is the potential role of
examining the properties of the stimulus as a basis for gaze behaviour? One of implicit
rationales might be that tasks are special in some way, and that there is some body of visual
processing that does not involve tasks. Consequently, many of the experiments involve what
is called “free viewing”, with the goal of isolating task-free visual processing. It is possible
that the global visual perception of a scene is distinct in some way from the kind of vision
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involved in tasks. Certainly humans need to extract information about the spatial structure of
scenes and the identity of the objects, but is this qualitatively different from specific visual
operations such as those involved in visual search, or extracting location information for
grasping an object, operations that are performed in the context of a task such as making a
sandwich? The suggestion in the next section is that all vision can be conceptualized as a
task of some kind. The issue is important and needs to be examined explicitly. What we
think of as “seeing” is the consequence of extensive experience in the visual environment
during development (Geisler, 2008) and the extraction of information such as gist
presumably reflects not only passive visual experience but also the constraint that this
information is useful for the organism in some way. Thus it is hard to logically separate the
effects of stimulus from the effects of task.

Another important assumption that needs to be examined is that fixation patterns in two-
dimensional photographic renderings of a scene will be the same if the observer were
actually in that scene. Although this might be the case in some instances, there is no
guarantee that it will be true. Real scenes are three-dimensional, and the image changes as a
consequence of inevitable body movements. The scale of a rendered image is typically
different from the scale of the image if the subject were actually in that scene.

EVIDENCE FOR VISUAL ROUTINES
The discussion up to this point has focused on what might be termed macroscopic issues
with respect to eye fixations, that is, specifying their targets broadly and issues as to the
overall task context in influencing those choices. But a host of other issues emerge with
respect to more microscopic issues, namely the detailed computations that are done during
fixation. A variety of experiments have indicated that the visual information acquired during
a fixation may be quite specific. In an experiment by Ballard, Hayhoe, and Pelz (1995),
observers copied simple coloured block patterns on a computer screen, by picking up blocks
with the mouse and moving them to make a copy. In the course of copying a single block,
subjects commonly fixated individual blocks in the model patterns twice, once before
picking up a matching block, and once before placement. Given the requirements of the task,
a reasonable hypothesis is that block colour is acquired during the first fixation, and the next
fixation on the block is to acquire its location. A subsequent experiment where changes were
made to the block colours at different stages of the task supported the interpretation that the
first and second fixations on a model block subserved different visual functions (Hayhoe et
al., 1998; Hoffman, Landaub, & Pagani, 2003). Further evidence that fixations are for the
purpose of extracting quite specific information is given by Droll et al. (2005), who found
that subjects are selectively sensitive to changes made in task relevant features of an object
they were manipulating, even though they fixated the object directly for several hundreds of
msec. Triesch et al. (2003) also found selective sensitivity to task relevant changes in a
manipulated object. This suggests that many simple visual computations involve the
ongoing execution of special-purpose “visual routines” that depend on the immediate
behavioural context, and extract only the particular information required at the moment. The
idea of visual routines was first introduced by Ullman (1984). The essential property of a
routine is that it instantiates a procedure for acquiring specific information called for by the
current cognitive agenda. Selection of just the task specific information from a scene is an
efficient strategy. Task specific strategies not only circumscribe the information that needs
to be acquired, but also allow the visual system to take advantage of the known context to
simplify the computation (Ballard et al., 1997). This selective acquisition may be reflected
in even low-level cortical areas whose neural activity depends not only on stimulus features
but on task context (Ito & Gilbert, 1999; Roelfsema, Lamme, & Spekreijse, 1998).
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To illustrate the concept of a visual routine, we consider the task of filling a cup with coke.
While pouring the coke subjects lock their gaze on the level of coke and track its progress
towards the rim. Each subject has a preferred level that he or she can duplicate repeatedly.
The obvious conjecture is that subjects are using a template matching approach whereby
they are mentally matching a “filled coke cup” template against the current image, stopping
when a match criterion is achieved. We have shown with a model in virtual environment
that this simple information is adequate for performing the task, and can reproduce the
standard deviation of fill levels of a given subject using template matching. Thus, the
suggestion is that vision is composed of specialized computations of this kind.

