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The � subunit of stimulatory G protein (G�s) activates ade-
nylyl cyclase, which catalyzes cAMP production, and regulates
many physiological aspects, such as cardiac regulation and
endocrine systems. Ric-8B (resistance to inhibitors of cholines-
terase 8B) has been identified as the G�s-binding protein; how-
ever, its role in Gs signaling remains obscure. In this study, we
present evidence that Ric-8B specifically and positively regu-
lates Gs signaling by stabilizing the G�s protein. An in vitro bio-
chemical study suggested that Ric-8B does not possess guanine
nucleotide exchange factor activity. However, knockdown of
Ric-8B attenuated �-adrenergic agonist-induced cAMP accu-
mulation, indicating that Ric-8B positively regulates Gs signal-
ing. Interestingly, overexpression and knockdown of Ric-8B
resulted in an increase and adecrease in theG�s protein, respec-
tively, without affecting theG�s mRNA level.We found that the
G�s protein is ubiquitinated and that this ubiquitination is
inhibited byRic-8B. This Ric-8B-mediated inhibition ofG�s ubiq-
uitination requires interaction between Ric-8B and G�s because
Ric-8Bsplicingvariants,whicharedefective forG�s binding, failed
to inhibit the ubiquitination. Taken together, these results suggest
that Ric-8B plays a critical and specific role in the control of G�s
protein levelsbymodulatingG�subiquitinationandpositively reg-
ulates Gs signaling.

Heterotrimeric guanine nucleotide-binding regulatory pro-
teins (G proteins) transmit extracellular signals from theGpro-
tein-coupled receptor to effector proteins, controlling a wide
variety of cellular processes. The G protein consists of �, �, and
� subunits and undergoes an activation-inactivation cycle de-
pendent on bound guanine nucleotides. In the basal state,GDP-
bound � subunit (G�) and �� subunits (G��) are associated.
Once the G protein-coupled receptor is stimulated by its spe-
cific ligand, the exchange reaction of GDP to GTP on G� is
promoted. TheGTP-boundG�dissociates fromG��, and both
G� and G�� independently or cooperatively modulate the
activity of specific effectors. G protein signaling is terminated
by GTP hydrolysis, returning the protein to the GDP-bound
state and allowing reformation of the inactive heterotrimer (1,
2). Although G proteins are primarily regulated by G protein-

coupled receptors, growing evidence demonstrates that non-
receptor types of regulators, including RGS (regulators of G
protein signaling) and AGS (activators of G protein signaling)
proteins, also modulate G protein signaling (3, 4).
Ric-8 is a novel non-receptor type of the G protein regulator

that was originally identified by a genetic screening ofCaenorh-
abditis elegansmutants, which are resistant to inhibitors of ace-
tylcholinesterase (5). Ric-8 functions as a guanine nucleotide
exchange factor (GEF)2 for G� in vitro (6). Genetic studies indi-
cate that Ric-8 is involved in asymmetric cell division in C. el-
egans embryos (6–8) andDrosophilamelanogaster neuroblasts
(9–11). In contrast to invertebrates, which have one Ric-8, in
mammals, there are two homologues of C. elegans Ric-8,
named Ric-8A and Ric-8B (12). Previous studies have indicated
that Ric-8A also functions as aGEF forG�q, G�i, G�o, andG�13

in vitro (12) and potentiates Gq signaling (13). On the other
hand, Ric-8B was shown to interact with G�s and G�q, and
some evidence suggests that Ric-8B potentiates olfactory-spe-
cific G protein (Golf)-mediated signaling (14, 15). Recently, a
small pigment phenotype caused by a defect of the zebrafish
synembryn-like protein, which is a homologue of mammalian
Ric-8B, was rescued by treatment with forskolin, an activator of
adenylyl cyclase (16). These findings collectively suggest that
Ric-8B is involved in Gs signaling; however, whether and how
Ric-8B regulates Gs signaling remain to be clarified.
In this study, we found a novel regulatory mechanism for

Gs signaling by Ric-8B. The GEF activity of Ric-8B could not
be observed in vitro; however, the knockdown of Ric-8B in
NIH3T3 cells suppressed cellular cAMP accumulation in re-
sponse to a �-adrenergic agonist. Surprisingly, knockdown of
Ric-8B resulted in the reduction of the G�s protein but not
of other G� and G� proteins. In contrast, overexpression of
Ric-8B increased the G�s protein without affecting G�s mRNA
levels. These results suggest that Ric-8B specifically regulates
G�s protein levels. Furthermore, we found that the G�s protein
was covalently modified with ubiquitin and degraded by the
proteasome. The ubiquitination of G�s was suppressed by the
overexpression of Ric-8B. These results suggest that Ric-8B
specifically regulates G�s protein levels by suppressing G�s

ubiquitination and positively regulates Gs signaling.
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EXPERIMENTAL PROCEDURES

