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Abstract: Methamphetamine (Meth) use and human immunodeficiency virus (HIV) infection are major public 
health problems in the world today.  Ample evidence indicates that HIV transfection risk is greatly enhanced with 
Meth use.  Studies have shown that both HIV infection and Meth abuse can cause neuronal injury leading to 
neurodegeneration. While many studies have focused on the individual effects of Meth and HIV on the brain, few 
investigations have been carried out on their co-morbid effect in the nervous system. In this review, we try to 
summarize recent progress on individual effects of Meth and HIV on neurodegeneration and their potential 
underlying mechanisms, in addition to exploring their co-morbid effect on the brain.  
 
Key words: HIV-1, AIDS, methamphetamine, neurotoxicity, neurodegeneration
 
 
 
Introduction 
 
Methamphetamine (Meth) use represents a 
major public health concern with greater than 
35 million users worldwide. In the United 
States, 10-15% of human immunodeficiency 
virus-1 (HIV-1) positive individuals acknow-
ledge Meth use [1] with greater than 7% of 
American high school students having tried 
Meth [2,3]. Due to its ability to be synthesized 
in small clandestine laboratories [4], this 
highly addictive drug [5] is difficult to combat. 
Meth is very desirable to illicit drug users due 
to its inexpensive cost of manufacturing, low 
cost to purchase and its long duration of 
action [6]. With an elimination half-life 
between 10-12 hours [7], its pharmacokinetics 
allow it to produce effects lasting 10-times 
longer than that of cocaine [8]. Meth abuse 
has been associated with many health 
disorders, such as stroke, increased blood 
pressure, cardiac arrhythmia, hyperthermia, 
central nervous system (CNS) abnormalities 
and most notably HIV-1 infection [9, 10]. As 
the most widely used recreational drug among 
men who have sex with men (MSM) [11-14], 
Meth is associated with a doubling of the risk 
of HIV-1 acquisition [15], higher blood viral 

loads, alterations in anti-retroviral medication 
concentrations, and greater high-risk sexual 
behaviors, which may lead to HIV super 
infection [16-18]. Current estimates of overall 
HIV-1 prevalence among young injection drug 
users is about 2.8 percent [19], with 
transmission through injection drug use 
representing 13 percent of all new cases of 
HIV-1 in 2006 [20].  
 
HIV-1 infection of the brain, or NeuroAIDS, 
results in a chronic neurological disorder 
termed HIV-1 associated dementia (HAD) in 
approximately 20-30% of patients infected 
with HIV-1 [21, 22]. HAD is characterized by 
deficits in attention, impairments of short-term 
memory, compromised fine motor skills, 
tremors, slowness of movements, and 
abnormal gait [22, 23]. While the prevalence 
of HAD has been greatly reduced in the 
modern era of highly active anti-retroviral 
therapy (HAART), other complexes of milder 
symptoms, specifically the minor cognitive 
motor disorder (MCMD), have been growing in 
prevalence [24]. This is generally believed to 
be due to a chronic low level persistent viral 
infection of mononuclear phagocytes (MP; 
blood-borne tissue and perivascular macro-
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phages and microglia) having supplanted high-
level productive HIV replication as the pivotal 
mechanism for the pathogenesis of HIV-
associated neurocognitive disorders (HAND).  
Evidence suggests that HIV-infected indivi-
duals who use illicit stimulants, in particular 
Meth, are more likely to have HAND compared 
with non-drug abusing HIV-infected individuals. 
This may be because stimulants compound 
the effects of the neurotoxic substances 
released during HIV infection, with dopa-
minergic and glutamatergic systems being 
particularly vulnerable [25-28].  
 
Meth use and HIV-1 infection, two major public 
health problems worldwide today, have been 
associated with detrimental changes in 
neuropsychology. Using a variety of psycho-
logical tests, it has been shown that chronic 
Meth users show significant deficits in 

attention, spatial learning and memory, and 
executive functions [29-31]. HIV-1 infected 
individuals usually manifest changes in 
personality, apathy, and depression levels, as 
well as social withdraw and psychotic 
symptoms [32, 33]. Asymptomatic HIV-1 
positive individuals often display minor deficits 
in attention [34], cognitive speed [35], and 
fine motor skills [36]. Individuals with co-
morbid HIV-1 infection and Meth use have 
been demonstrated to show greater 
reductions in cognitive abilities compared to 
either individuals with HIV-1 infection or Meth 
use alone [37, 38].   
 