Consider the problem the cup-filling example poses for saliency. Much of the context for the
visual routine is provided by the body itself. Since the subject’s hands are holding the cup
and coke bottle, proprioception can provide the essential geometric information for filling
the cup. The weight of the filling cup is another cue. Vision is just needed to detect the final
condition of a filled cup. In this venue there are two problems. The first is that the contrast
between the liquid and cup colour can be regulated so that their impact on the saliency
computation can be reduced to near zero. Thus, without extensive priming the level of the
fluid in the cup will be invisible. Second, the subject’s gaze tracks the filling level for the
duration of the filling process (it is likely that the motion of the fluid relative to the cup is
used in doing this, based on a patient studied by Zihl, von Cramon, & Mai, 1983, who had a
specific motion deficit and had trouble filling cups). If the knowledge of the task is provided
then this behaviour is reasonable, but absent it, there is no reason for using gaze in this way
and no way to predict the behaviour purely on the basis of saliency.

A challenging example for saliency models in neuroscience comes from Roelfsema et al.’s
(1998) primate studies. In his experimental setup a monkey has to fixate a central point and
then on command, make a saccade to one of two radial lines projecting outward from the
fixation point. The line that must be chosen is the one that is attached to the fixation point.
The experiment takes advantage of the fact that in programming a saccade from a cue onset
takes on the order of 250–300 ms so during that time one can record from fixed retinotopic
locations in cortical areas such as striate cortex (V1). The experiments show that simple
cells on along the line’s path increase their firing pattern at a time commensurate with the
hypothesis that the monkey solves the task of defining the saccade target by mentally tracing
the length of the line to the required end point. The task was made harder by replacing the
attachment condition with colouring the fixation point and stubs at the near ends of the lines.
The line to be traced is the one that now has the same colour stub as the fixation point. The
elevated simple cell response now occurs later in time, consistent with the hypothesis that
the monkey now solves two tasks. The main point here for our focus is that line tracing is a
technically difficult problem that is outside the domain of static saliency models.

A final example of the use of visual routines posing difficulties for saliency comes from
Droll and Hayhoe (2007). In a virtual block task, subjects look a block they are manipulating
at different times, but some of those fixations are to obtain its features (e.g., colour),
whereas others are to follow task instructions. The point is that the fixation is on the block in
both cases but the actual detailed processing that the visual system is doing is very different.
The saliency map cannot distinguish these two without having a detailed task model.

HUMAN VISUAL SEARCH
An important aspect of saccadic eye movements that has implications for saliency is their
use in visual search. Understanding this venue draws upon the development of reverse
correlation in the computation of the search target used by subjects. Given a succession of
searches for a target in noise, the experimenter can keep a record of the subject’s false
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positives and true positives and average these in order to produce an image template for the
searched target. For example, it has been demonstrated that for searching for targets under
low signal-to-noise conditions that the features extracted are often idiosyncratic and not
easily related to saliency axes (Rajashekar, Bovik, & Cormack, 2007).

In a related approach, Geisler (2008) asks the question of what is an optimal search pattern
for a target embedded in noise given that the retinotopic resolution heavily emphasizes the
fovea; a model of the search process predicts subjects’ performance accurately. These results
have been replicated experimentally by Caspi, Beutter, and Eckstein (2004).

Rao, Zelinsky, Hayhoe, and Ballard (2002) studied a condition where subjects had to search
a natural scene such as a tabletop image where one to five objects might appear. Just prior
they were shown an image of the target object. There were two conditions, one where at the
outset the subjects were given a short view of the tabletop and could memorize the locations
of the objects and another where the preview was absent. The instructed response was target
present or absent indicated by an appropriate keypress. Although eye movements were not
controlled beyond an initial fixation, subjects invariably fixated the target in the course of
the response. However, as shown in Figure 1, in the preview condition, subjects usually
fixated the target with one saccade, whereas in the no preview condition the modal number
of saccades was three.

