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Abstract
A model-based framework, due originally to R. A. Fisher, and a design-based framework, due
originally to J. Neyman, offer alternative mechanisms for inference from samples to populations.
We show how these frameworks can utilize different types of samples (nonrandom or random vs.
only random) and allow different kinds of inference (descriptive vs. analytic) to different kinds of
populations (finite vs. infinite). We describe the extent of each framework's implementation in
observational psychology research. After clarifying some important limitations of each
framework, we describe how these limitations are overcome by a newer hybrid model/design-
based inferential framework. This hybrid framework allows both kinds of inference to both kinds
of populations, given a random sample. We illustrate implementation of the hybrid framework
using the High School and Beyond data set.

Nonrandom sampling involves selecting units (e.g., persons) with unknown probabilities of
selection from a finite population of units. This finite population may be poorly defined
(e.g., all persons who saw a flier posted on a community bulletin board) or well defined
(e.g., all children attending licensed daycare centers in Dayton, Ohio). Nonrandom, or
purposive, sampling is common in observational psychology research. For example, 76% of
observational studies in 2006 issues of Journal of Personality and Social Psychology,
Developmental Psychology, Journal of Abnormal Psychology, and Journal of Educational
Psychology used nonrandom samples (Sterba, Prinstein, & Nock, 2008). Psychologists often
raise the following two questions about nonrandom samples in observational research (e.g.,
Jaffe, 2005; Peterson, 2001; Sears, 1986; Serlin, Wampold, & Levin, 2003; Sherman,
Buddie, Dragan, End, & Finney, 1999; Siemer & Joorman, 2003; Wintre, North, & Sugar,
2001).

1. Can statistical inferences be made from nonrandom samples; if so, under what
conditions and to what population?

2. Do inferences made from nonrandom samples differ from those possible under
random sampling?

According to some psychology research methods texts, the answer to the first question is no:
“Although these purposive sampling methods are more practical than formal probability
sampling, they are not backed by a statistical logic that justifies formal generalizations”
(Shadish, Cook, & Campbell, 2002, pp. 24, 356; see also Cook & Campbell, 1979, pp. 72–
73).1 However, according to other psychology research methods texts, formal statistical
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inferences from nonrandom samples are possible under certain conditions (e.g., Cronbach,
1982, pp. 255, 158–166).

Again consulting psychology research methods texts, the answer to the second question
remains unclear. For example, Shadish et al. (2002) note that randomly selecting units—that
is, sampling units with known probabilities of selection from a well-defined finite
population of units—facilitates generalization from those sample units to the finite
population by ensuring a “match between sample and population distributions on measured
and unmeasured attributes within known limits of sampling error” (p. 343; see also Cook &
Campbell, 1979, p. 75).2 But specifics are not provided as to whether the known
probabilities of selection actually feature in statistical inference. We also are not told
whether different methods of analysis need or can be used with random samples versus
nonrandom samples in order to achieve such inference.

The first goal of this article is to comprehensively address these two questions by describing
alternative inferential frameworks for nonrandom and random samples. To answer the first
question, we present a model-based statistical framework, due originally to Ronald Fisher,
for inference from nonrandom or random samples to what we will term infinite populations.
We make explicit the statistical logic that allows formal generalization under this
framework, and we describe the extent of this framework's implementation in psychology.
To answer the second question, we then present a design-based3 statistical framework, due
originally to Jerzy Neyman, for inference from random samples only to what we will term
finite populations. We make explicit that different methods of analysis and different kinds of
inferences are available exclusively under random sampling, and we describe the extent of
this framework's implementation in psychology. However, we then show that each
framework has a set of important limitations. The second goal of this article is to explain
how these limitations can be overcome using a newly developed hybrid model/design-based
framework. The hybrid framework allows inference from random samples to finite or
infinite populations and offers some unique strengths. We demonstrate its strengths by
showing that it can correct potential limitations of an often-cited High School and Beyond
study analysis (Raudenbush & Bryk, 2002;Singer, 1998).

BACKGROUND: BEFORE SAMPLING
To orient ourselves, consider that no statistical framework for inference from a sample to a
population was available until the early 20th century. Before that point, social, health, and
economic data on a state or country was generally gathered via complete enumeration
(Stephan, 1948). However, desire to obtain estimates at lower cost eventually prompted
consideration of sampling. Kiaer (1895) suggested nonrandom sampling whereas Bowley
(1906) suggested random sampling. Initially, both sampling methods were distrusted for
lacking a viable statistical framework for inference from the sample to a population. But
instead of one inferential framework, two were proposed. Philosophical differences between

1Cook and Campbell (1979, pp. 72–73) indicate that nonrandom sampling precludes statistical inference (which they term strict
generalizing) from samples to populations. They further state that generalizing from a sample to a population logically presupposes
generalizing across subgroups within a population (e.g., boys vs. girls). Nevertheless, because of the rarity of random samples, they
state that they will deemphasize the first step (generalizing to a population) to focus on the second step (generalizing across
subpopulations).
2For this reason, Shadish et al. (2002, pp. 472–473) state that randomly selecting units facilitates external validity. Moreover, Shadish
et al. (2002, pp. 55–56) also imply that random selection would facilitate internal validity by decreasing risk of selection bias (defined
later).
3Note that the term “design-based inference” is not used here in the familiar research design sense. That is, by design-based, we are
not referring to using research designs (e.g., regression discontinuity design) to aid causal inference and minimize validity threats. As
discussed later, we are referring to using random selection probabilities (i.e., sampling design) as the sole basis for analysis and
inference once the data are collected.
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prominent statisticians (Fisher vs. Neyman/Pearson) regarding the definition of a population
and the role of models in data analysis resulted in these two alternative frameworks
(Lenhard, 2006). Fisher's (1922) inferential framework came to be called the model-based
framework. Neyman's (1934) inferential framework came to be called the design-based
framework. In what follows, we deemphasize the rhetoric of Fisher and Neyman's often-
heated disagreements (they clashed on many other topics as well, including statistical
hypothesis testing and confidence intervals; Dawid, 1991; Fienberg & Tanur, 1987). We
focus instead on their frameworks' requirements and logic.4

MODEL-BASED INFERENTIAL FRAMEWORK
Fisher's perspective was that empirical random sampling would not always be feasible,
particularly for observational studies in sociology and economics (e.g., Fisher, 1958, p. 264).
Fisher also held that statistical modeling should play a central role in data analysis; that is,
model building and modification should mediate between real-world problems and
mathematical testing with the data at hand (Fisher, 1955, pp. 69–71; Lenhard, 2006). Hence,
Fisher developed an inferential framework that relied on modeling—particularly,
distributional assumptions—to mimic random sampling, even when empirical random
sampling was absent.