Molecular Cloning—The open reading frames of mouse full-
length Ric-8B, Ric-8B�9, and Ric-8B�3�9 were amplified by
PCR using forward primer 5�-GGCGGATCCATGGATGAA-
GAGCGCGCCCT-3�, reverse primer 5�-GGCGGATCCTCA-
GTCTGTGTCCGAGCTGG-3�, and cDNAs prepared from
mouse brain (full-length Ric-8B) or heart (Ric-8B�9 and Ric-
8B�3�9). The PCR products were cloned into the BamHI site
of the pCMV5 expression vector. The cDNA encoding full-
length Ric-8B was subcloned into the BglII site of pCMV5-
FLAG or into the BamHI site of pCMV-Myc, pFASTBac-GST,
and pGEX-6P-1 (GE Healthcare). The Ric-8B�9 and Ric-
8B�3�9 cDNAs were subcloned into the BglII site of pCMV5-
FLAG. pcDNA3.1-human G�olf was obtained from the Mis-
souri S&T cDNA Resource Center and digested with KpnI
and XhoI. The fragment was ligated into the KpnI and SalI
sites of pCMV-FLAG. Short hairpin RNAs (shRNAs) directed
against mouse Ric-8B (two different sequences) and Ric-8A were
generated from the following annealed primers: Ric-8B2, 5�-
GATCCCCACAGTTGGAAGGTGCATAATTCAAGAGATT-
ATGCACCTTCCAACTGTTTTTTA-3� (sense) and 5�-AGCT-
TAAAAAACAGTTGGAAGGTGCATAATCTCTTGAATTA-
TGCACCTTCCAACTGTGGG-3� (antisense); and Ric-8B3, 5�-
GATCCCCGGCAGCAACTCTAGATGAATTCAAGAGATT-
CATCTAGAGTTGCTGCCTTTTTA-3� (sense) and 5�-AGCT-
TAAAAAGGCAGCAACTCTAGATGAATCTCTTGAATTC-
ATCTAGAGTTGCTGCCGGG-3� (antisense). These annealed
primers were inserted into the BglII andHindIII sites of pSUPER-
retro-puro (Oligoengine, Seattle, WA). The G�s/i chimera con-
structs were generated by overlapping PCR (G�s/i-SWIi, residues
1–185ofG�s-short, residues177–195ofG�i, and residues205–380
of G�s-short; G�s/i-SWIIi, residues 1–214 of G�s-short, residues
206–217 of G�i, and residues 227–380 of G�s-short; and G�s/i-
SWIIIi, residues 1–232 of G�s-short, residues 224–240 of G�i, and
residues 250–380 of G�s-short).
Cell Culture and Transfection—HEK293T and NIH3T3 cells

were maintained in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum, 100 �g/ml streptomy-
cin, and 100 units/ml penicillin at 37 °C with 5% CO2. Plasmid
DNAs were transfected into HEK293T cells using the calcium
phosphate method or Lipofectamine 2000 (Invitrogen) accord-
ing to the manufacturer’s protocol.
Retroviral Production and Infection—HEK293T cells were

transfected with ecotropic helper retroviral plasmid together
with pSUPER-retro-puro vectors encoding shRNA directed
against Ric-8B. Viruses harvested 24–60 h post-transfection
were pooled. NIH3T3 cells (1 � 105 cells/60-mm dish) were
infected twice with 1.5ml of retrovirus-containing supernatant
supplementedwith 8�g/ml Polybrene at 2-h intervals. Twenty-
four hours after infection, cells were selected in 7.5�g/ml puro-
mycin for 48 h.
Protein Purification—Escherichia coli Rosetta(DE3) pLysS

strain (Novagen) cells harboring pGEX6P-1-mouse Ric-8B
were incubated in LBmedium containing 100 �g/ml ampicillin
and 34 �g/ml chloramphenicol at 37 °C. When A600 was be-
tween 0.5 and 0.6, isopropyl 1-thio-�-D-galactopyranoside was
added to a final concentration of 0.4 mM. Cells were incubated

for 8 h at 20 °C and collected by centrifugation. Pelleted cells
were suspended in extraction buffer (50mMTris-HCl, pH 7.5, 5
mM MgCl2, 150 mM NaCl, 1 mM dithiothreitol (DTT), 1 mM