All these approaches again raise problems for the saliency model. Since the search target is
specified by the experimenter, it cannot be a ready product of the priors that saliency
computations assume. Of course the actual correlation-based computations that are done can
be embraced as saliency, but that would defeat the fundamental stance of saliency as a
method of filtering the image ab initio to delimit possible fixation targets. A very nice paper
nonetheless blurs this distinction; Navalpakkam and Itti (2007) show that when the search
task is cast in terms of artificial distinctions of primitive features, the task can be described
in terms of modulations of such features and, furthermore, human subjects obey the dictates
of signal detection theory. Interestingly, the paper does not exhibit eye movements, perhaps
because the task is done in a limited part of the visual field.

MODELLING TASK-DIRECTED FIXATIONS
We have made the case that the main source of explanations of fixation locations is not
image saliency but rather latent cognitive variables. In this case the task becomes describing
the complex human cognitive system in a way that its descriptive components can be related
to fixations. This is not an easy task to do without making substantial claims about the
workings of cognition interacting with the visual system.

One such system that tackles the cognition–action interface is that of Sprague, Ballard, and
Robinson (2007). The central assumption they make is that the system can be composed of
modularized sensorimotor behaviours which can cooperate in small sets without interference
from each other. For realizing compositions of modular behaviours, following work in
psychology and robotics (e.g., Bonasso, Firby, Kortenkamp, Miller, & Slack, 1997), they
develop an abstract cognitive architecture composed of three levels: Central executive,
arbitration, and behaviour. The central executive level of the hierarchy maintains an
appropriate set of active behaviours from a much larger library of possible behaviours, given
the agent’s current goals and environmental conditions. The composition of this set was
evaluated at every simulation interval, taken to be 300 ms. The arbitration level addresses
the issue of managing competing active behaviours. Thus, an intermediate task is that of
mapping action recommendations onto the body’s resources. Since the active behaviours
must share perceptual and motor resources, there must be some mechanism to arbitrate their
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needs when they make conflicting demands. The behaviour level describes distinct jobs that
are necessary, such as interrogating the image array in order to compute the current state.

The models for each of these levels are implemented and tested on a human avatar. The
virtual human vision avatar has physical extent and programmable kinematic degrees of
freedom that closely mimic those of real humans as well as software for modelling the
physics of collisions. This software base has been augmented with our control architecture
for managing behaviours. Each behaviour has a very specific goal, and contains all the
structure for the extraction of information from visual input that is in turn mapped onto a
library of motor commands. Figure 2A shows the avatar in the act of negotiating a pavement
that is strewn with obstacles (blue objects) and litter (purple objects) on the way to crossing
a street. Figure 2B shows a human subject in the same environment.

A central problem for task-directed vision concerns the deployment of gaze. The small fovea
makes its use to obtain accurate measurements a premium. So in the case of multiple active
behaviours, which of them should get the gaze vector at any instant? An elegant solution to
this problem is to calculate the amount each behaviour stands to gain by updating its state.
Where Q(si,a) is the discounted value of behaviour i choosing an action a in state si, an
agent that chooses an action that is suboptimal for the true state of the environment can
expect to lose some reward, estimated as follows:

(1)

The term on the left-hand side of the minus sign expresses the expected return if the agent
were able to act with knowledge of the true state of the environment. The term on the right
expresses the expected return if forced to choose an action based on the state estimate. The
difference between the two can be thought of as the cost of the agent’s current uncertainty.
The total expected loss does not help to select which of the behaviours should be given
access to perception. To make this selection, the loss value can be broken down into the
losses associated with the uncertainty for each particular behaviour b:

(2)

The expectation on the left is computed only over sb. This value is the expected return if sb
were known, but the other state variables were not. The value on the right is the expected
return if none of the state variables are known. The difference is interpreted as the cost of
the uncertainty associated with sb. This calculation is for all the active behaviours and the
one that has the most to lose gets the vector. Figure 3 shows this happening for a walking
segment.