Fisher's model-based framework acknowledged at the outset that nonrandom sampling
indeed affords no statistical basis for generalizing from sample statistics to parameters of a
particular finite population. Here, a finite population is defined as all units which had a
nonzero probability of selection into that particular sample (see Figure 1). However,
although nonrandom sampling does not permit finite population inference, Fisher (1922)
showed that a different type of inference was possible using nonrandom sampling—infinite
population inference. To implement Fisher's framework for infinite population inference,
three prerequisite steps were necessary, as follows (see also Cronbach, 1982, chaps. 5–6).
As we discuss later, psychology researchers often implement the first two required steps but
partially or fully neglect the third.

Step 1
As a first step, a statistical model needs to be formulated by the researcher (Fisher, 1922, pp.
311–312). A statistical model describes how the dependent variable(s) are thought to have
been generated. An example statistical model is a simple linear regression model which
posits that the dependent variable yi is generated as a function of a known, fixed independent
variable (xi) and error:

(1)

All possible y-values that could be generated by the model make up a hypothetical, infinite
population (Fisher, 1922, pp. 311–312). The targets of inference under Fisher's framework
are the model parameters (e.g., regression coefficients, β), which characterize this
hypothetical, infinite population. The purpose of the statistical model is to provide a link
between the observed units in the sample and the unobserved units in the infinite population,
enabling causal or analytic inferences to pertain to these unobserved units as well (Royall,

4Fisher and Neyman had some agreements as well, including the importance of random assignment to treatment in experiments
(Fisher, 1925, 1935; Neyman, 1923). However, Fisher kept his work on experimentation (not discussed here) and inference (discussed
here) markedly separate, such that he ironically advocated at times for minimizing scope of modeling in experimental data analysis
(Kempthorne, 1976).
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1988; see Figure 1). In Cronbach's (1982) terms, “The model is used to reach from u
[sampled units …] to U [population units]” (p. 161; see also p. 163).5

Step 2
Naturally, we need to be able to consider our observed y-values as realizations of a random
variable in order to be able to explain their variability. But this leap is not automatic. Indeed,
at this point, we have established no grounds under which to consider observed y-values as
anything but fixed quantities pertaining to sampled units. One rationale for considering y-
values as realizations of a random variable would be if each y-value was associated with a
known, nonzero probability of selection. However, this rationale is not available to us
because such selection probabilities are unknown under nonrandom sampling. Instead, as a
second step, a parametric distributional assumption needs to be imposed on the model in
order to convert the fixed y-values obtained for the sampled units into realizations of a
random variable y (Fisher, 1922, p. 313). An example of a parametric distributional

assumption is the requirement , that is, that the errors in our regression model
are independently and identically distributed with mean 0 and variance σ2. This assumption
serves to convert the error term into a random variable that, in turn, converts the dependent
variable y into a random variable (Neter, Kutner, Nachtsheim, & Wasserman, 1996,
Theorem A.40). Hence, by imposing a parametric distributional assumption, we render our
y-values epistemically random (Johnstone, 1989) under our model—regardless of whether
or not empirical random sampling was actually used at the data collection stage. Because
random variation in the observed outcome y is introduced by model assumption, not by
design, data analysis under Fisher's framework lacks a formal requirement of empirical
random sampling (see Johnstone, 1987, 1989). Instead, Fisher's framework requires only
that the distributional assumption(s) imposed by the model be reasonable in light of the
sample selection mechanism actually used (see also Cronbach, 1982, pp. 164–165). For
example, by invoking the iid assumption, we claim that our distribution of y-values does not
differ meaningfully from the distribution that would have been generated by empirical
simple random sampling. This is because an independent and identical distribution of y-
values is actually the same distribution as would be obtained if empirical simple random
sampling were repeatedly performed (Kish, 1996).

Step 3
Fisher recognized that under certain circumstances, a researcher's sample selection
mechanism would meaningfully depart from that which would have been generated by
empirical simple random sampling. Under these circumstances, the sample selection
mechanism could not be ignored during data analysis, and Fisher's framework required a
third and final step (Fisher, 1956, pp. 33–34, 36). These circumstances have since been
made explicit (see Skinner, Holt, & Smith, 1989; Smith, 1983a).6 The first circumstance
occurs when sampling units in the finite population were stratified (divided into
nonoverlapping categories such as employed/unemployed, inpatient/outpatient, rural/urban)
before being independently selected from each stratum. The second circumstance occurs
when sampling units in the finite population were clustered (aggregated into groups, such as
schools, classrooms, households, mouse litters) before multiple units from the same group
were selected or before whole intact groups were selected. The third circumstance occurs
when the probability of selecting sampling units from the finite population was
disproportionate—such that probabilities of selection were related to the outcome variable

5Cronbach (1982) is not only concerned with inferences from sample to population units (e.g., persons) but also generalizations from
sample to population observations, settings, and treatments—together called utos. We focus on u in this article.
6Cronbach (1982, chap. 6) discusses this step in the specific context of treatment-outcome designs, which is not our focus here.
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even after controlling for independent variables. Next, we illustrate the consequences of
ignoring each stratification, clustering, and disproportionate selection via case examples. We
describe what Step 3 of the model-based framework would require in each case. For each
case example, the Equation (1) model is true in the infinite population with parameters β0 =
2, β1 = 3, and σ2 = 1.

First, consider the case in which units were selected from each of several strata (where strata
variables are typically assumed to neither interact with nor correlate with independent
variables). Ignoring this fact during data analysis typically results in standard errors that are
too large (Kish & Frankel, 1974). For example, standard errors are inflated by 49% for β0
and 46% for β1 if there are four strata and the stratification variable correlates with the
outcome at r = .50.7 For this reason, Step 3 of Fisher's framework requires the researcher to
condition his or her model on any strata indicators so that, after conditioning, the infinite
population is “subjectively homogeneous and without recognizable stratification” (Fisher,
1956, p. 33). This third step is often called Fisher's conditionality principle (see Johnstone,
1987; Lehmann, 1993). According to Fisher, after conditioning, nothing should distinguish
the observed set of n y-values from any other set of n y-values that could have been
generated by the model for the hypothetical, infinite population (Fisher, 1955, p. 72; 1956,
pp. 55–57). In the case of stratification, conditioning would amount to expanding the
Equation (1) model to include strata indicators as fixed effects (see Skinner et al., 1989). In
Equation (2) dummy variables are included for three of the four strata:8

(2)

As long as this parametric model is properly specified, the conditional (model-based)
variance of  across repeated samples that could be generated by the model can then be
used to make inferences about the target parameter β1 in the infinite population.