EDTA, 20% glycerol, and 0.5% sodium cholate) including pro-
tease inhibitors (16 �g/ml phenylmethylsulfonyl fluoride, 16
�g/mlN-tosyl-L-phenylalanine chloromethyl ketone, 16 �g/ml
N�-tosyl-L-lysine chloromethyl ketone, 3.2 �g/ml leupeptin,
and 3.2 �g/ml lima bean trypsin inhibitor) and disrupted by
sonication. After the lysate was clarified by centrifugation, glu-
tathione-Sepharose 4B (1-ml bed volume/liter of culture) was
added to the lysate and gently agitated for 1 h at 4 °C. The resin
waswashedwith extraction buffer containing 300mMNaCl and
subsequently wash buffer (50 mM Tris-HCl, pH 7.5, 5 mM

MgCl2, 150 mM NaCl, 1 mM DTT, 1 mM EDTA, 10% glycerol,
and 0.7% CHAPS). Glutathione S-transferase (GST)-Ric-8B
was eluted with 20 mM glutathione in wash buffer. To separate
the aggregated proteins, the eluate was loaded onto HiLoad
16/60 Superdex 200 pg (GE Healthcare) pre-equilibrated in 50
mM Tris-HCl, pH 7.5, containing 5 mMMgCl2, 1 mM DTT, 150
mMNaCl, and 10% glycerol at 0.5ml/min. Fractions containing
non-aggregated GST-Ric-8B were pooled and concentrated in
a 30,000molecular weight cut-off AmiconUltra filter unit (Mil-
lipore). Purification ofGST-Ric-8Awas performed as described
previously (13) with some modification. Briefly, the proteins
eluted from glutathione-Sepharose were loaded onto HiLoad
16/60 Superdex 200 pg pre-equilibrated in 20 mM HEPES-
NaOH, pH 8.0, containing 100 mM NaCl and 1 mM DTT at 0.5
ml/min. Peak fractions containing non-aggregate GST-Ric-8A
were pooled and concentrated in a 30,000 molecular weight
cut-off Amicon Ultra filter unit. Baculoviruses encoding G�q,
G�1, and His-G�2 were kindly provided by Dr. Tohru Kozasa
(University of Illinois at Chicago). Purification of G�q was per-
formed as previously described (17). To prepare recombinant
G�s-short, the cDNA encoding bovine G�s-short (spliced variant
4) was subcloned into the XbaI and HindIII sites of pQE60
(Qiagen). The expression and purification of G�s proteins were
performed as described previously (18, 19).
In Vitro Binding Assay—The in vitro binding assay of GST-

Ric-8B and G�s or G�q was performed as described previously
(12). Briefly, 100 nM G�s or G�q was incubated with 100 nM
GST or GST-Ric-8B in binding buffer (20 mM HEPES-NaOH,
pH 8.0, 100 mMNaCl, 10 mMMgSO4, 1 mM EDTA, 1 mMDTT,
and 0.05% Lubrol PX) for 1 h at 25 °C. Glutathione-Sepharose
4B (GE Healthcare) was added to the reaction mixture and
gently agitated for 1 h at 4 °C. The resins were washed three
times with binding buffer and treated with SDS-PAGE sample
buffer. The eluted proteins were resolved by SDS-PAGE,
stained with Coomassie Blue, and immunoblotted with anti-
G�s or anti-G�q antibodies.
GTP�S Binding Assays—GTP�S binding reactions were ini-

tiated by the addition of 5 pmol (50 nM) of G�s or G�q to reac-
tion buffer (20mMHEPES-NaOH, pH8.0, 100mMNaCl, 10mM

MgSO4, 1mMEDTA, 1mMDTT, and 0.05%C12E10) containing
20 pmol (200 nM) of GST, GST-Ric-8A, or GST-Ric-8B and 10
�M [35S]GTP�S (10,000 cpm/pmol) in a total volume of 100 �l
at 20 °C. The reaction buffer for G�q was identical to that for
G�s except that 0.05% Genapol C-100 detergent was used
instead of C12E10. Aliquots (20 �l) were removed at the indi-
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cated times, and ice-cold buffer containing 20mMTris-HCl, pH
7.7, 100 mM NaCl, 2 mM MgSO4, 0.05% C12E10, and 1 mM GTP
was added before filtration through BA85 nitrocellulose mem-
branes. The membranes were washed twice with an ice-cold
wash buffer (20 mM Tris-HCl, pH 7.7, 100 mM NaCl, and 2 mM