As Figure 3C shows, the improvement is small, but nonetheless highly significant. The
narrow margin highlights the difficulty of reward-based hypotheses about eye fixations that
would attempt to have the results of the fixation directly alter the Q-table. The relative value
of any given fixation is small enough so as to be practically undetectable by the learning
process. The simulations were unable to detect any systematicity in these variations, and led
us to propose the most-to-gain model which uses the state table to calculate the value of an
eye fixation, but does not attempt to adjust the Q-table otherwise.
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The simulations can be thought of as tackling the problem of when gaze is deployed, but we
are also interested in where gaze is deployed. Figure 4 shows a case where we obtained
Laurent Itti’s saliency program and used it to calculate salient points in the walkway setting.
Since subjects had walked in this setting their subjects’ fixations could be compared directly
with those predicted by the program. The program does not return a single point, but a
spatial distribution of possible fixation points so some criterion has to be used for selecting a
fixation. If the saliency distribution overlapped the object selected by a subject, the result
was labelled a “match”’ otherwise the label was “no match”. The figure shows
representative results. Even in this simple setting less than half of the fixations can be
accounted for with saliency. In contrast, the model uses task-directed visual routines based
on human performance (Rothkopf, Ballard, & Hayhoe, 2007), so that the landing sites of the
routines are qualitatively accurate: Litter fixations are to the centre of the litter; obstacle
fixations land on the furthest edge; pavement fixations land on the pavement edge. The
reader should compare Figure 3B with Figure 4B and C.

MODELLING TASKS WITH SEQUENTIAL STEPS
In the walking example each behaviour has very a minimal state description. For example,
staying on the pavement just requires measuring the pavement edge. The history of the
traverse is not needed. However, more complicated behaviours require much more elaborate
internal state descriptions. Specifying the details of those descriptions is challenging
ongoing research enterprise and is taking many directions. Herein we briefly describe our
own work but one could just as easily use other examples such as Nytrøm and Holmqvist
(2008) and Oliva and Torralba (2006) as illustrations. The point is that the surface image
manipulations are just the tip of an the iceberg of representational structure needed to
interpret fixation choices. Furthermore, our example only addresses the recognition issues in
interpreting observed fixations. Additional structure is needed to generate the fixations in the
process of producing the behaviour.

Consider the process of making a peanut butter sandwich (Hayhoe et al., 2003). If you want
to put peanut butter on a slice of bread, you must be holding the knife and you must have
taken the lid off the peanut butter jar. Modelling this state is not straightforward owing to a
number of factors. Consider the problem of watching someone make a sandwich and
describing what has transpired. The basic actions must be measured and recognized.
However, all the steps in the process are noisy and hence the description must necessarily be
probabilistic. Now consider describing the order of steps making a sandwich. Since there are
over 1000 distinct ways of making it that differ in the order of the steps, any particular
sequence of steps is best described probabilistically. A central way of handling probabilistic
information goes under the name graphical models. These are particularly valuable when the
basic dependencies are in the form of conditional probabilities, as in the sandwich-making
case. Although some care has to be taken in developing a graphical model, Yi and Ballard
(2006) were able to do it. This is a very demanding task, since the model must take head,
hand, and eye data from the subjects and, at any given time, recognize what stage in the
sandwich making is occurring, as shown in Figure 5.

For this task the graphical model is in the form of a Bayes Net. Such a network is a suitable
tool for this class of problems because it uses easily observable evidence to update or infer
the probabilistic distribution of the underlying random variables. A Bayesian net represents
the causalities with a directed acyclic graph, its nodes denoting variables, and edges
denoting causal relations. Since the state of the agent is dynamically changing and the
observations are being updated throughout the task execution process, one needs to specify
the temporal evolution of the network. Figure 6 illustrates the two slice representation of a
Dynamic Bayes Network (DBN). Shaded nodes are observed; the others are hidden.
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Causalities, represented by straight arrows, are determined by probability distribution
matrices.