Next, consider the case in which clusters, rather than individual units, are selected. Ignoring
this fact during data analysis typically results in standard errors that are too small (Kish &
Frankel, 1974). For example, standard errors are shrunken by 55% for β0 and 57% for β1 if
the residual correlation among units within cluster is .15 and only β0 varies across clusters.9
In the case of clustering, fulfilling Fisher's conditionality principle could amount to
expanding the Equation (1) model to include cluster indicators as random effects
(Raudenbush & Bryk, 2002). That is, we could allow β0 and β1 to vary across clusters using
the multilevel modeling specification in Equation (3):

(3)

For example, in Equation (3), β1j varies across clusters with mean γ10, group-specific
deviation from this mean u1j, and variance of these group-specific deviations τ11. As long as

7The magnitude of SE inflation was estimated using Asparouhov's (2004) procedure. The sample selection mechanism was
implemented 500 times. The Equation (1) model, which ignores stratification, was fit to each selected sample. Then, the empirical SD
was divided by the average analytical SE.
8It is important to note that if stratification variables did interact and correlate appreciably with independent variables, additional
product terms would need to be added to the model to account for this.
9Estimates of SE deflation were obtained by replicating this sample selection mechanism 500 times, analyzing each sample ignoring
clustering, and then dividing the average analytical SE by the empirical SD.
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this parametric model is properly specified, the conditional (model-based) variance of 
across sets of samples that could be generated by the model can then be used to make
inferences about our target parameter γ10 in the infinite population.

Finally, consider the case in which units are disproportionately selected, but no stratification
or clustering occurred. Ignoring this fact during data analysis would have different
consequences for β0 and β1 estimates depending on precisely how the selection variables
relate to the outcome after conditioning on independent variables (e.g., Berk, 1983;
Graubard & Korn, 1996; Skinner et al., 1989; Sugden & Smith, 1984). To see this, consult
Figure 2. Line A in Figure 2 is the true population-generating regression line from Equation
(1)— before sample selection. The other plotted lines in Figure 2 show the effects of several
different selection mechanisms. (Plotted lines are calculated by averaging postselection
regression coefficient estimates from 500 repetitions of each selection mechanism).10 Line
B shows that selecting on a design variable zi—a variable used in recruitment that is not of
substantive interest in the investigation—when zi correlates with independent variable
results in intercept and slope bias (here, rx,z = .50). Line C shows that selecting on a design
variable zi that is uncorrelated with independent variable xi and does not interact with xi
results only in intercept bias. Line D shows that selecting on a design variable zi that is
uncorrelated with independent variable xi and does interact with xi results only in slope bias.
Line E shows that selecting units directly on the outcome yi results in both intercept and
slope bias. The bias evident in Lines B–D is often termed omitted variable bias and the bias
evident in Line E is often termed selection bias. Line B–E scenarios are often said to
threaten external validity because statements made about x–y relations in the whole
population on the basis of Lines B–E will be incorrect. Line B–E scenarios are also said to
threaten internal validity (Berk, 1983) because statements made about x–y relations within
the selected subpopulation only (e.g., persons with y-scores ≥ 2 in Scenario E) will also be
incorrect. Line F shows that only when we select on an independent variable xi do we end up
with no intercept bias and no slope bias. So Line F selection could be considered
“conditionally proportionate.” The Line F results suggest how the disproportionate selection
scenarios depicted in Lines B–D could be accounted for in data analysis in order to fulfill
Fisher's conditionality principle. For scenarios B–D, we can simply expand Equation (1) to
include the measured selection variable zi, and possibly its interaction term with independent
variables (xzi), as covariates:11

(4)

On the other hand, in the selection scenario depicted in Line E, Fisher's conditionality
principle would require expanding Equation (1) to account for the fact that the dependent
variable is observed only when a selection threshold t is exceeded:

(5)

This entails a truncated regression model (see, e.g., SAS Proc QLIM for implementation;
SAS Institute Inc., 2004).12

10In Lines B–F, cases were included if their scores on the designated selection variable were ≥ the mean.
11Another literature, stemming from Pearson (1903), suggests algebraic adjustments for selection on z that do not involve including z
as a covariate. These usually require restrictive assumptions (e.g., homoscedasticity, linearity) and have been demonstrated for very
simple models.
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Of course, these scenarios depicted in Figure 2 are simplistic because they depict
disproportionate selection when no clustering or stratification occurred in the study design.
In practice, there often may be disproportionate selection of clusters, not of individuals, and/
or there often may be disproportionate selection at more than one stage of recruitment. Such
complexities correspond to many additional possible patterns of parameter bias from
disproportionate selection beyond those shown in Figure 2 (Grilli & Rampichini, 2003). To
illustrate, consider the case in which disproportionate selection occurred at Level 2 (cluster-
level) or Level 1 (individual-level), or both, and a researcher knew to account for clustering
using a multilevel specification, but the researcher ignored the disproportionate selection.
Suppose further that the researcher is substantively interested in the effect of a Level 1
predictor xij on the outcome yij (i.e., γ10 in Equation (6)) and in the effect of a Level 2
predictor wj on the outcome yij (i.e., γ01 in Equation (6)). Hence, the researcher specifies the
following model:

(6)

Table 1 shows that if such a model is estimated ignoring disproportionate selection
occurring at Level 2 (cluster-level) or Level 1 (individual-level), or both, there will be fixed
effect bias as well as random effect variance bias. Expanding this model to include (a)
cluster-level selection variables as Level 2 covariates, (b) individual-level selection variables
as Level 1 covariates, and possibly (c) interaction terms between these covariates and other
independent variables in the model would serve to account for such multilevel
disproportionate selection—thus fulfilling Fisher's conditionality principle. Or, employing
multilevel truncated regression would serve to account for disproportionate selection on y
(see, e.g., aML program for implementation; Lillard & Panis, 2000).