While many studies have focused on the 
individual effects of Meth and HIV-1 on the 
brain, limited investigations have been done 
on their intersecting influence. In this review, 
we attempt to summarize the individual 

Figure 1.  Effects of Meth and HIV-1 on neural dysregulation and degeneration
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effects of both Meth use and HIV-1 infection 
on neurodegeneration, and to evaluate their 
intersecting effects on neurodegeneration as 
well.  A summary chart diagram illustrating the 
effects of Meth and HIV-1 on neurodegenera-
tion is shown Figure 1. 
 
Meth-associated neurotoxic activity 
 
Neuroimaging studies have documented 
extensive changes in the brains of Meth 
abusing individuals. Various studies using 
positron emission tomography (PET) on the 
brains of Meth abusers have found remarkably 
consistent decreases in dopamine (DA) 
transporter (DAT) levels in the caudate 
nucleus, putamen, nucleus accumbens, orbito-
frontal cortex, and the dorsolateral prefrontal 
cortex [39-44], as well as reductions in post-
synaptic D2 dopamine receptors in the 
caudate and putamen [39, 45]. While this 
represents major physiological changes, it may 
also reflect a neuroadaptive change in 
response to repeated exposure to Meth [46]. 
 
Morphological changes in the brains of Meth 
users have been characterized using structural 
magnetic resonance imaging (MRI) technique. 
These changes include decreased volumes of 
the medial cingulate gyrus, limbic and para-
limbic cortices, and the bilateral hippocampus 
[47], and an increase in the volumes of the 
putamen and the globus pallidus [48].  
 
A significant number of proton magnetic 
resonance spectroscopy (MRS) studies have 
been conducted on Meth abusers who have 
recently abstained from Meth use. These 
studies showed decreased levels of N-
acetylaspartate (NAA), a marker for neuronal 
integrity and density, in the basal ganglia, 
frontal white and gray matter and anterior 
cingulated cortex [49-52]. Increased levels of 
choline-containing compounds (CHO), a 
measure of cell membrane degradation and 
lipid changes, have been found in the frontal 
gray and white matter and the anterior 
cingulated cortex, while decreased levels of 
CHO have been found in the basal ganglia of 
recently abstained Meth users [50-53].  
Increased levels of myo-inositol (MI), a putative 
marker of glial content, were seen in frontal 
white and gray matter [49], and decreased 
levels of creatine (CR) and phosphocreatine, a 
marker of energy stores and energy 
metabolites, have been shown in the basal 

ganglia and the anterior cingulated cortex [50, 
52].  
 
Potential mechanisms underlying Meth-
associated neurotoxic activity 
 
Oxidative Stress 
 
Meth is known to cause persistent damage to 
DA and serotonin (5HT) nerve terminals in 
animal models of drug abuse [54-56], as well 
as to human abusers of Meth [39, 47]. While 
not fully understood, oxidative stress, the 
cytotoxic consequences of reactive oxygen 
species (ROS) (e.g. H2O2, O2, OH), is believed 
to play a major role in the neurodegeneration 
associated with the use of Meth.  Yamamoto 
and Zhu demonstrated this by showing an 
increase in the extracellular concentrations of 
the hydroxylated products of salicylate and d-
phenylalanine in the brain after administration 
of a four-injection regimen of Meth [57]. This 
increase in ROS has also been shown to be 
present in a time dependent manner with 
respect to the last dose of Meth in a 
neurotoxic regiment [58]. With ROS also being 
produced as a byproduct of normal aerobic 
metabolism, cells contain elaborate anti-
oxidant systems for dealing with ROS [59]. 
Cumulative evidence suggests that Meth is 
able to cause oxidative stress by affecting the 
balance between ROS production and 
enzymatic and non-enzymatic antioxidant 
systems [60-62]. Increases in ROS concentra-
tion can affect DNA resulting in nucleotide 
oxidation [63], lipids resulting in lipid peroxide-
tion [57, 60, 64, 65], and cellular proteins 
resulting in protein nitration [60].  
 