Each of the states can take on several discrete values as shown by the Tables 1 and 2. Visual
and motor routines produce specific values for each of the shaded nodes and the standard
Bayes Net propagation rules fill in values for the task nodes. The state of the lowest hidden
node is determined by its prior distribution in the first time/slice and thereafter jointly
determined by its previous state and the transition matrix, as denoted by the curved arrow
shown in Figure 6.

The two-slice representation can be easily unrolled to address behaviours with arbitrary
numbers of slices. At each moment, the observed sensory data (grey nodes), along with its
history, are used to compute the probability of the hidden nodes being in certain states:

where St is the set of states of hidden nodes at time t, O(1,t) is the observations over time
span (1,t). Behaviour recognition computes the states of each hidden node St at time t that
maximize the probability of observing the given sensory data:

The point of this elaborate example is simply that all the key variables that direct the
progress of interpreting sandwich making are part of an estimate of the sandwich
constructor’s cognitive program. Image data is important, along with hand measurements,
but primarily for conforming hypotheses in the cognitive program. The image structure is
not the cause of the sandwich being made.

CONCLUSION
The first goal of this paper was to show that it is very unlikely that the saliency map could
be the cause of gaze changes. The principal evidence is that almost all behaviour is goal
oriented and the object of these goals does readily translate into constellations of image
features in a significant number of cases. Thus, these cases are not capable of being
modelled as saliency map targets. This is not to say that the saliency map is not without
value as in many other cases the features in the saliency map can be used to compute the
planned point of fixation. However, the main point still remains that the cause of such a
computation comes from the latent variables associated with the subject’s internal goals and
not directly from the image itself.

In racquet sports where the object is to hit a ball, the position that the racquet must meet the
ball is most often a proximal point in three-dimensional space that is determined by distal
information. In completing a complex task, often the target of a fixation depends on
remembered information obtained on prior fixations and not on the current image. In
complex tasks the fixation point can depend on a computation that depends on the image
features that cannot be anticipated without knowledge of the task itself.

The conclusion of all these observations is that in order to progress, a substantial effort must
be invested in modelling tasks so to have the variables used in computing fixation points
made explicit. As an example, we described a way of composing behaviours whose
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components are learnt using reinforcement. Such behaviours can be used to generate
fixations on the basis of rewarding reduction in uncertainty. This idea has at the moment the
status of a conjecture, but nonetheless illustrates the motivation for a nonsaliency theory of
gaze control.