MgSO4) and dried. The radioactivity of each membrane was
measured using an LS6500 liquid scintillation counter (Beck-
man Coulter).
Intracellular cAMP Accumulation—NIH3T3 cells infected

with retroviruses that express shRNA directed against mouse
Ric-8B or HEK293T cells were pretreated with 0.5 mM 3-isobu-
tyl-1-methylxanthine for 1 h and subsequently stimulated with
10 �M isoproterenol or 10 nM pituitary adenylate cyclase-acti-
vating polypeptide for the indicated times, respectively. Cyclic
AMP was measured using the AlphaScreen cAMP assay kit
(PerkinElmer Life Sciences) according to the manufacturer’s
protocol.
Degradation of G�s after Inhibition of Protein Synthesis

(Cycloheximide (CHX) Chase)—HEK293T cells transfected
with an empty vector or FLAG-Ric-8B were grown to 80% con-
fluence in 60-mm dishes and treated with 100 �g/ml CHX for
the indicated times. Cells were harvested and subsequently
lysed with lysis buffer (20 mM HEPES-NaOH, pH 7.5, 100 mM

NaCl, 3 mM MgCl2, 1 mM EDTA, 1 mM DTT, 0.5% Nonidet
P-40, 1 �g/ml leupeptin, and 1 mM phenylmethylsulfonyl fluo-
ride). Cell lysates were analyzed by immunoblotting using anti-
G�s, anti-FLAG, and anti-actin antibodies.
In Vivo Ubiquitination Assay—An in vivo ubiquitination

assay was performed as described previously (20). HEK293T
cells were transfected with pMT107-6xHis-ubiquitin (21) and
other expression plasmids. Twenty-four hours post-transfec-
tion, cells were treated with 10 �M MG132 for 12 h, and cells
were harvested by centrifugation. Cells were lysed with urea
lysis buffer (10mMTris-HCl, pH8.0, 10mMNaH2PO4, 8Murea,
10% glycerol, 0.1% Triton X-100, 0.5 M NaCl, 10 mM imidazole,
and 10 mM 2-mercaptoethanol) and disrupted by sonication.
Lysates were centrifuged at 15,000 � g for 5 min at room tem-
perature, and supernatants were collected. For purification of
His6-tagged ubiquitinated proteins, nickel-nitrilotriacetic acid-
agarose (Qiagen) was added to the supernatant and gently agi-
tated for 4 h at room temperature. The resins were washed five
timeswith 20mM imidazole in urea lysis buffer and treatedwith
150 mM Tris-HCl, pH 6.8, containing 200 mM imidazole, 5%
SDS, 30% glycerol, and 0.72 M 2-mercaptoethanol. Ubiquiti-
nated G�s, FLAG-G�s, or FLAG-G�olf proteins were detected
by immunoblotting using anti-G�s or anti-FLAG antibodies.
Reverse Transcription-PCR—Total RNAs were prepared

using TRIzol reagent (Invitrogen) from HEK293T cells trans-
fected with FLAG-Ric-8B. First-strand cDNAs were synthe-
sized from 2 �g of total RNA with SuperScript II (Invitrogen).
PCR mixtures (50 �l) containing 0.5 �l of cDNA and 0.5 �M

each forward and reverse primers were heated at 94 °C for 2
min, followed by 25 (G�s) or 20 (glyceraldehyde-3-phosphate
dehydrogenase) cycles of 94 °C for 1 min, 61 °C for 1 min, and
72 °C for 30 s. PCR products were analyzed in 2% agarose gels
stained with ethidium bromide. The following primers were
used: G�s, 5�-GCACCATTGTGAAGCAGATG-3� (forward)
and 5�-TCATCCTCCCACAGAGCCTT-3� (reverse); and glycer-

aldehyde-3-phosphate dehydrogenase, 5�-ACCACAGTCCAT-
GCCATCAC-3� (forward) and 5�-TCCACCACCCTGTTGCT-
GTA-3� (reverse).

RESULTS

Effect of Ric-8B on GTP�S Binding to G�s and G�q in Vitro—
Previously, it has been demonstrated that C. elegans Ric-8 (6)
and mammalian Ric-8A (12) possess GEF activity for G� in
vitro. In addition, it has been reported that Ric-8B potentiates
G�olf-mediated signaling in HEK293 cells (14, 15). These find-
ings suggest that Ric-8B might have GEF activity for G�; how-
ever, no data for the GEF activity of Ric-8B have been reported
so far. First, we confirmed the binding of Ric-8B to G�s and
G�q. GST-Ric-8B, which was prepared from E. coli in the pres-
ence of glycerol using gel filtration chromatography as non-
aggregate, was incubated with G�s or G�q, and the protein
complexes were then precipitated with glutathione-Sepharose.
G�q andG�s were co-precipitatedwithGST-Ric-8B, indicating
that Ric-8B directly binds to G�q and G�s (Fig. 1A). Next, the
kinetics of GTP�S binding to G�s or G�q proteins was investi-
gated in the presence of GST-Ric-8B or GST-Ric-8A. GST-
Ric-8A dramatically increased the rate of GTP�S binding to
G�q but not G�s, as reported previously (12). In contrast, GST-
Ric-8B did not affect the GTP�S-binding activity of G�q and
G�s (Fig. 1, B and C). In these experiments, we used recombi-