The role of oxidative stress in Meth-associated  
neurotoxicity is also confirmed by the observa-
tions that antioxidants such as ascorbic acid, 
ethanol, mannitol, vitamin E, N-acetyl-L-
cysteine, and selenium [66-68] are able to 
attenuate striatal DA and 5-HT depletions, 
while inhibition of superoxide dismutase 
(SOD), an antioxidant enzyme, by diethyldithio-
carbamate exacerbates both DA and 5-HT 
depletions [66]. Similarly, transgenic mice with 
over-expression of copper/zinc SOD show 
resistance to Meth induced neurotoxicity [69]. 
 
Another possible mechanism associated with 
Meth-induced neurotoxicity may be the 
formation of hydroxyl radicals in the synaptic 
cleft. Upon administration, Meth causes the 
release of DA from synaptic vesicles inside of 
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synaptic monoaminergic terminals. Following 
its release, inter-terminal DA is transported 
into the synaptic space by reverse transport by 
DAT [70]. This reverse transport of DA by DAT 
is encouraged by Meth ability to enhance the 
phosphorylation of the DAT via protein kinase 
C [71]. The reverse transport of DA by DAT is 
required for neurodegeneration, because DAT 
knockout mice don’t exhibit Meth-induced 
terminal degeneration [72]. Once in the 
synaptic cleft, DA is metabolized by 
monoamine oxidase (MAO) to produce 
hydrogen peroxide. Interaction of the hydrogen 
peroxide with metal ions can produce toxic 
hydroxyl radicals [73].  
 
Neurotoxicity resulting from oxidative stress 
may also be related to changes in the 
functionality and concentration of vesicular 
monoamine transporter 2 (VMAT-2), an 
integral membrane protein that acts to 
transport DA from cellular cytosol in synaptic 
vesicles. Exposure to Meth leads to a 
reduction in the binding of tetrabenazine to 
VMAT-2 [74], resulting in a reduction of DA 
transport into vesicles [75]. Thus, changes in 
functionality of VMAT-2 can lead to increases 
in the amount of cytoplasmic DA available to 
form ROS and DA quinones [58, 76, 77]. DA 
quinones can form protein-bound cysteinyl 
catechols, which are selectively toxic to DA 
terminals [77], however this effect can be 
attenuated by exposure to antioxidants 
(ascorbic acid and glutathione) [78]. Further, it 
has been shown that repeated swim stress is 
able to down-regulate the concentration of 
VMAT-2 in the striatum and nucleus 
accumbens [79]. With the likelihood of stress 
being associated with Meth addiction, it seems 
reasonable to conclude that stress-related 
changes in VMAT-2 concentration accom-
panied by the effects of Meth on VMAT-2 
concentration may represent an enhanced 
pathway to neurotoxicity due to oxidative 
damage.   
 
Activation of Mitochondria cell death genes 
 
The mitochondrial Bcl-2 family of genes plays 
an important role in regulating cellular 
apoptosis. The Bcl-2 gene family regulates 
mitochondrial outer membrane permeability, 
and can be divided into either pro-apoptotic 
(BAX, BAD, BAK, and BID among others) or 
anti-apoptotic (Bcl-2, Bcl-w, and Bcl-XL among 
others) splice variants. Several studies have 
documented the role of the Bcl-2 gene family 

in Meth-induced neurodegeneration [62, 80, 
81]. While over-expression of Bcl-2 in 
immortalized neural cells offers significant 
protection from Meth-induced apoptosis [82], 
treatment of primary cortical neurons with 
Meth results in changes in the regulation of 
Bcl-2 splice variants [81]. Specifically, Meth 
has been shown to cause an increase in the 
levels of the pro-apoptotic genes BAX, BAD, 
BAK and BID, and a reduction in the anti-
apoptotic genes Bcl-2 and Bcl-XL [83], with the 
peak of pro-death gene expression at 
approximately eight hours after exposure to 
Meth and peak cell death at three days post-
exposure [84]. These changes in the intrinsic 
ratios of cell death promoters to cell death 
repressors are consistent with the finding that 
Meth exposure results in the release of 
mitochondrial cytochrome C, Smac/DIABLO, 
endonuclease G and AIF into the cytosol [85, 
86]. Following this release, increases in 
caspase-3 activity and cleavage of PARP, DFF-
45 and lamin A can be observed [87]. When 
taken together with the in vitro demonstration 
that Meth can cause release of cytochrome C 
from mitochondria, activation of caspases 3 
and 9, as well as activation of DFF40, and its 
transit to the nucleus [88], the in vivo data 
strongly support the role of mitochondria in 
Meth-induced neuronal degeneration [89, 90]. 
 