In sum, this section has provided an answer to the first question posed earlier: “Can
statistical inferences be made from nonrandom samples; if so, under what conditions and to
what population?” Statistical inferences can be made from nonrandom samples to infinite
populations under a model-based framework—if Fisher's requirements described in Steps 1–
3 are met.

IMPLEMENTATION OF THE MODEL-BASED FRAMEWORK IN
PSYCHOLOGY

Although the models themselves that Fisher proposed (e.g., analysis of variance [ANOVA])
were widely adopted in psychology, the conditionality principle from the third step of his
inferential framework was not. To see this, we revisit the observational studies that used
nonrandom samples in Sterba et al.'s (2008) review. Twenty-eight percent of these
nonrandom samples reported one or more complex sampling features (stratification,
clustering,13 or disproportionate selection) but accounted for all of them in statistical models
(thus fulfilling Fisher's conditionality principle). Fifty-eight percent of these nonrandom
samples reported one or more complex sampling features but did not account for all of them
in statistical modeling (thus violating Fisher's conditionality principle). The remaining 14%
of these nonrandom samples reported no complex sampling features—either because none

12In truncated regression, independent and dependent variables are unobserved when a unit is not selected. In another variant,
censored regression, only dependent variables are unobserved when a unit is not selected.
13Instances of clustering solely due to repeated measures within person were not counted toward this total.
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were used or because those used were unobserved or unknown. Hence, although it could be
argued that sometimes observational researchers are prevented from fulfilling Fisher's
conditionality principle because selection variables, strata indicators, or cluster indicators
are unobserved/unknown, it is often the case that known, observed complex sampling
features recorded in the data set are simply not ones on which conditioning occurs in
statistical models.

Researchers were more likely to account for complex sampling features when they were
viewed as relevant to substantive hypotheses, rather than a nuisance induced by the design.
For example, when researchers have substantive hypotheses about how the factor structure
of a measure differs across a particular demographic variable zi (say, race or gender)
involved in sample selection, measurement invariance testing is often performed. Such
measurement invariance testing can be seen as a special case of the conditioning procedures
from Equation (5). That is, testing for factor loading invariance across levels of continuous
or binary variable zi for a generic item yi on a one-factor model, we have

(7)

where λ's are slopes, υ is an item intercept, and ηi is a latent independent variable. Equation
(7) follows the same logic as Equation (4), except the former measured independent
variables xi are now latent independent variables ηi. But measurement invariance testing was
not consistently employed for selection variables in all studies, but rather only when it
garnered substantive interest.

It may be the case that Fisher's conditionality principle is inconsistently applied in
psychology because the analysis of nonrandom samples is typically motivated on pragmatic
grounds—for example, budgetary limitations—rather than the aforementioned statistical
grounds (Serlin et al., 2003, p. 529; Shadish et al., 2002, pp. 92, 342, 348). Perhaps because
motivations for analyzing non-random samples are disconnected from Fisher's statistical
framework, published guidelines for analyzing nonrandom samples are as well. For
example, Cook (1993, pp. 42, 61) and Lavori, Louis, Bailar, and Polansky (1986, pp. 62–63)
note that merely mentioning selection criteria and clinically relevant facts about participants
(presumably in a methods or discussion section) can “substitute for random selection when
the latter is not possible.” No mention is made of requiring conditioning on complex
sampling features. Such recommendations are reinforced by the APA's Task Force on
Statistical Inference (1999) that asks members to “describe the sampling procedures and
emphasize any inclusion and exclusion criteria. If the sample is stratified (e.g., by site or
gender) describe fully the method and rationale” (p. 595). Although the Task Force
subsequently notes that “interval estimates for clustered and stratified random samples differ
from those for simple random samples” and that “statistical software is now becoming
available for these purposes,” (p. 595) it does not note that (a) the same effects of
stratification and clustering occur in nonrandom samples as well and (b) worse effects result
from disproportionate selection. Most disconcerting, the Task Force again only gives the
directive to describe complex sampling features in prose—not statistically account for them
in model specification, per Fisher's framework.

In sum, whereas in principle observational psychologists are allied with Fisher's model-
based inference approach for nonrandom samples, in practice the approach has often
become dislodged from Fisher's strict requirements (e.g., the conditionality principle).
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DESIGN-BASED INFERENTIAL FRAMEWORK
In contrast to Fisher, Neyman and Pearson (1933) deemed the construction of hypothetical
infinite populations, and construction of models, to be fallible and subjective. Neyman
(1957) remarked that “a model is a set of invented assumptions regarding invented entities
such that if one treats these invented entities as representations of appropriate elements of
the phenomena studied, the consequences of the hypotheses constituting the model are
expected to agree with observations” (p. 8). Neyman did not want inferences from a sample
to the finite population from which it was drawn to depend on appropriate specification of a
model and appropriate conditioning on all selection and design variables (Lenhard, 2006).
That is, Neyman did not want models to have a mediating role in the validity of inference.

Motivated by his work with Pearson, Neyman developed an alternative design-based
inferential framework. Its target parameters were not hypothetical/infinite population
parameters, as in the model-based framework, but rather were finite population parameters.
Example finite population parameters are functions of the dependent variable y: the mean of
y in the case of a census of the finite population, the total of y in the case of a census, or a
ratio of totals. In the design-based framework, the outcome y is converted into a random
variable, not through the introduction of epistemic randomness via imposition of
distributional assumptions, as in the model-based framework, but exclusively through the
introduction of empirical randomness from the random sampling design (Kish, 1965)—as
follows.