FIGURE 1. Effect of Ric-8B on guanine nucleotide exchange. A, GST or GST-
Ric-8B (100 nM each) was incubated with G�s or G�q (100 nM each) for 1 h at
25 °C. These mixtures were bound to glutathione-Sepharose and washed
extensively with a buffer. The proteins were eluted with an SDS-PAGE sample
buffer. Co-precipitation of G� proteins was detected by immunoblotting (IB).
B and C, G�q (B) and G�s (C) (5 pmol each) were incubated with [35S]GTP�S in
reaction mixture (100 �l) containing GST (F), GST-Ric-8B (Œ), or GST-Ric-8A
(�) (20 pmol each). Aliquots (20 �l) of these reaction mixtures were taken at
the indicated time points and filtered to absorb nucleotide-bound protein.
The amount of G protein-bound [35S]GTP�S was determined by scintillation
counting.
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nant G�s and G�q proteins that were expressed in E. coli and
Sf9 cells, respectively. Because N-terminal myristoylation of
G�i1 greatly improves the ability of the protein to serve as a
substrate for Ric-8A-stimulated guanine nucleotide exchange
(22), we examined the effect of Ric-8B on palmitoylated G�s.
Palmitoylated G�s was purified from a membrane fraction of
Sf9 cells that were infected with baculoviruses encoding
G�s-short, G�1, and His-G�2. However, we could not observe the
effect of GST-Ric-8B on the guanine nucleotide exchange reac-
tion for palmitoylated G�s (data not shown). These results sug-
gest that Ric-8B alone does not possessGEF activity forG�s and
G�q in vitro.
Knockdown of Ric-8B Reduces Isoproterenol-induced cAMP

Accumulation—Next, to test the involvement of Ric-8B in Gs
signaling, we prepared two retroviral constructs expressing the
shRNA directed against mouse Ric-8B and infected NIH3T3
cells with them. As shown in Fig. 2A, both shRNAs showed
effective reduction of the Ric-8B protein, and their efficiency of
knockdown was above 80%. In control cells, cAMP accumula-
tion was promoted in response to isoproterenol. In cells ex-
pressing shRNA directed against Ric-8B, isoproterenol-in-
duced cAMP accumulation was greatly reduced (Fig. 2B). The
extent of the inhibition of cAMP accumulation was correlated
with the protein reduction of Ric-8B (Fig. 2, A and C). These
results indicate that Ric-8B positively regulatesGs signaling and
are consistent with previous observations reporting the func-
tional requirement of Ric-8B in G�olf-mediated signaling in

mammals (14) and pigment dispersion in zebrafish (16). In
addition, Ric-8B seems to be specifically involved in Gs signal-
ing because we did not observe any significant effect of knock-
down of Ric-8B on UTP-stimulated (G�q-coupled) intracellular
calcium mobilization and platelet-derived growth factor-in-
duced extracellular signal-regulated kinase (ERK) activation
(supplemental Fig. S1, A and B).
Ric-8B Positively Regulates G�s Protein Levels—To investi-

gate how Ric-8B is involved in Gs signaling, we first examined
the effect of knockdown of Ric-8B on the protein levels of� and
� subunits of G proteins. Surprisingly, knockdown of Ric-8B
dramatically reduced G�s protein levels (Fig. 3A). This effect
was not observed in other G� proteins or the G� subunit. In
contrast, overexpression of Ric-8B greatly increased the G�s
protein level (Fig. 3B). These results indicate that Ric-8B
specifically and positively regulates G�s protein levels. Next,
we performed a reverse transcription-PCR analysis using
HEK293T cells transfected with Ric-8B. Overexpression of
Ric-8B increased the G�s protein but had little effect on its
transcriptional level (Fig. 3B), suggesting that Ric-8B affects
G�s protein stability.