The Endoplasmic Reticulum and Neural 
Apoptosis 
 
In addition to the mitochondria, oxidative 
stress is also able to cause neuronal 
dysfunction in the Endoplasmic Reticulum (ER) 
[91, 92]. In its regular state, the ER is 
responsible for the synthesis, folding and 
transport of proteins, as well as functioning as 
the main store for intracellular Ca2+ [91, 93]. 
Under normal conditions, the ER releases Ca2+ 
for use by the mitochondria to enhance 
metabolite flow on the outer mitochondrial 
membrane and to increase ATP production; 
however sustained release of Ca2+ from the ER 
can initiate calcium-dependent apoptosis via 
the permeabilization of the mitochondrial 
membrane [94]. Changes in calcium 
homeostasis have been implicated with Meth-
induced cellular demise, because Meth has 
been shown to activate calpain [85, 95], a 
Ca2+ responsive cytosolic cysteine protease 
that is an important mediator of ER-dependent 
cell death [96]. Further evidence for the 
participation of the ER in Meth-related cell 
death is demonstrated in the finding that 
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apoptotic doses of Meth influence the expre-
ssion of the proteins caspase-12, GRP78/Bip, 
and CHOP/GADD153 [85], proteins known to 
participate in ER-induced apoptosis and the 
ER-mediated unfolded protein response [97, 
98]. Despite this evidence, Meth-induced ER 
dysfunction may play a secondary role to Meth-
related oxidative stress [62, 73, 99] and to 
increases in the BAX/Bcl-2 ratio [83].  
 
Reactive Microgliosis 
 
Microglia, the resident immune cells within the 
central nervous system, function in immune 
surveillance in the intact brain and are 
activated during neurodegenerative processes 
[100]. It is believed that activated microglia 
might contribute to the progressive course of 
neurodegenerative disorders, including 
Parkinson’s [101], Alzheimer’s disease [102] 
and HAD [103]. More recently, it has also been 
shown that abstinent Meth abusers show 
significant increases in the levels of activated 
microglia in the midbrain, striatum, thalamus, 
orbitofrontal cortex, and the insular cortex in 
comparison to control (i.e. individuals with no 
self-reported history of methamphetamine 
use) [104]. These data are also consistent 
with increases in activated microglia that have 
been observed in mice following Meth 
injections designed to mimic a recreational 
dosing regimen in humans [105].  
 
Current evidence indicates that over activation 
of microglia can result in neuronal damage 
through proinflammatory processes, including, 
but not limited to, the production of tumor 
necrosis factor-α, interleukin-1β, and inter-
leukin-6 or through oxidative mechanisms via 
the generation of superoxide radicals [106-
109]. When combined with the observation 
that Meth-induced neurotoxicity is attenuated 
in interleukin-6-null mice [110] and that 
activation of microglia appears to precede 
Meth-induced damage to striatal dopaminergic 
terminals in rodents [105, 111-113], it seems 
reasonable to suggest that reactive micro-
gliosis is indeed associated with Meth-induced 
neurodegeneration.  
 
HIV-induced neurotoxic activity 
 
HIV brain infection produces progressive 
neural damage. Studied using MRI techniques, 
patients suffering from HAD have shown 
greater losses of white matter than non-
demented HIV positive individuals [114]. 

Specifically, decreases in the volume of the 
cerebellum, caudate nucleus and the 
hippocampus have been shown [115]. 
Perfusion MRI (pMRI) has been shown to be 
sensitive to the changes in cerebral blood flow 
(CBF) that have been associated with 
reductions in motor functioning in HIV positive 
individuals; including decreases in CBF in the 
lateral frontal and medial parietal lobes and 
increased CBF in the posterior parietal white 
matter [116]. In addition, a single-photon 
emission computed tomography (SPECT) study 
also showed changes in CBF, specifically a 
decrease in the temporoparietal white matter 
[117]. It has also been shown that CD4 counts 
in HIV positive individuals correlate with 
changes in CBF detected by pMRI [116] and 
accelerated ventricular volume enlargement 
and reduction in the volume of white matter 
and of the caudate nucleus seen using MRI 
[118].  
 
