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Abstract
Cancer prediction models are becoming ubiquitous, yet we generally have no idea whether they do
more good than harm. This is because current statistical methods for evaluating prediction models
are uninformative as to their clinical value. Prediction models are typically evaluated in terms of
discrimination or calibration. However, it is generally unclear how high discrimination needs to be
before it is considered “high enough”; similarly, there are no rationale guidelines as to the degree
of miscalibration that would discount clinical use of a model. Classification tables do present the
results of models in more clinically relevant terms, but it is not always clear which of two models
is preferable on the basis of a particular classification table, or even whether either model should
be used at all. Recent years have seen the development of straightforward decision analytic
techniques that evaluate prediction models in terms of their consequences. This depends on the
simple approach of weighting true and false positives differently, to reflect that, for example,
delaying the diagnosis of a cancer is more harmful than an unnecessary biopsy. Such decision
analytic techniques hold the promise of determining whether clinical implementation of prediction
models would do more good than harm.

Introduction
In this paper, I will make a very simple point: cancer prediction models are becoming
ubiquitous, yet we generally have no idea whether they do more good than harm. This is
because current statistical methods for evaluating prediction models are uninformative as to
their clinical value. I conclude by recommending some simple decision analytic tools that
can help identify whether or not a prediction model should be used with patients, and if so,
which of two or more competing models should be chosen.

Prediction models for cancer are becoming ubiquitous
In August 2008, I searched Medline for “cancer” with either “prediction model” or
“prognostic model” or “nomogram”. I retrieved over 8000 hits. Amongst the first few
references were several papers showing that molecular markers predict cancer outcomes,
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such as STARD10 in breast cancer(1), N-terminal pro-brain natriuretic peptide for
neuroendocrine tumors(2) and insulin-like growth factor-binding protein 3 and IGF-I plasma
in colorectal cancer(3). I also found papers looking at the predictive value of clinical
variables, such as age, stage and performance status for lung cancer(4) and prior surgery for
renal cancer(5). There were three papers on prediction models in the first 20 papers
retrieved: J-CAPRA for prostate cancer(6), five different models (Myriad, Barnetson,
Wijnen, MMRpro, and PREMM) for colorectal cancer(7) and a “prognostic index” for
follicular lymphoma (8). This rather informal survey is complemented by more systematic
reviews. Shariat et al, for example, found over 100 different prediction tools for prostate
cancer alone(9).

The glut of prediction models has now expanded outside the scientific literature. Models can
be found on numerous sites on the web, including the National Cancer Institute’s web
site(www.cancer.gov) and, amusingly, both www.nomogram.org and www.nomograms.org.
They can also be found in routine clinical practice, such the “PCPT risk calculator” to
determine indication for prostate biopsy(10) and Adjuvant Online(11) or Oncotype DX(12)
for decisions about adjuvant therapy for breast cancer. Inclusion criteria for trials now often
depend on models: the Gail model for breast cancer has been used to select patients for
breast cancer chemoprevention studies and the Kattan nomogram is used to determine
eligibility for clinical trials of adjuvant therapy for prostate cancer.

The ubiquity of prediction models in medicine is not restricted to cancer. Perhaps the most
well-known medical prediction model is the Framingham model for cardiovascular
disease(13), with the APACHE prognostic system for mortality in critical care a close
second(14). Repeating my search for prediction but excluding cancer retrieves nearly 25,000
papers. A very cursory look at the first 20 papers identifies a very wide variety of models:
mortality after fungal infection(15); aerobic capacity(16); medication compliance(17); heart
disease(18–19); Cesarean section(20), low birthweight(21); transfusion requirements after
transplant(22); myodysplasia(23) and stroke rehabilitation(24).

No doubt many investigators are driven to generate prediction models by the medical
imperative to individualize care, so that decisions are made with respect to the individual
patient rather than a group average. But it is tempting to speculate that the reason behind so
many models for so many different diseases is that modeling is particularly easy research to
do, a low cost and low effort method to produce another paper: one merely takes an existing
data set, runs it through some software, and out pops a prediction model.

Do prediction models do more good than harm?
It is widely assumed that a prediction model is in and of itself a good thing. But it is not
difficult to show that a prediction model, even if accurate, could have demonstrable harms.
For example, there are several prediction models for adjuvant therapy after surgery for
breast cancer(11) (12). These models provide patients with estimates of their benefit from
adjuvant therapy, by estimating survival with and without chemotherapy. But take a group
of 100 women who would have accepted chemotherapy had they been given the group
average of a 5% absolute increase in survival, but who instead are estimated by a prediction
model to have 2% risk benefit and therefore elect to avoid adjuvant. Two of these women
will die as a result of using the prediction model. It might be argued that this does not
represent bad medicine, because the harm of these two deaths is outweighed by the benefit
of 98 women avoiding the trauma of chemotherapy. However, if the model was even
slightly miscalibrated, deaths associated with use of the prediction model would not be
offset by reductions in chemotherapy rates. As such, it is clear that prediction models need
to be evaluated before they are used to inform clinical decision making.
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Evaluation of prediction models
There are a large number of metrics available whereby statisticians can assess prediction
models. Here we focus on four of the most common: statistical significance, relative risk,
discrimination and calibration. We also discuss a relatively new innovation, the
reclassification table.