To examine whether Ric-8B knockdown affects the expres-
sion and function of other Gs signaling components, Gs-cou-
pled receptor, and adenylyl cyclase, we evaluated the �-adre-
nergic receptor expression and adenylyl cyclase activity. Ligand
binding assays using a radiolabeled �-adrenergic receptor
antagonist, [125I]iodocyanopindolol, were carried out. The
numbers of endogenous �-adrenergic receptors were deter-
mined by Scatchard analysis of [125I]iodocyanopindolol satura-
tion binding. The level of�-adrenergic receptor expressionwas
not affected by Ric-8B knockdown (supplemental Fig. S2A).
Intrinsic adenylyl cyclase activity was evaluated by G�s recon-
stitution assay.Membranes of NIH3T3 cells expressing shRNA
directed against Ric-8B were incubated with GTP�S-preloaded
G�s, and then cAMP production was measured. No effect of
Ric-8B knockdown on intrinsic adenylyl cyclase activity was
observed (supplemental Fig. S2B).

FIGURE 2. Knockdown of Ric-8B decreases isoproterenol-induced cAMP
accumulation. A, cell lysates from NIH3T3 cells infected with retroviruses
encoding control shRNA or two different sequences of shRNAs directed
against Ric-8B were analyzed by immunoblotting (IB) using anti-Ric-8B and
anti-tubulin antibodies. B, shown is the time course of cAMP accumulation.
cAMP accumulation of NIH3T3 cells infected with retroviruses encoding con-
trol (E) or Ric-8B2 (shRic-8B#2; F) shRNA was measured following exposure to
10 �M isoproterenol for the indicated times. C, NIH3T3 cells infected with
retroviruses were exposed to 10 �M isoproterenol for 20 min, and cAMP accu-
mulation was measured. The data are expressed as the mean � S.D. from
three independent experiments. CTL, control.

FIGURE 3. Ric-8B positively regulates G�s protein levels. A, cell lysates were
prepared from NIH3T3 cells infected with retroviruses encoding control
shRNA or two different sequences of shRNAs directed against Ric-8B (shRic-
8B) and were analyzed by immunoblotting (IB) using the indicated antibod-
ies. The G�s protein exists as two spliced forms, short and long. The ratio of
the spliced forms varies in different cell types. The positions of the long and
short G�s variants are indicated by lines. B, HEK293T cells were transfected
with FLAG-Ric-8B and harvested for RNA and protein preparations. Semi-
quantitative reverse transcription-PCR (RT-PCR) and immunoblotting were
performed to assess the effect of Ric-8B on the G�s mRNA and protein levels,
respectively. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Ric-8B Inhibits G�s Degradation and Ubiquitination—We
focused on the ubiquitin-proteasome pathway, which is
involved in protein stability (23). We first investigated whether
the G�s protein is controlled by the ubiquitin-proteasome
pathway. HEK293T cells were treated with a potent protea-
some inhibitor, MG132. Interestingly, treatment with MG132
increased the G�s protein and potentiated the pituitary adeny-
late cyclase-activating polypeptide-induced cAMP accumula-
tion (Fig. 4,A andB). These results suggest that the G�s protein
is controlled by proteasomal degradation. Next, we monitored
the endogenousG�s protein level after treatmentwith a protein
synthesis inhibitor, CHX. HEK293T cells transfected with
FLAG-Ric-8B or an empty vector were treated with CHX for
0–5 h. In control cells, the levels of the G�s protein decreased
after exposure to CHX. In cells transfected with FLAG-Ric-8B,
the degradation of theG�s protein was inhibited (Fig. 4C), indi-
cating that Ric-8B enhances G�s stability. These results sug-
gested that Ric-8B modulates the post-translational modifica-
tion, such as ubiquitination, of G�s. Therefore, we performed
an in vivo ubiquitination assay. HEK293T cells were transfected
with G�s together with His-tagged ubiquitin and treated with
MG132 for 12 h. These cells were subsequently lysed under
denaturing conditions. His-tagged ubiquitinated proteins were
collected with nickel-agarose resin, and the precipitated G�s
was detected by immunoblotting.We detected a ladder of ubiq-
uitinated G�s proteins whose intensity increased with MG132
treatment (Fig. 4D). To examine the effect of Ric-8B on G�s
ubiquitination, we expressed Ric-8B inHEK293T cells together
with G�s and His-tagged ubiquitin. Overexpression of Ric-8B
increased the G�s protein, as shown in Fig. 3B; however, the

amount of ubiquitinatedG�s proteins was reduced. These find-
ings strongly suggest that G�s is a novel substrate for ubiquiti-
nation and that Ric-8B regulates G�s protein stability by sup-
pression of the ubiquitination and degradation of G�s in
mammalian cells.
Interaction of Ric-8B with G�s Is Important for Inhibiting