Computer tomography (CT) studies have 
demonstrated diffuse cerebral atrophy, and 
enlarged ventricles, which progress with the 
evolution of HIV infection [119, 120]. PET has 
shown the differences in glucose uptake 
between HIV positive individuals and HIV 
negative controls [121], and the time course 
of glucose metabolism levels in the basal 
ganglia (BG) [122]. Briefly, initial changes in 
motor performance are associated with 
diverse hypermetabolism in the BG. A change 
from hypermetabolism to hypometabolism is 
associated with moderate changes in motor 
performance.  Later severe deficits in motor 
performance are associated with widespread 
hypometabolism in the BG.  
  
MRS studies in HIV positive individuals have 
shown reductions in NAA in the frontal white 
matter and basal ganglia [123-130], and 
reduced NAA/CR and NAA/CR ratios in the 
centrum semiovale, frontal white matter and 
thalamus [125, 129, 130]. It should be noted 
that a partial reversal of the decreased NAA 
levels in the frontal white matter has been 
shown with HAART therapy [128]. Reduced CR 
levels have been shown in the basal ganglia 
[117, 124], while increased levels of CR have 
been shown in the frontal lobe [131]. 
Increased levels of MI have been shown to be 
present in the basal ganglia, frontal lobe, and 
temporoparietal white matter [117, 131], as 
well as an increase in the MI/CR ratio in the 
basal ganglia and the frontal white matter 
[125]. MI levels have also been shown to 
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correlate with lower CD4 counts and higher 
viral loads [131]. Despite improvements in 
CD4 count and viral load with HAART, 
increased MI and CHO remain in the basal 
ganglia after treatment [132]. It was also 
demonstrated that HIV positive individuals 
show age related changes in metabolic 
composition with respect to the normal 
variations seen. Individuals showed greater 
than expected levels of glial markers, cholines, 
and MI in the frontal white matter, while 
simultaneously showing further depressed 
levels of NAA and CR and phosphocreatine in 
the basal ganglia [124]. 
 
Understanding HIV-induced neurotoxic activity 
 
Roles of macrophages and glial cells 
 
HIV-infected macrophages and glial cells 
produce a variety of neurotoxins, including 
cytokines, chemokines, ROS, nitric oxide and 
excitatory amino acids. These toxins, alone or 
together, can influence the various types of 
cells in the brain [133-140]. Examination of 
brain sections from HIV demented and control 
brains with antibodies against iNOS, IL-1β, and 
caspase-1 revealed that the levels of all three 
markers of inflammation and oxidative stress 
are elevated in HIV demented brains [141]. 
Increases in markers of oxidative stress were 
also seen in microglia and astrocytes, 
suggesting that these cells may represent a 
site for the production of ROS [141]. Increased 
levels of macrophage inflammatory protein- 1α 
and 1β were found in the CSF of demented 
HIV-1 patients when compared with non-
demented HIV patients [142]. In a study of rat 
cerebrocortical cultures containing neurons, 
astrocytes, and microglia, gp120 toxicity was 
blocked by tuftsin-derived tripeptide (TKP), an 
inhibitor of reactive microgliosis [143]. It has 
also been shown that gp120-related toxicity in 
hippocampal cultures is dependent on the 
presence of glial cells [144], and that 
activation of the p53 pathway appears to be 
necessary for the induction of gp120-related 
neurotoxicity in both neurons and microglia 
[145].  
 
Secreted by neurons and glial cells [146], 
matrix metalloproteinases (MMPs), the Zn-
containing endopeptidases that enzymatically 
degrade the extracellular matrix proteins of the 
blood-brain barrier (BBB) and neuronal 
synapses [147, 148], have moreover been 
associated with the pathogenesis of HIV 

infection [149-151]. A study has shown that 
levels of MMP-2, -7, and -9 activity, are 
markedly increased in individuals with HAD 
when compared to both HIV-1 seronegative 
controls and HIV-positive, non-demented 
individuals [152]. This study has also shown 
that human fetal brain-derived cells can 
release MMP-2, -7, and -9, and that 
stimulation with TNF-α can augment the 
release of both MMP-7 and -9. Other studies 
have revealed that HIV-1 gp41 and gp120 are 
able to induce MMP-2 [153, 154]. Taken 
together, these studies, with the fact that 
these particular MMPs are known to target 
critical components of the BBB, may suggest a 
possible mechanism for disruption of the BBB 
in HAD. In addition, MMPs can also cleave 
chemokines whose cleavage products can 
cause neurotoxicity [151]. 
 