Statistical significance
Investigators commonly report whether a predictive model, or a predictor within a model,
has a statistically significant association with outcome. Over-reliance on p values falls afoul
of the traditional distinction between clinical and statistical significance. A model that
correctly estimated a minor increase in risk for a small proportion of patients might well
have a statistically significant association with outcome, were the sample size large enough,
but would have no clinical role.

Relative risk
It is very common to see in the literature graphical presentations or numerical estimates of
relative risk. For instance, an investigator might report that patients defined as being at high
risk from a model had a hazard ratio of 1.85 in comparison to those at low risk, and present a
survival curve as in figure 1. This appears to show powerful risk separation, implying that
the model should be used in practice. But could a clinician really base treatment on the
model? About half of low-risk patients, who constitute 90% of the sample, recur within two
years, compared to two-thirds of high-risk patients. For every 100 patients, clinicians who
treated on the basis of the model would fail to treat 45 who would otherwise recur and
unnecessarily treat 3 patients who would not recur; treating all patients would involve the
unnecessary treatment of 50 patients. Use of the model would therefore avoid 47
unnecessary treatments at the expense of failing to treat 45 patients who do require
treatment. Given that a cancer recurrence leads to death for most cancers, it is hard to see
this as a good trade-off.

Discrimination
In place of statistical significance and survival curves, many analysts have advocated
measures of discrimination, such as the area-under-the-curve, or its equivalent for time-to-
event data, the concordance index. These measures can be interpreted as the probability that,
for a randomly selected pair of patients, the patient with the event, or shorter survival, is
given a higher risk by the prediction model. Measures of discrimination therefore range
from 0.5 (chance) to 1 (perfect discrimination). The concordance index for figure 1 is 0.53,
little better than a coin flip, even if statistically significant. In this particular case, the
concordance index would correctly identify the model as worthless.

Measures of discrimination have several limitations. One of the most obvious concerns just
how high discrimination needs to be in order to be “high enough” to justify use of a model.
Clearly a concordance index of 0.53 is too low, but would 0.70 make the model worthwhile?
What about 0.60? A similar consideration affects the common use of the concordance index
to estimate the value of a new predictor. For example, it has been recommended that
investigators should report the concordance index of a model including readily available
predictors, such as stage and grade, and then see how much this is improved when the new
predictor, such as a molecular marker, is added to the model(25). Again, how much of an
increment in predictive accuracy would be enough to justify use of the new marker?

Moreover, despite often being described providing information as to “predictive accuracy”,
a measure of discrimination such as the area-under-the-curve is entirely unaffected by
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whether or not a prediction is a good one. As a simple illustration, consider table 1. All three
models have an area-under-the-curve of 0.75, which is normally seen as pretty good. Model
1 gives close the true risk for the two groups of patients; the area-under-the-curve for models
2 and 3 are identical even though the actual risks given to patients are wildly inaccurate.

Calibration
In model 2, the cancer rate for a group of patients given a 98% risk was only 14%. This is
known as miscalibration: a model is well calibrated if for every 100 patients given a risk of x
%, close to x actually have the event. Calibration is normally illustrated graphically in terms
of a calibration plot (see figure 2). The x-axis represents the predicted outcome from the
model, and the y-axis represents the actual outcome that was observed. It is clear from figure
2 that the model underestimates risk for patients at low risk, although it is reasonably well
calibrated for those at high risk.

One immediate and obvious drawback to calibration is that it is unclear as to how it should
be interpreted. How much miscalibration would be “too much” so as to entail that a model is
not of value? Part of the problem is that typical methods for assessing calibration do not
provide numbers of clear utility.

A test of statistical significance can be applied to calibration, the Hosmer–Lemeshow test,
but its value is highly questionable. The null hypothesis is that “the model is well
calibrated”; because we cannot accept the null hypothesis on the basis of a high p value, the
test cannot tell us what we really want to know (i.e. good calibration), only that there is
insufficient evidence of miscalibration. On a more philosophical level, it is implausible that
any non-trivial model would be perfectly calibrated implying that statistical tests of
calibration should always give a low p value, given a sufficient sample size.