Step 1
As a first step, rather than specifying the statistical model hypothesized to have generated the
outcome y in the hypothetical/infinite population, Neyman's design-based framework
required specifying a random sampling frame, design, and scheme that together actually did
generate y in the finite population (Neyman, 1934, pp. 567–570). The sampling frame is a
list of primary sampling units in the finite population; the sampling design assigns nonzero
probabilities of selection to each sample that could be drawn from the frame; the sampling
scheme is a draw-by-draw mechanism for implementing the sampling design (Cochran,
1977). For example, suppose we are interested in estimating the total number of drinking
and driving episodes, t, experienced by high school students in a particular region. Suppose
that we wanted to stratify the region on a geographic variable correlated with the outcome
(rural vs. urban), creating H = 2 strata. Suppose further that we wanted to select nh = 5
clusters (high schools) with unequal probabilities and with replacement separately in each
strata. Moreover, we wanted those unequal probabilities (denoted πhi, where h corresponds
to stratum and i to cluster) to be proportional to a cluster-level covariate correlated with the
outcome (e.g., percentage of students qualifying for free lunch). Our sampling frame would
be a list of primary sampling units (schools) in the region along with each school's urban/
rural location and percentage free lunch qualifiers. Suppose further that, at a second stage of
selection, we wanted to sample mhi = 20 students (secondary sampling units) from Mhi
students in cluster i, with equal probabilities. Then this stratified, clustered sampling design

would assign selection probabilities  to students in cluster i of stratum h. Various
sampling schemes exist for implementing this design (Lohr, 1999, chap. 6), which have been
automated (see SAS Proc Surveyselect; SAS Institute Inc., 2008).

Step 2
Using only the known, nonzero probabilities of selection, cluster indicators, strata indicators,
and observed y-values for sampled units—not a statistical model—a finite population
parameter and its variance can be estimated (Cassel, Sarndal, & Wretman, 1977). To do so
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for our example, we would calculate a sampling weight as the inverse of the first stage

selection probability times the second stage selection probability . The weight
for a selected student indicates the number of students in the finite population that he or she
represents. This weight contains all information needed to construct a point estimate  for
our finite population parameter:

(8)

The unconditional (design-based) variance of  across all possible samples that could be
generated by the design can be approximated, adjusting for stratification and clustering. In
our example, the design-based variance of  is approximated (using taylor linearization) as
the variance of cluster-specific weighted totals within each strata—summed across strata
(Cochran, 1977). Note that this approximation can ignore details of the sampling design
below the cluster level assuming clusters were selected independently with replacement.
Note also that if the ratio of the sample size (here, number of clusters) to finite population
size is nontrivial (> 10%), and samples are drawn without replacement, the design-based
variance would approach zero. Multiplying it by a finite-population correction (fpc) prevents
this. However, in practice, the fpc is unnecessary for most large public-use surveys (Kish,
1965, p. 44).

This example shows that associating positive probabilities of selection with observed y-
values is all that is needed to convert the latter into realizations of a random variable y under
the design-based framework (Neyman, 1923). Unlike in the model-based approach, no
model distributional assumptions were needed to convert y into a random variable. Hence,
randomness of the sampling design is a mandatory requirement under Neyman's framework
because it is the sole basis for the probabilistic treatment of the results during data analysis
(Fienberg & Tanur, 1996).

However, a disadvantage of not specifying a model is that y-values of sampled units in the
finite population and y-values of unsampled units in the finite population are not
meaningfully related; they are related only to the extent that they both had a chance of being
selected. Furthermore, none of these y-values in the finite population are meaningfully
related to y-values outside the finite population. Consequently, only descriptive inference is
possible with respect to the finite population parameters in the design-based framework (see
Figure 1; Godambe, 1966). Descriptive inferences have the property that, if all finite
population units were observed without error (a perfect census), there would be no
uncertainty in the inference (Smith, 1993). Analytic or causal inference, about what will
occur or what would have occurred under different circumstances, requires postulating a
more meaningful link between sampled and unsampled units. Under Fisher's framework, this
link was established by requiring sampled and unsampled units to be jointly distributed
according to a parametric model (Royall, 1988).

In sum, this section has answered the second question posed earlier: “Do inferences made
from nonrandom samples differ from those possible under random sampling?” Different
kinds of inference (descriptive rather than analytic) to different kinds of populations (finite
rather than infinite) are possible exclusively under random sampling, and explicit models are
not required to achieve these inferences.
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IMPLEMENTATION OF THE DESIGN-BASED FRAMEWORK IN
PSYCHOLOGY

Neyman's design-based framework was soon taken up by observational survey researchers
in epidemiology, sociology, health sciences, and government census and polling agencies—
but not in observational psychological research (Smith, 1976). Target parameters for
inference in epidemiology, health sciences, and government polling were often descriptive
quantities (e.g., frequency of an outpatient medical procedure in a finite population).
Additionally, researchers in those fields often had to produce thousands of estimates while
knowing little about the population at hand. Hence, they could lack both the time and
knowledge to construct plausible hypothetical/infinite population models for their research
questions and understandably did not want the validity of their prevalence estimates to be
predicated on hastily constructed, fallible models (Kalton, 2002). In contrast, observational
psychologists had less interest in enumeration of particular finite populations and more
interest in constructing theory-driven models to explain causal mechanisms and predict
future behavior. Hence, they gravitated toward the model-based rather than design-based
framework (see Deming, 1975).

LIMITATIONS OF THE PURE MODEL-BASED AND PURE DESIGN-BASED
FRAMEWORKS

Following the introduction of the model-based inferential framework by Fisher and the
introduction of the design-based inferential framework by Neyman, survey sampling
statisticians began to identify their respective weaknesses.

With regard to the model-based framework, sampling statisticians found that conditioning
on all stratification and selection/recruitment variables, and allowing for their potential
interactions with independent variables, complicated model specification (Pfeffermann,
1996). Such conditioning also complicated interpretation of substantively interesting model
parameters and swallowed needed degrees of freedom (Pfeffermann, Krieger, & Rinott,
1998). Additionally, such conditioning was found to be error prone; particularly if little was
known about the sample selection mechanism, relevant selection/recruitment variables could
easily be unknowingly omitted (Firth & Bennett, 1998; Graubard & Korn, 1996; Neyman,
1934, p. 576–577).

With regard to the pure design-based framework, sampling statisticians felt limited by
restrictions on the type of parameters that could be estimated (simple statistics such as
means, totals, and ratios) and the type of inference that could be obtained (descriptive, finite
population inference; Graubard & Korn, 2002; Smith, 1993). Additionally, statisticians
increasingly realized that the design-based framework's arguably greatest purported
advantage (according to Neyman, 1923, 1934) is not entirely true: it does not provide
inference free of all modeling assumptions. True, the design-based framework does not
involve explicit attempts to write out a model for the substantive process that generated y-
values in an infinite population. However, the sampling weight itself entails an implicit (or
hidden) model relating probabilities of selection and the outcome (Little, 2004, p. 550).
Adjustments to the weight for nonsampling errors such as under-coverage and nonresponse
require further implicit modeling assumptions (Little, 2004; Smith, 1983b).14 Another

14For example, multiplying sampling weights by nonresponse weights (inverse of the probability that a unit would respond, if
selected) requires (a) dividing the sample into classes according to covariates known for respondents and nonrespondents and related
to the outcome and (b) invoking the implicit assumption that all units within a class have the same response propensity (Biemer &
Christ, 2008).
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drawback is that types of nonsampling errors requiring explicit models (e.g., measurement
error) cannot be accommodated by the design-based framework at all.