HIV Tat-associated neurotoxicity 
 
HIV Tat, the HIV trans-activator of transcription, 
vastly increases the amount of transcription of 
the HIV genome by phosphorylating other 
cellular factors, leading to explosive replication 
during infection [155]. High concentrations of 
Tat can be secreted by infected monocytes, 
resulting in altering function or killing of 
uninfected cells [156]. Moreover, the Tat 
protein causes neuronal loss, despite the 
inability of HIV in the infection of  neurons 
[155, 157].  
 
In vivo studies using direct stereotaxic inject-
tion of Tat have described the likelihood of a 
role for Tat in HIV-1-associated neurodegene-
ration. Following a single microinjection of Tat 
1-72 into the striatum of rats, an increased 
level of protein oxidation and neuronal 
degeneration was produced, as well as an 
observation of the presence of reactive 
macrophages/microglia and reactive astro-
cytes near the lesion from injection [158]. In 
addition to this, stereotactic injections of Tat 
into the striatum of rats has been shown to 
produce significant cell loss and an increase in 
the number of reactive astrocytes [159, 160].  
It has also been demonstrated that injection of 
Tat into the cerebral ventricles of rats can 
induce infiltration of neutrophils, macro-
phages, and lymphocytes, reactive astrocy-
tosis, neuronal apoptosis and ventricular 
enlargement [161]. The consequences of long 
term exposure to Tat have also been 
examined. Rat C6 glioma cells that were 
genetically engineered to stably produce Tat 
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were stereotaxically injected into the striatum 
or hippocampus of rats. It was demonstrated 
that Tat was able to be transported via normal 
anatomical pathways from the dentate gyrus 
to the CA 3/4 region and from the striatum to 
the substantia nigra, leading to reactive 
microgliosis, neurotoxicity and behavioral 
abnormalities [162].   
 
In vitro studies have helped to show possible 
pathways for Tat-associated neurodegenera-
tion by demonstrating that Tat is able to cause 
neuronal apoptosis in embryonic rat hippo-
campal neurons by a mechanism involving the 
disruption of calcium homeostasis, mitochon-
drial calcium uptake, caspase activation and 
the generation of ROS [163, 164]. It has been 
shown that Tat-associated neurotoxicity is 
mediated by activation of caspase-3 and 
caspase-8, as well as activation of the 
mitochondrial-related cell death genes [165, 
166]. The increase in ROS levels, at least in 
part, can be attributed with the ability of Tat to 
suppress Mn-superoxide dismutase (SOD) 
expression and CuZn-SOD activity, and is 
dependent on superoxide radicals and 
hydrogen peroxide [167, 168].  
 
Similarly, it has also been shown that Tat is 
able to cause neuronal apoptosis in cultured 
human fetal neurons [169, 170]. The Tat-
induced neuronal apoptosis was prevented by 
NMDA receptor antagonists in both cultured 
human fetal neurons [169] and rat mixed 
cortical cells [171]. More recently, Tat-induced 
neuronal apoptosis has been associated with 
ER-dependent cell death pathways [172], an 
observation that is consistent with the idea 
that changes in ROS levels can induce ER 
stress [91].  
 
HIV gp120 and  neural injury 
 
During HIV reproduction gp160, the HIV 
envelope protein, is cleaved to form both the 
gp120 and gp41 viral proteins [173]. Exposure 
to HIV-gp120 protein has been shown to be 
able to induce cell death in human neurons 
[174], as well as primary rodent cultures, 
including cortical, hippocampal, cerebral, and 
retinal cells [175-177]. It has also been 
demonstrated that overexpression of gp120 in 
astrocytes of transgenic mice produces severe 
neuronal loss, astrogliosis, and an increase in 
the number of microglial cells present [178]. 
Behavioral studies in transgenic mice that 
overexpress gp120 in glial cells exhibit an age-

