Table 3.
Symbol | Parameter | Value/Units/Reference |
---|---|---|
θ 1 | molar N to C ratio Phytoplankton | 0.1509 mol N (mol C)–1 [Redfield et al., 1963] |
θ 2 | molar N to C ratio Bacteria | 0.2000 mol N (mol C)–1 [Kirchman, 2000] |
θ 3 | molar N to C ratio DOM | 0.0667 mol N (mol C)–1 [Benner et al., 1992] |
θ 4 | molar N to C ratio Phytodetritus | 0.1333 mol N (mol C)–1 [Walsh et al., 1999] |
θ 5 | molar N to C ratio TCDOC | 0.0250 mo l N (mol C)–1 [Ertel et al., 1986] |
υ 1 | molar P to C ratio Phytoplankton | 0.0094 mol P (mol C)–1 [Redfield et al., 1963] |
υ 2 | molar P to C ratio Bacteria | 0.0189 mol P (mol C)–1 [Kirchman, 2000] |
υ 3 | molar P to C ratio DOMa | mol P (mol C)–1 [Lucea et al., 2003] |
υ 4 | molar P to C ratio Phytodetritus | 0.0040 mol P (mol C)–1 [Paytan et al., 2003] |
b | coefficient of NH3 uptake | 1.5 (dimensionless) [Walsh et al., 1999] |
κ | Particulate detritus solubilization rate | 0.132 day–1 [Walsh et al., 1999] |
GGE | bacterial Gross Growth Efficiency | 0.3 Corg ass (Corg uptake)–1 [del Giorgio and Cole, 2000] |
β | Fraction of TCDOC photolysis yield to labile DOC | 0.1 mole C DOC (mole C photo)–1 (calibratedb) |
η 1 | photosynthetic quotient NO3 assimilation | 1.3 mol O2 per mol C ass.[Laws, 1991; Redfield et al., 1963] |
η 2 | photosynthetic quotient NH4 assimilation | 1.0 mol O2 per mol C assimilated [Laws, 1991] |
η 3 | phytoplankton respiration quotient | 1.0 mol O2 per mol C respired [Laws, 1991] |
η 4 | bacteria respiration quotient | 1.0 mol O2 per mol C respired [Laws, 1991] |
η 5 | photolytic remin quotient | 1.0 mol O2 per mol C photochm. altered [Amon and Benner, 1996] |
η 6 | Nitrification O2 ratio | 2.0 mol O2 per mol NH4 to NO3 (stoichiometryc) |
Φ c | Carbon specific quantum yield of Photosynthesis | 0.075 mol C (mol photons)–1 [Wozniak et al., 2002] |
gm20 | maximum gross assimilation rate for phytoplankton @ 20°C | 0.12 hr–1 [Walsh et al., 1999] |
gmb20 | maximum gross assimilation rate for bacteria @ 20°C | 0.24 hr–1 [Kemp et al., 1993] |
n1 | MM half saturation constant phytoplankton DIN | 0.5 mmol C m–3 [Walsh et al., 1999] |
n2 | MM half saturation constant phytoplankton DIP | 0.25 mmol P m–3 [Riegman et al., 2000] |
n3 | MM half saturation constant bacterial DOC | 0.83 mmol C m–3 [Walsh et al., 1999] |
n4 | MM half saturation constant bacterial DIN | 0.10 mmol N m–3 [Vallino et al., 1996] |
n5 | MM half saturation constant bacterial DIP | 0.10 mmol P m–3 [Holm and Armstrong, 1981] |
Dr | maximum denitrification rate | 0.01 day–1 [Herzfeld and Hamilton, 2000] |
Nr | maximum nitrification rate | 0.05 day–1 [Herzfeld and Hamilton, 2000] |
wd1 | small detritus sinking rate | 0.25 m day–1 (estimated) |
wd2 | large detritus sinking rate | 2.50 m day–1 [Walsh et al., 1999] |
wd3 | sediment sinking rate | 5.00 m day–1 [Walsh et al., 1999] |
Kt | temperature coefficient | 0.063°C–1 (calibrated to Q10) |
ε 1 | maintenance respiration rate of Phytoplankton | 0.015 day–1 [Geider, 1992] |
ε 2 | maintenance respiration rate of Bacteria | 0.015 day–1 [Geider, 1992] |
α 1 | fraction of grazed P carbon respired | 0.35 [Walsh et al., 1999] |
α 2 | fraction of grazed P carbon to DOC | 0.50 [Walsh et al., 1999] |
α 3 | fraction of grazed P carbon to SDET | 0.10(2/3 of 0.15) |
α 4 | fraction of grazed P carbon to LDET | 0.05(1/3 of 0.15) |
α 5 | fraction of solubilized particulate detritus | 0.212 (calibratedd) |
C:Chl | Carbon to Chlorophyll ratio | ~50–150 mg C (mg Chl-a)–1 (Redalje unpublished)e |
Pt | Minimum (threshold) phytoplankton carbonf | 0.2 mmol C m–3 (0.1 ug Chl-a L–1) [Ducklow, 2000] |
Bt | Minimum (threshold) bacterioplankton carbon | 0.2 mmol C m–3 [Ducklow, 2000] |
DOP/DOC ratios in coastal marine environments are often <<0.00067 [Hopkinson et al., 1997; Lucea et al., 2003; Hopkinson et al., 2002]. It is assumed that particulate organic phosphorus is remineralized whenever carbon is transferred to the DOC pool.
Calibrated from apparent quantum yield studies of terrigenous humics for NH4 yield and labile organic carbon yield.
The ideal stoichiometry for ammonium nitrification is ; nitrite nitrification is ; for a total yield of 2 moles O2. If photosynthetic nitrate assimilation yields 8.6 moles O2 (per mole N), while respiration of phytoplankton carbon yields 7.6 moles O2 (per mole N) – then 2 moles O2 consumption per nitrified mole N are required for Redfield stoichiometry (C:N:P:-O2 = 106:16:1:-138).
Assuming the remineralization of phytodetritus is due to particle adhesive bacteria of a C:P ratio = 53 and that DOM contains negligible DOP, then the bacteria must remineralize ~21% of the solubilized phytodetritus.
Mean C:Chl ratio for the northern Gulf of Mexico ~50, as cited in Dagg [1995]; the range is adjusted to account for low light conditions.
Threshold carbon values are required for numerical stability; no loss processes occur below the threshold values.