Another method to gauge calibration is to compare observed and predicted probabilities.
This can be done either in terms of an absolute risk difference (e.g. predicted risk was 5%
higher than observed risk) or in relative terms (e.g. an odds ratio of 1.25 between observed
and predicted risk). Giving a single comparison of observed and predicted probabilities has
limited value: a small overall difference in risk may conceal that the model overestimates
low risk and underestimates high risk; conversely, an apparently large difference in risk may
result from a limited number of clinically irrelevant misclassifications, such as from 90% to
50%. Accordingly, analysts often break up the data into quantiles and compare risk within
each quantile. However, it is only by having a large number of quantiles, such as ten, that
one can be sure that an average for a quantile is not obscuring important differences for
different risk strata within a quantile. Yet larger number of quantiles make results less
interpretable – what do 10 separate odds ratios really mean? – and increases problems of
sampling variation: even were a study to have as many 1000 patients, 10 quantiles would
leave only 100 patients per quantile, giving a confidence interval around a proportion of ± 6
– 10%.

Given that numerical estimates of calibration are questionable, investigators reporting
calibration tend to do so in rather vague terms: for example, “because the dots are relatively
close to the dashed line, the predictions calculated with use of our nomogram approximate
the actual outcomes”(26); “the calibration [plot] demonstrated virtually perfect agreement”
(22); “the plotted points were rather close to the 45° line” (27); “calibration …. [was]
reasonably accurate”(28). This weakens the value of calibration as a measure to assess the
value of prediction models.

Vickers and Cronin Page 4

Semin Oncol. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discrimination vs. calibration
A standard approach to evaluating prediction models is to report both discrimination and
calibration. The natural problem of having two separate measures is that there is no clear
course of action when they conflict. For example, in a paper comparing two prediction
models, “Partin” and “Gallina”, Zorn et al. reported that the Gallina model had better
discrimination (0.81 vs. 0.78) whereas the Partin model had better calibration(29). This led
the authors to the rather equivocal conclusion that: “limitations [of each model] need to be
acknowledged and considered before their implementation into clinical practice”.

Classification tables
Hazard ratios, p values, calibration plots and concordance indices have little or no direct
relevance to clinical practice. For example, the area-under-the-curve gives the probability
that a doctor would correctly identify which of two patients had a disease. But the doctor’s
job is not to make guesses between pairs of patients sitting in clinic, it is to make a treatment
decision about an individual.

Classification tables are a way to express the results of prediction models in clinical terms.
As an example, take the question of whether it would be worth adding information on breast
density to a model for whether a woman will be diagnosed with breast cancer. The
discrimination and calibration of the “breast density” model have been described(30), but it
is not immediately clear what the resulting concordance index of 0.66 means in real terms.
The classification table approach is to divide patient into categories of risk, assuming
different treatments for each. A simple example is given in table 2, which shows data
adapted from Janes et al(31). We assume that women at high risk – defined as having a risk
from the statistical model of ≥1.67% - will be treated differently than those at low risk, such
as by being advised to use Tamoxifen as a chemopreventive. Table 2 shows that using the
standard model will lead to 211,900 women being treated for 4568 potentially preventable
cancers; use of the breast density model would involve 193,164 treatments and 4633
cancers. The breast density model is clearly preferable because it involves fewer women
being treated but more cancers prevented.

The great advantage here is that the classification model gives results that mean something
in the clinic and that can be used as a direct guide for clinical practice. That said,
classification tables have two major drawbacks. First, they can only be used to compare two
models, they cannot be used to determine whether an individual model should be used in
clinical practice. As such, it is plausible that the breast density model is superior to the risk
prediction model without breast density and yet neither should be used in the clinic because
both are of less value than a strategy of treating all women. Second, classification tables are
less easy to interpret when one model reduces both true and false positives. Table 3 shows
the breast cancer study when the cut-point for high risk is set at 1% rather than 1.67%. Such
a probability threshold might be used for a decision for intensive versus routine screening.
The breast density model involves fewer women subjected to intensive screening (379,270
vs. 413,827) but finds fewer cancers early (7023 vs. 7208). On the one hand, the
classification table gives numbers than mean something clinically: using the new model will
reduce the number of women screened by nearly 35,000 but will delay the diagnosis of 185
cancers; on the other hand, it is not immediately clear whether a reduction in screening of
35,000 is worth those 185 extra cancers.
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Simple decision analytic methods for evaluating prediction models
A decision analytic approach to the evaluation of prediction models is based on two
principles. First, models may influence medical decisions and second, decisions have
consequences that can be directly incorporated into analyses by using weights.