AN INTEGRATION OF THE MODEL-BASED AND DESIGN-BASED
FRAMEWORKS

To summarize, sampling statisticians viewed the pure model-based framework as
susceptible to bias incurred from incomplete conditioning on the sampling design.
Additionally, sampling statisticians viewed the design-based framework as incongruent with
analytic statistics (e.g., regression coefficients), causal inferences, and certain nonsampling
(e.g., measurement) errors. This raises the question “How can these limitations be
overcome?” Since the 1970s, work has been under way on a hybrid, integrated framework
that overcomes key weaknesses of its predecessors. In the last 5 years, software
implementations of this framework have greatly expanded (for review, see online Appendix:
http://www.unc.edu/~ssterba/).

The hybrid framework that emerged has several main features: (a) It can produce analytic
statistics (e.g., regression coefficients) from complex random samples, adjusting for
disproportionate selection, stratification, and clustering—without needing to condition on all
of these complex sampling features during model specification. (b) It permits causal or
descriptive inference about these analytic statistics to infinite or finite populations. (c) It is
flexible enough to take into account measurement error. (d) It can accommodate situations
in which researchers desire to condition on some complex sampling features but not others.
Although there are variations in the rationale and theoretical details of the hybrid framework
(e.g., Chambers & Skinner, 2003; Firth & Bennett, 1998; Kalton, 2002; Sarndal, Swensson,
& Wretman, 1992), we trace the emergence of some of its key, crosscutting developments.

(1) Account for the sampling design during model estimation not in model specification
To fix ideas, suppose we hypothesized that the Equation (1) model generated our data in the
infinite population, and suppose we desire to make analytic/causal inferences about β1. But
suppose our sampling design involved disproportionate selection, stratification, and
clustering. A first major breakthrough for the hybrid framework was Kish and Frankel's
(1974) demonstration that, despite the disproportionate selection, we could specify the exact
model in Equation (1) and make infinite-population inferences about β0 and β1—without
conditioning on selection variables. We would simply adjust for disproportionate selection
during estimation of the coefficient vector  rather than conditioning on selection variables
in model specification. Conventionally, we would think to estimate regression coefficients in
Equation (1) using ordinary least squares, that is, , where X is a design matrix
for independent variables and y is a vector of dependent variables. However, to adjust for
unmodeled disproportionate selection, we instead use weighted least squares,

. Although in conventional weighted least squares estimation the
weight matrix W is diagonal with variance weights (i.e., inverses of individuals' error
variances) as diagonal elements, here the diagonal elements are sampling weights (inverses
of individuals' probabilities of selection).

A second major breakthrough for the hybrid framework was Fuller's (1975) and Binder's
(1983) demonstrations that, despite this complex design, we could specify the exact model
in Equation (1) and make infinite-population inferences about β0 and β1—without
conditioning on strata or cluster variables. We would simply adjust for stratification and

clustering during  estimation rather than conditioning on them in model specification.
The typical (model-based) weighted least squares variance estimator, that is,
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, did not serve this purpose; one problem was that this estimator
assumed that weights were proportional to residual variances (unlikely) and another problem
was that it assumed no clustering or stratification. Intermediate solutions corrected one
problem but not the other (see Kish & Frankel, 1974; Nathan, 1988, for discussion). To
remedy both problems, Fuller proposed a design-adjusted variance estimator using taylor

linearization . The  matrix is a covariance matrix of totals
of independent variables multiplied by weighted residuals (i.e., ), where

 is a vector of estimated person-specific residuals from Equation (1) and E denotes the
expectation operator. Crucially, this  matrix automatically adjusts for any arbitrary,
unmodeled stratification, clustering, or disproportionate selection scheme for any arbitrary,
unmodeled number of stages of selection below the cluster level (see Sarndal et al., 1992,
Sec. 5.10) for the following reason. As long as clusters had been selected independently and
with replacement within stratum from a large finite population, totals in  are simply
aggregated to the level of the cluster. Then, the covariance of aggregated totals is calculated
across clusters for each stratum and summed across strata (Wolter, 2007, Sec. 6.11). Binder
(1983) extended this approach from linear regression to a variety of other outcome
distributions; his strategy is now widely implemented in software. Beyond taylor
linearization, other variance estimation methods from the design-based literature were also
applied (e.g., sample-weighted bootstrapping; Sarndal et al., 1992).

(2) Make infinite and/or finite population inference
Another major breakthrough for the model/design-based framework was the articulation of
its greater inferential possibilities. Fuller (1975) and Godambe and Thompson (1986)
showed that model estimates produced under the hybrid framework serve as estimates of
finite population parameters (i.e., a regression coefficient in the case of a census) when the
sample and finite population size are large—whether or not the model is correctly specified.
Additionally, these model estimates serve as estimates of infinite population parameters
when the model is correctly specified (see Figure 1). Hence, descriptive, finite-population
inferences are mainly independent of a correctly specified model (as in the design-based
framework) and analytic infinite-population inferences are mainly dependent on a correctly-
specified model (as in the model-based framework; Kalton, 2002; Knott, 1991). We said
“mainly dependent” because, in contrast to the pure model-based framework, the sample
weighting aspect of the hybrid framework does provide some robustness to
misspecifications in the fixed effects portion of the model (Binder & Roberts, 2003;
Pfeffermann, 1993, 1996). Also, the design-adjusted variance estimation aspect of the hybrid
framework avoids altogether needing to properly specify random effects. Furthermore, even
if the fixed effects portion of a model is misspecified, the standard errors of parameter
estimates will be close to traditional design-based standard errors for large finite population
and sample size (Binder & Roberts, 2003).