dependent impairment in open-field and 
reduced spatial memory, similar to the 
cognitive and motor deficits seen in patients 
with HAD [179]. Injections of gp120 into the 
striatum of adult male rats resulted in 
significant areas of tissue loss and an increase 
in reactive astrocytosis [159], while injection 
of gp120 protein into neonatal rats caused 
dystrophic changes in pyramidal neurons of 
the cerebral cortex and the pups showed 
significant signs of retardation in develop-
mental milestones that are associated with 
complex motor behaviors [180]. Exposure of 
cultures of hippocampal neurons to gp120 
produced increases in the level of intracellular 
free calcium [177], an observation that is in 
agreement with the fact that NMDA 
antagonists are able to inhibit gp120-induced 
changes in intracellular calcium levels and 
subsequent neuronal injury [138]. Studies 
have shown that gp120-induced neuronal 
injury requires the presence of extracellular 
glutamate and calcium and the production of 
nitric oxide (NO). These results are supported 
by the ability of glutamate receptor antago-
nists and inhibitors of NO synthetase in the 
prevention of neurotoxicity [181]. Similarly, 
gp120-induced neuronal toxicity in human 
neurons was able to be attenuated by 
glutamate antagonists and the blockade of 
calcium channels [174]. In addition, gp120 
exposure has also been associated with the 
activation of caspases 3 and 9 and the release 
of mitochondrial cytochrome c [175, 182].  
Also of interest is the fact that inhibitors of 
both the Fas/TNF-α/death receptor and the 
mitochondrial death pathways can block 
gp120 neuronal apoptosis [182]. 
 
gp41 has been shown to be able to induce the 
expression of interleukin 1, tumor necrosis 
factor alpha, and NO via iNOS-mediated 
synthesis in both human and rodent glial 
cultures [183-185]. The detectable levels of 
gp41 in HIV-1 infected individuals [186-188] 
directly correlate with the severity and 
progression of HAD in humans [189].  
 
HIV Vpr and Nef-induced Neurotoxicity 
 
The viral protein R (Vpr) of HIV-1 regulates the 
import of the HIV-1 pre-integration complex, 
induces cell cycle arrest in replicating cells, 
stimulates viral transcription, and regulates 
activation of apoptotic pathways in infected 
cells [190]. In vitro studies using cultured 
neurons derived from rat hippocampal, cortical 
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and striatal neurons [191, 192] and an in vivo 
study using Vpr transgenic mice [193] have 
shown that Vpr has the ability to induce 
neuronal apoptosis and the Vpr-induced 
neuronal apoptosis requires the binding of Vpr 
to the adenine nucleotide translocator (ANT) in 
the inner membrane of the mitochondria [194-
196]. These results are consistent with the 
findings that Vpr-related neuronal apoptosis 
involves increased production of ROS and the 
activation of caspases-3 [192] and caspases 8 
[197]. Further, it has been shown that Vpr-
induced apoptosis can be prevented by 
ectopic expression of caspases-inhibiting anti-
apoptotic viral proteins [198] and the broad 
spectrum, irreversible caspases inhibitor Boc-
D-FMK [199]. Taken together, the observation 
that higher levels of Vpr are found in the 
cerebrospinal fluid of AIDS patients with 
neurological disorders [200] suggest an 
important role for Vpr in the progressive 
neurodegeneration seen in HIV-1 positive 
individuals.   
 
Nef (Negative Regulatory Factor) is a HIV-1 
viral protein that plays both offense and 
defense in the battle between the AIDS viruses 
and the body’s immune system. On one hand, 
Nef is associated with promoting the survival 
of HIV-1 infected cells and downregulating the 
surface level expression of major histocompa-
tibility complex- I (MHC I) and II (MHC II) on 
antigen-presenting cells and the expression of 
CD4 and CD28 on T helper cells [201]. On the 
other hand, Nef is able to recruit leukocytes 
into the brains of rodents [202] and enhances 
the viral infection of primary human astrocytes 
[203]. It has been shown that Nef is necessary 
and sufficient for the progression of HIV-1 
[204] and to promote AIDS development 
[205]. In vitro studies have shown that Nef is 
able to cause apoptosis in primary cultures of 
brain microvascular endothelial cells [206], 
and the death of primary human neurons and 
glia [207, 208]. However, grafting Nef-
transduced macrophages in the hippocampus 
of a rat lead to no detectable apoptotic events 
[209], although Nef transgenic mice have 
been shown to develop a severe AIDS-like 
disease that effects all organ systems, 
including the brain [209]. It has also been 
shown that Nef is necessary and sufficient for 
the progression of HIV-1 [204] and to promote 
AIDS development [205]. 
 