Finally, to illustrate the possibility of using the information acquired at the point of gaze
with that of other body actions to guide behaviour, we showed that the steps in a complex
behaviour such as sandwich making could be recognized with just that information as input.
Again the status of these variables is provisional, but nonetheless they constitute an
existence proof that this sparse information is sufficient to accomplish the task. A huge
amount of additional work will need to be done before one could safely establish the role of
cognition in gaze control, but the aim of this paper is to argue that this research is necessary
and will supplant strictly image-based computational models.
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Figure 1.
Separate visual routines. When subjects have had a preview of a scene they can identify a
search target’s location from memory (A) but without the preview they use a correlation-
based technique (B) that takes longer. One could attempt convert the remembered target’s
location to saliency coordinates, but not without addressing the more complicated question
of how the brain manages different dynamic frames of reference.
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Figure 2.
(A) A frame from the human embedded vision system simulation showing the avatar
negotiating a pavement strewn with purple litter and blue obstacles, each of which must be
dealt with. The insets show the use of vision to guide the avatar through a complex
environment. The upper inset shows the particular visual routine that is running at any
instant. This instant shows the detection of the edges of the sidewalk that are used in
navigation. The lower insert shows the visual field in a head-centred viewing frame. (B) By
wearing a Head Mounted Display (HMD), humans can walk in the same environment as the
avatar. (C) A basic visually guided behaviour showing steps in the use of the learnt litter
cleanup Q-table. The input is a processed colour image with a filled circle on the extreme
right-hand side indicating the nearest litter object as a heading angle θ and distance d. This
state information, indicated by the circular symbol in the policy table on the lower left, is
used to retrieve the appropriate action from the Q-table’s policy immediately below. Light
regions: Turn = −45°; grey regions: Turn = 0°; and dark regions: Turn = −45°. In this case
the selected action is turn = −45°. The assumption is that neural circuitry translates this
abstract heading into complex walking movements. This is true for the human avatar that
has a “walk” command that takes a heading parameter. State information can also be used to
retrieve the expected return associated with the optimal action, its learned Q-value, as
illustrated on the lower right.
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Figure 3.
Behaviours compete for gaze in order to update their measurements. (A) A caricature of the
basic method. The trajectory through the avatar’s state space is estimated using a Kalman
filter that allows estimates to propagate in the absence of measurements and build up
uncertainty (light grey area). If the behaviour succeeds in obtaining a fixation, uncertainty is
reduced (dark grey region). The reinforcement learning model allows the value of reducing
uncertainty to be calculated. (B) The top panel shows seven time steps in walking and the
associated uncertainties for the state vector grey for obstacle avoidance (OA), sidewalk
finding (SF), and litter pickup (LC). The corresponding boxes below show the state spaces
where the a priori uncertainty is indicated in light grey and the a posteriori uncertainty is
indicated in the darker grey. Uncertainty grows because the internal model has noise that
adds to uncertainty in the absence of measurements. Making a measurement with a visual
routine that uses gaze reduces the uncertainty. For example, for litter collection (LC), Panel
5 shows a large amount of uncertainty has built up that is greatly reduced by a visual
measurement. Overall, obstacle avoidance wins the first three competitions, then sidewalk-
finding, and then litter collection wins the last three. (C) Tests of the Sprague algorithm
(dark) against the robotics standard round robin algorithm (light) and random gaze
allocation (white) show a significant advantage over both.
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Figure 4.
Comparing human gaze locations to those found by the Itti saliency detector. (A) Key. The
small inserts show the saliency maps that are overlaid as transparencies on the lower
versions of the images. (B) Match example. (C) No match example. (D) In a sample of 18
frames, more than half show fixation locations that are not detected by the maps. The
saliency program was provided by Dr. Laurent Itti at the University of Southern California.
In this case, for a representative sample, only 8 out of 18 frames were labelled as matches.
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Figure 5.
Using the DBN to recognize steps in sandwich making. (A) Two fixations from different
points in the task—(top) bread with peanut butter (bottom) peanut butter jar—appear very
similar, but do not confuse the Dynamic Bayes Network (DBN), which uses task
information. (B) A frame in the video of a human subject in the process of making a
sandwich showing that the DBN has correctly identified the subtask as “knife-in-hand”. (C)
A trace of the entire sandwich-making process showing perfect subtask recognition by the
DBN.
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Figure 6.
The basic structure of the Dynamic Bayes Net (DBN) used to model sandwich making. Two
time slices from the sandwich-making DBN. Visual and hand measurements provide input
to the shaded nodes, the set of which at any time t comprise the measurement vector Ot. The
rest of the nodes comprise the set St whose probabilities must be estimated. The sequencing
probabilities between subtasks are provided from a task model that in turn is based on
human subject data.
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TABLE 1

Number of states for hidden nodes in the task model (Figure 6)

Node name Number of states

Task 80

Subtask 10

Hand object 4

Gaze object 5
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TABLE 2

Number of states for observed data nodes in the task model (Figure 6)

Node name Number of states

Time frame 20

Hand frequency 2

Hand reaching 2

Recognized object 5
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