(3) Account for measurement error
More recent breakthroughs in the hybrid framework have involved the extension of its
design-based features (sample weighting and design-adjusted variance estimation) from least
squares estimation of regression models to maximum likelihood estimation of structural
equation models (e.g., Asparouhov, 2005; du Toit, du Toit, Mels, & Cheng, 2005; Muthén &
Satorra, 1995; Stapleton, 2006, 2008). Structural equation models use multiple observed
measures of latent variables to account for measurement error—something the design-based
framework could not do.
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(4) Account for the sampling design partially in model estimation, partially in model
specification

The most recent work on the model/design-based framework involves extending it to
situations in which the researcher wishes to account for particular complex sampling
features during model specification but simply adjust for others during model estimation.
For example, suppose the researcher wishes to account for clustering via a multilevel model
(the model-based way) and account for disproportionate selection via sample weights (the
design-based way) and account for stratification via standard error corrections (the design-
based way). To do so, sampling weights are incorporated into the estimation of a multilevel
model (e.g., Asparouhov, 2006; Asparouhov & Muthén, 2006; Korn & Graubard, 2003;
Kovacevic & Rai, 2003; Pfeffermann, Skinner, Holmes, Goldstein, & Rasbash, 1998; Rabe-
Hesketh & Skrondal, 2006; Stapleton, 2002). The twist is that a weight could now be needed
at each level. That is, for a two-level model, a Level 2 weight (inverse of the probability that
the cluster is selected) and a Level 1 weight (inverse of the probability that the individual is
selected given the cluster is selected) could be needed.

IMPLEMENTATION OF THE HYBRID MODEL/DESIGN-BASED FRAMEWORK
IN PSYCHOLOGY

We have seen that model/design-based framework is hybrid in the sense that it allows both
kinds of inference (finite and infinite) and in the sense that it allows models but does not
require their full or completely correct specification. However, the model/design-based
framework is not hybrid in the sense that it allows both types of samples (random and
nonrandom). As can be inferred by the use of sampling weights, the hybrid framework is
applicable to random samples only. That is, given a nonrandom sample, a researcher's only
choice remains the pure model-based framework. Yet, psychologists are increasingly
analyzing complex random samples through electronically available public-use data sets, for
example, National Longitudinal Study of Adolescent Health (Add-Health), Early Childhood
Longitudinal Study (ECLS), National Education Longitudinal Study (NELS), National
Longitudinal Survey of Youth (NLSY), High School and Beyond (HSB), and National
Survey of Child and Adolescent Well-Being (NSCAW), to which this framework does
apply. Moreover, psychometric software programs have recently added the capability for
fitting models under the hybrid model/design-based framework. Yet this capability is little
discussed in psychology research methods texts. To foster implementation of this framework
in psychology, in this article we provide (a) an explanation of the relative merits and
interpretation of this framework (see previous section), (b) a review of software for
implementing this framework (see online Appendix), and (c) an illustrative example (see
next section).

Illustrative Analysis Using the Hybrid Model/Design-Based Framework
Our example uses a theoretical model from Raudenbush and Bryk (2002, chap. 4) and
Singer (1998). This model stipulates that math achievement (MATHACH) varies across
schools according to school average socioeconomic status (MEANSES), controlling for
school SECTOR type (Catholic or public). This model also stipulates that the effect of
school mean centered child socioeconomic status (CSES) on MATHACH varies across
schools, but the strength of this relationship differs according to MEANSES:
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(9)

Our example uses the High School and Beyond (HSB) data set, whose sampling design
includes clustering, stratification, and disproportionate selection. Specifically, HSB's frame
of 26,096 clusters (a list of U.S. high schools) was stratified into nine strata, largely
according to school type (public, Catholic, private) and school racial composition.15 Within
some strata, schools were selected with probabilities proportional to estimated enrollment,
but within other strata, schools were oversampled. In total, 1,122 schools were selected at
the primary stage of selection. At the secondary stage of selection, 36 seniors and 36
sophomores were selected with equal probabilities within each selected school. Figure 3
shows resultant variation in the probabilities of selecting clusters and probabilities of
selecting individuals within cluster. Diagnostics showed that both sets of probabilities were
significantly related to our outcome MATHACH after controlling for independent variables
(γπij = .767, SE = .056, p < .001; γπi|j = −1.207, SE = .090, p < .001). This means that
ignoring disproportionateness of selection risks bias.

The Equation (9) model has previously been fit to HSB data exclusively using the model-
based framework (Raudenbush & Bryk, 2002; Singer, 1998). But, the Equation (9) model
specification does not account for HSB's disproportionate selection, partially accounts for
HSB's stratification (by conditioning on school type but not school racial composition or
their product), and fully accounts only for HSB's clustering (by specifying a multilevel
model for students nested within schools). Table 2, Column 1, depicts the results of this
model-based analysis. We show that this original, model-based analysis likely incurred bias
due to incompletely conditioning on the sampling design. We show that a hybrid analysis
allows us to fully, and more flexibly, account for the sampling design to avoid this problem.

A hybrid analysis affords us the flexibility of choosing whether to account for each of HSB's
complex sampling features the design-based way or the model-based way, depending on our
substantive goals. In this particular hybrid analysis, we chose to adjust for disproportionate
selection in a design-based way (including sampling weights at both levels during
estimation; see online Appendix) rather than the model-based way (including selection
variables as model covariates). We made this choice because selection variables were a
nuisance here, not of substantive interest. We chose to account for stratification in the
model-based way (including strata variables as model covariates) rather than the design-
based way (standard error adjustments using the HSB-provided strata indicator SCHSAMP).
That is, we included fixed effects for SECTOR, high percentage Black enrollment (BLACK),
high percentage Hispanic enrollment (HISPANIC), and their product terms (SECTOR ×
BLACK and SECTOR × HISPANIC). We made this choice because one variable involved in
stratification (SECTOR) was of substantive interest in the original model and was thought to
interact with independent variables. In contrast, design-based adjustments for stratification
typically assume no interaction between strata and independent variables. Finally, we chose
to account for clustering the model-based way (inclusion of random effects for cluster)

15A few strata were further divided (e.g., by urbanization, geographic region), but because accounting for this in model specification
did not alter results, it is not discussed further. Within sector, stratification according to school racial composition involved classifying
schools according to whether they were high Cuban (≥ 30%), high other-Hispanic (≥ 30%), high Black (≥ 30%), or Regular. For
purposes of including stratification variables as model covariates, high Cuban and high other-Hispanic were collapsed into a high
Hispanic variable for lack of a school-level percentage Cuban flag in the HSB data set.
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rather than the design-based way (standard error adjustments using the HSB-provided
cluster indicator SCHLID). We made this choice because distinguishing between- from
within-effects was of substantive interest. Mplus 5.2 (Muthén & Muthén, 1998–2007) code
for all fitted models is provided in the online Appendix.