Interaction of HIV-1 and Meth on brain 
 

The amount of literature evaluating neuro-
imaging changes on co-morbid HIV-1-positive 
Meth abusers is much more limited than that 
of either of the individual groups. Using MRS, 
significantly lower levels of NAA where demon-
strated in co-morbid individuals, than the 
reductions seen in either of the individual 
conditions when compared to HIV-1 negative 
controls [210]. Chang et al. (2005) were able 
to show greater cumulative reductions of NAA 
in co-morbid individuals, although their results 
were not statistically significant. They were 
also able to show an increase in the levels of 
MI in the frontal cortices and basal ganglia.  
  
Research has shown that the consequences of 
co-morbid Meth use and HIV-1 infection can be 
especially deleterious. It has been speculated 
that the use of Meth has contributed to the 
emergence of distinct neurological variants of 
HIV. Administration of Meth to rats after 
intrastriatal HIV-1 Tat injection leads to a 
synergistic reduction in levels of dopamine and 
its metabolites [211]. These changes are also 
associated with neurodegeneration that 
specifically involves the loss of dopamine 
terminals and/or macrophage recruitment and 
microglial activation in both rodent and non-
human primate models [212-214]. The 
synergistic toxic effects of Tat and Meth were 
able to be attenuated in human fetal neurons 
with the use of antioxidants [211]. Similar 
results were also seen in the survival of the 
HT22 hippocampal cell line and of human 
primary neurons. Langfor et al. showed that 
co-administration of Tat and Meth leads to the 
appearance of earlier cellular demise and 
extensive cell death, and was associated with 
mitochondrial damage, disruption of mito-
chondrial calcium potential, and increased 
oxidative stress [215]. The synergistic effects 
of Tat and Meth-induced neuron degeneration 
have been further solidified by experimental 
results showing that animals treated with both 
Tat and Meth, both in subtoxic doses, showed 
significant reduction in striatal DA levels and 
DAT binding [211, 216]. It has also been 
demonstrated that intra-hippocampal Tat and 
Meth injection caused oxidative stress and 
activation of redox-regulated transcription 
factors in the cortical, striatal and hippo-
campal regions of the mouse brain [213].   
 
Nevertheless, the mechanisms underlying Tat 
and Meth co-morbid effects have attracted a 
great deal of research interest. Flora et al. 
showed that hippocampal-stereotactic inject-



Methamphetamine, HIV, and neurotoxicity 
 

Int J Physiol Pathophysiol Pharmacol 2009;1:162-179 
 

170 

tion of Tat and intraperitoneal (ip) injection of 
Meth produced a marked increase in the 
levels of TNF-α mRNA in the mouse striatum 
[213]. The involvement of TNF-α in the 
potentiation of co-morbid effects of Tat and 
Meth in neurodegeneration is supported by the 
observations that the detrimental effects 
associated with Tat and Meth were attenuated 
in mice lacking TNF-α receptors, and that TNF-
α synthesis inhibitors can reduce Tat and 
Meth-mediated neurodegeneration in hippo-
campal neuronal cultures [217].   
 
In addition to TNF-α, monocyte chemotactic 
protein (MCP-1) has also been shown to be 
involved in Tat and Meth-induced neuro-
toxicity. Rats treated with Tat and Meth exhibit 
an increase in the levels of MCP-1 in the 
striatum in comparison to those treated with 
either Tat or Meth alone[214]. Theodore et al. 
also demonstrated that MCP-1 knockout mice 
were protected against Tat and Meth-induced 
neurotoxicity.   
 
Moreover, a recent study reported that Tat and 
Meth together induce an increase in the 
activity of MMPs [218], suggesting that 
astroglia may play a role in Meth and HIV-1 
interactions [219]. More specifically, treat-
ment with Tat and Meth increased the release 
of MMP-1 and MMP activator in human 
neuron/astrocytes cultures [218].   
 
In closing, although a great deal of research 
has been invested in elucidating the effects 
behind HIV-1- and Meth-induced neurodegene-
ration, a great deal still stands to be 
understood about the co-morbid neurodegene-
ration seen in HIV-1 infected Meth abusers.  
With the popularity of Meth abuse and the 
substantial HIV-1 infection risk among Meth 
abusers, these co-morbid individuals represent 
a subset population requiring special conside-
rations for future research, prognosis and 
clinical treatment. 
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