G�s Ubiquitination—To understand in detail the mechanism
whereby Ric-8B inhibits G�s ubiquitination, we hypothesized
that interaction of Ric-8B with G�s is required for Ric-8B-me-
diated inhibition of G�s ubiquitination. To examine this hy-
pothesis, we used two spliced variants of Ric-8B (supplemen-
tal Fig. S3A). Ric-8B�9, which lacks exon 9, was previously
reported (14). In addition, we identified another novel spliced
variant, Ric-8B�3�9,which lacks both exons 3 and 9.HEK293T
cells were transfectedwith FLAG-tagged full-lengthRic-8B and
its variants. Endogenous G�s protein was co-immunoprecipi-
tated with FLAG-tagged full-length Ric-8B but not with Ric-
8B�9 or Ric-8B�3�9 (supplemental Fig. S3B). As expected,
these spliced variants failed to inhibit G�s ubiquitination (Fig.
5A), suggesting that the suppressive effect of Ric-8B on the
ubiquitination of G�s requires the interaction betweenG�s and
Ric-8B.
Next, we generated a series of the G�s/i chimeric proteins be-

cause the G�i protein does not interact with Ric-8B in cells
(supplemental Fig. S4) (12). G� contains three switch regions
(SWI, SWII, and SWIII), and each switch region of G�s was
replaced with that of G�i (supplemental Fig. S5A). These con-
structs retain proper conformation because chimeric � sub-

FIGURE 4. Ric-8B inhibits G�s degradation and ubiquitination. A, HEK293T
cells were treated with 10 �M MG132 for 12 h, and cell lysates were analyzed
by immunoblotting (IB) using anti-G�s and anti-actin antibodies. B, HEK293T
cells were pre-incubated with 10 �M MG132 for 8 h, and cAMP accumulation
was then measured following exposure to 10 nM pituitary adenylate cyclase-
activating polypeptide (PACAP) for 15 min. C, HEK293T cells transfected with
an empty vector or FLAG-Ric-8B were treated with 100 �g/ml CHX for the
indicated times. Cell lysates were analyzed by immunoblotting using anti-
G�s, anti-FLAG, and anti-actin antibodies. D, HEK293T cells were transfected
with G�s-short, His-ubiquitin (His-Ub), and FLAG-Ric-8B. Twenty-four hours
after transfection, cells were treated with 10 �M MG132 for 12 h and subse-
quently lysed with an 8 M urea-containing buffer, and His-tagged ubiquiti-
nated proteins were precipitated with nickel-agarose resin. Ubiquitinated
G�s was detected by immunoblotting using the anti-G�s antibody.

FIGURE 5. Interaction of Ric-8B with G�s is important for inhibiting G�s
ubiquitination. HEK293T cells were transfected with G�s-short, His-ubiquitin
(His-Ub), and FLAG-tagged full-length Ric-8B (FL) or spliced variants (A) or with
His-ubiquitin, FLAG-Ric-8B, and wild-type G�s-short (G�sWT) or G�s/i-SWIIi (B).
The ubiquitinated G�s was detected as described in the legend to Fig. 4D.
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units were dissociated from theG�� complex in the presence of
AlF4� (supplemental Fig. S5B). Among these chimeric proteins,
only G�s/i-SWIIi dramatically reduced the affinity for FLAG-
Ric-8B in HEK293T cells (supplemental Fig. S5C), suggesting
that the switch II region of G�s is required for interaction with
Ric-8B. Similarly to the wild-type G�s protein, the G�s/i-SWIIi
chimeric protein was also ubiquitinated; however, the ubiquiti-
nation of G�s/i-SWIIi was not inhibited by the overexpression
of Ric-8B (Fig. 5B). Taken together, these results strongly sup-
port our hypothesis that the interaction of Ric-8B with G�s is
important for inhibiting G�s ubiquitination.

DISCUSSION

Previously, Tall et al. (12) and our group (13) reported that
Ric-8A, another mammalian homologue of Ric-8, exhibits GEF
activity for G�q and contributes to the Gq signaling pathway.
According to the analogy to Ric-8A, it was speculated that
Ric-8B would also harbor GEF activity for G�s because Ric-8B
showed potent ability to interact with G�s (12). However, we
could not observe theGEF activity of Ric-8B in vitro (Fig. 1). On
the other hand, our analysis utilizing shRNA against Ric-8B
clearly demonstrated the functional involvement of Ric-8B in
ligand-induced cAMP accumulation (Fig. 2). Our observation
suggested that Ric-8B plays an essential role in Gs signaling
without its GEF activity. Furthermore, we found that the
expression level of Ric-8B apparently affected the expression
level of G�s without any changes in the amount of G�s mRNA
(Fig. 3).
We demonstrated that G�s is ubiquitinated and that both its