Including sampling weights during estimation of the Equation (9) model yielded the results
in Table 2, Column 2. Comparison of Columns 2 and 1 indicates that some bias was likely
incurred in prior (model-based, unweighted) analyses due to ignoring disproportionate
selection. Although the conditional slope of CSES on MATHACH is still significant in
Column 2, and still varies across schools, the slopes for CSES no longer significantly differ
according to school MEANSES. That is, the cross-level interaction of CSES by MEANSES is
now nonsignificant. Further, there is now nonsignificant covariation between intercepts and
slopes in Column 2, meaning that the effects of CSES on MATHACH no longer covary with
the average MATHACH of the school. Also including omitted strata variables as model
covariates completes the hybrid analysis; these results are shown in Table 2, Column 3.
Comparing Columns 3 and 2 indicates that, in this case, more fully accounting for
stratification does not markedly change conclusions. However, note that not only do
standard errors change from Column 2 to Column 3 but in this case several parameter
estimates do as well. Recall that we earlier mentioned that stratification should affect only
standard errors, not parameter estimates when stratification variables neither interact with
nor correlate with independent variables. This is clearly not the case here. We do not explore
here whether school racial composition interacts with student or school socioeconomic
status.

It is important that this hybrid analysis also provides us with choices in drawing inferences.
For example, we can make descriptive inferences about γ10, the conditional effect of a unit
increment in CSES on MATHACH in the finite population of U.S. high schools, without
assuming an entirely correct model. Or we can make analytic inferences about γ10 in the
infinite population—assuming a correct model.

CONCLUSIONS
This article began by posing two often-asked but incompletely answered questions about
inferences from nonrandom versus random samples in observational psychology research.
To address these questions, we began by reviewing two alternative inferential frameworks
from samples to populations and discussing the extent of each framework's implementation
in psychology. In reviewing the model-based inferential framework, we showed that it does
in fact provide a formal logic for making statistical inferences from nonrandom (or random)
samples to infinite populations. Second, in reviewing the implementation of the model-based
framework in psychology, we showed that its requirements are often not completely fulfilled
in psychological research, even when measured indicators of stratification, clustering, and/or
disproportionate selection are available in a data set to make this possible. We suggested that
psychologists' long tradition of simply reporting, but not fully conditioning on, complex
sampling features contributes to the inconsistent fulfillment of these requirements. In
reviewing the design-based inferential framework, we showed that different kinds of
statistical inferences (descriptive rather than analytic) to different populations (finite rather
than infinite) were possible exclusively under random sampling—and their accuracy was not
dependent on the proper specification of a hypothetical model. In reviewing the
implementation of the design-based framework in psychology, we provided reasons for its
scant use in psychology. Finally, having addressed the two original questions often asked by
psychologists, we pushed the dialogue a step further, asking, what are the limitations of the
model-based and design-based frameworks, and how can these be overcome? We showed
that the model-based framework's central limitation lies in the need to tediously condition on
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all complex sampling features in model specification, and the design-based framework's
central limitation lies in the inability to address analytic/causal hypotheses and account for
nonsampling errors. We therefore described a newer hybrid model/design-based framework
that overcomes these limitations and can be used for analyzing large, complex random
samples from public-use data sets—a practice that is becoming more common in
psychology. To facilitate greater implementation of the hybrid inferential framework in
psychology, we provided an empirical illustration and reviewed applicable software in an
online Appendix. We hope that this article spurs readers to attend to the requirements of
their chosen inferential framework and provides motivation to take advantage of newer,
more flexible inferential frameworks where possible.
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FIGURE 1.
Schematic of alternative populations of inference and mechanisms for inference.
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FIGURE 2.
Simulation demonstration: Effects of disproportionate selection in a single-level model.
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FIGURE 3.
Distributions of students' and schools' probabilities of selection in the High School and
Beyond data set.
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TABLE 2

Illustrative Hybrid Design/Model-Based Analysis Using the High School and Beyond (HSB) Data Set

1. Original, Model-Based
Analysisa

2. Hybrid Analysis, Intermediate
Step 3. Hybrid Analysis, Final Step

Fixed Effects

Accounts for Clustering;
Partially Accounts for

Stratification
Model 1 Plus Weights to Account

for Disproportionate Selection
Model 2 Plus Covariates to Fully

Account for Stratification

INTERCEPT 7.27 (.06)** 7.59 (.11)** 7.76 (.12)**

CSES 2.09 (.07)** 2.16 (.11)** 2.16 (.11)**

MEANSES 4.43 (.14)** 4.37 (.25)** 3.60 (.28)**

SECTOR −0.06 (.24) −0.01 (.36) 0.15 (.36)

CSES × MEANSES 0.62 (.17)** 0.39 (.28) 0.39 (.28)

CSES × SECTOR −1.50 (.19)** −1.63 (.27)** −1.63 (.28)**

HISPANIC −0.96 (.32)**

BLACK −1.83 (.29)**

HISPANIC × SECTOR 0.25 (.59)

BLACK × SECTOR −1.42 (.74)

Variance Components

τ 00 1.86 (.15)** 2.05 (.27)** 1.73 (.24)**

τ 01 0.31 (.13)* 0.27 (.16) 0.18 (.16)

τ 11 0.29 (.10)** 0.53 (.26)* 0.55 (.26)*

σ 2 21.89 (.25)** 21.09 (.24)** 21.08 (.34)**

a
The model-based analysis results in Column 1 differ somewhat from those of Raudenbush and Bryk (2002, chap. 4) and Singer (1998) for two

reasons. First, our variables were taken directly from HSB's 1982 public-use datafile for the sophomore cohort (see online Appendix and
www.icpsr.umich.edu). Raudenbush and Bryk (2002) constructed and used factor score composites of 1980 and 1982 datafile variables for
sophomore and senior cohorts (Lee & Bryk, 1989). Second, we used all public and Catholic schools and they used a random subset. MATHACH =
math achievement; MEANSES = school average socioeconomic status; SECTOR = Catholic or public school; CSES = school mean centered child
socioeconomic status; BLACK = high % Black enrollment; HISPANIC = high % Hispanic enrollment.

*
p < .05.

**
p < .01.
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