ubiquitination and degradation are suppressed by Ric-8B (Fig.
4). Combining all of our current data, we propose a new mode
of regulatory mechanism whereby Ric-8B stabilizes Gs signal-
ing through suppressing the ubiquitination and degradation of
G�s. According to a previous report, G�olf-mediated cAMP
accumulation is also potentiated by Ric-8B (14). However, the
mechanism whereby Ric-8B emphasizes olfactory signaling
remained obscure. In this study, we demonstrated that overex-
pression of Ric-8B increased the protein amount of G�olf and
inhibited its ubiquitination similarly to G�s (supplemental
Fig. S6). These findings raise the possibility that Ric-8B may
also amplify G�olf signaling by the stabilization of G�olf. How-
ever, it is still possible that Ric-8B harbors G�s/G�olf-specific
GEF activity with the additional factors in the cells. Detailed
biochemical analysis for the Ric-8B-interacting proteins that
may be critical for GEF activity would prove this possibility.
Several observations in this study suggest that the interaction

between Ric-8B and G�s is important for the suppression of
ubiquitination of G�s (Fig. 5). The G�s protein preferentially
locates in the plasma membrane, whereas Ric-8B mostly local-
izes in the cytoplasm in quiescent cells. Klattenhoff et al. (24)
reported that isoproterenol induces the translocation of Ric-8B
into the plasma membrane and the co-localization of Ric-8B
with G�s. Consistent with these findings, another group re-
ported that the overexpression of Ric-8B increases the amount
of G�olf protein on the plasma membrane (15, 25). In addition,
we observed that the polyubiquitinated G�s protein seemed to
localize in the plasma membrane and that MG132 treatment
resulted in the accumulation of G�s in the plasma membrane

(supplemental Fig. S7). Although the manner in which a ligand
inducesmembrane localization of Ric-8B is unclear, it allows us
to provide a novel regulatory mechanism whereby Ric-8B may
interact with G�s in response to Gs activation and to stabilize
G�s through the suppression of the ubiquitination of G�s.
Interestingly, several reports suggest that the activation of G�s
shortens the half-life of G�s (26, 27).
Our observation provides a model of how Ric-8B stabilizes

the G�s protein and enhances its signals; Ric-8B may mask the
ubiquitination site of G�s and then perturb the accessibility of
G�s-specific E3 ubiquitin ligase to the G�s protein. Although
E3 ubiquitin ligase for G�s has not been identified yet, several
observations provide some clues to explore the G�s-specific E3
ubiquitin ligase. A recent study described an RGS-GAIP-inter-
acting protein, GIPN, which possesses E3 ubiquitin ligase activ-
ity and promotes the proteasome-dependent degradation of
G�i3 (28). There are two main classes of E3 ubiquitin ligases:
RING finger and HECT E3 ubiquitin ligases (29). RING finger
E3 ubiquitin ligases bind to a specific E2 ubiquitin-conjugating
enzyme through their RING finger domain, which is prerequi-
site for ubiquitination of the substrate protein. It has been
reported that GIPN harbors the RING finger-like motif, sug-
gesting that GIPN may exhibit E3 ubiquitin ligase activity
through this non-canonical RING finger domain. Similarly,
G�s-specific E3 ubiquitin ligase may be an interacting protein
of RGS-PX, which has been reported as a sole RGSmolecule for
G�s so far (30). A recent genetic and biochemical study indi-
cated that Rsp5 is an E3 ubiquitin ligase for yeast G� Gpa1 (31).
Although Gpa1 is ubiquitinated in a region that is absent in
mammalian G� (32), NEDD4 proteins, which are mammalian
homologues of yeast Rsp5, might have the E3 ubiquitin ligase
activity for mammalian G protein � subunits. More recently, it
was reported that MGRN1 (Mahogunin ring finger-1) attenu-
ates melanocortin receptor-mediated cAMP accumulation by
competing the interaction between G�s and the melanocortin
receptor (33). MGRN1 contains a RING finger domain and has
been shown to display ubiquitin ligase activity for some pro-
teins other thanG�s (34, 35).MGRN1might also function as E3
ubiquitin ligase for G�s and might attenuate Gs signaling. The
determination of E3 ubiquitin ligase for G�s and analysis of the
mechanism whereby E3 ubiquitin ligase regulates Gs signaling
will be the focus of a future study.
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