In discussing the value of the breast density model, we asked whether reducing by 35,000
the number of women referred to more intensive screening is worth delaying the diagnosis
of 185 breast cancers. This depends on whether a delayed diagnosis is more than 35,000 ÷
185 = 189 times worse than unnecessary screening. As it turns out we know that it is not.
Decision theory states that the harm of unnecessary treatment, relative to a missed treatment,
is given by pt ÷ (1 − pt) where pt is the probability threshold. We used a probability
threshold of 1% to define high risk, implying that a delayed cancer is 99 times worse than
unnecessarily intensive screening. Therefore the large decrease in screening offsets the
relatively small number of delayed cancer diagnoses.

This type of analysis can be formalized in the following equation:

where n is total sample size. The net benefit is in the unit of true positives – a patient with
disease duly being treated - and thus can be interpreted as “the number of true positives per
patient adjusted for the number of false positives”. Because net benefit incorporates both
true positives and false positives it can be used as a single metric to compare two models:
whichever has the highest net benefit is optimal.

Table 4 gives net benefits from the breast cancer data set for all reasonable strategies,
whether using a model (with breast density or otherwise), or just treating or not treating all
women. Looking at the probability threshold of 1.67%, the net benefit for the model with
breast density is higher than the standard prediction model. This is to be expected given that
fewer women are treated with more cancers potentially prevented. Note that the strategy of
treating all women is inferior for that of treating no women: this makes sense because the
prevalence (1.4%) is less than the threshold probability. Table 4 also shows that use of the
model with breast density is the optimal strategy at a threshold probability of 1%, supporting
our informal analysis that the number of women avoiding unnecessary intensive screening is
more than 99 times greater than the number of delayed cancer diagnoses.

Table 4 shows only two probability thresholds. It is reasonable to suppose that patients and
clinicians might vary as to how they weight the relative harms and benefits of intensive
screening or Tamoxifen as against earlier diagnosis or prevention of breast cancer. In
addition, the breast cancer prediction models might be used to inform other decisions, such
as whether to screen at all or perhaps use a chemopreventive drug more toxic than
Tamoxifen, and these decisions would involve different probability thresholds. We have
previously proposed varying the threshold probability over a reasonable range and
presenting the net benefits graphically, what is termed a decision curve(32). The
methodology of decision curve analysis is therefore:

1. Select a threshold probability pt

2. Define a positive test as p̂≥ pt where p̂is the predicted probability of disease from
the model; for a binary diagnostic test, p̂is 1 for positive and 0 for negative.

3. Calculate net benefit
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4. Repeat for a range of pt

5. Repeat steps 1 – 4 for all models and for the strategy of treating all patients (p̂ = 1
for all patients)

6. Plot net benefit against pt for all models, tests and markers and for the strategy of
treating all patients.

Figure 3 gives a published example of a decision curve. The data set consisted of men
undergoing biopsy for prostate cancer; the purpose of the study was to determine whether
molecular markers other than PSA were of value for predicting biopsy outcome. The x axis
shows threshold probabilities in the range 10 – 40%. This range was chosen on the grounds
that it would be unusual for a patient to accept a biopsy if his risk of cancer was less than
10% or conversely, refuse biopsy until his risk was close to 50%. Net benefit, as shown on
the y axis is highest for the “four kallikrein model” across the entire range of threshold
probabilities. As a result, we can conclude that, irrespective of patient preference, the
optimal clinical results will be obtained by determining indication for biopsy on the basis of
the four kallikrein model.

Decision curve analysis is a very flexible technique and can be extended to case control
studies and time-to-event data, such as in studies of cancer survival(33). It can also
incorporate the harms of testing, for example, if a model requiring data from a test that was
invasive or expensive. Papers, tutorials, software code and data sets for decision curve
analysis can be found at www.decisioncurveanalysis.org.

Conclusion
We have shown that traditional statistical methods for evaluating prediction models are
uninformative as to clinical value. Measures such as p values, relative risks and the
concordance index cannot generally tell us whether a model is worth using at all, which of
two models is preferable, or whether it is worth obtaining data on an additional predictor.
Calibration is a necessary if insufficient condition for use of a model but lacks a clear
summary statistic. The recently developed classification tables do produce results in
clinically relevant terms but can only be used to compare models – not to determine whether
a model is worth using at all – and even then may not give an unambiguous indication of
which model is preferable.

Prediction models are sometimes used only for the purposes of informing patients about
their likely outcome (“what are my chances, doc?”). In such cases, where no decision is at
stake, it may not be unreasonable to depend on discrimination, calibration or classification
as a general measure of accuracy. However, when medical decisions depend on the results
of prediction model – such as whether to use Tamoxifen as a chemopreventive, or whether
to biopsy a man for prostate cancer – then a decision analytic methodology must be used to
evaluate models in terms of their consequences. There exist very simple decision analytic
tools, requiring only basic math, which incorporate considerations such as it being more
harmful to delay a diagnosis of cancer than to biopsy a man unnecessarily. These tools
provide a clear indication to which of two models is preferable, whether a model is worth
using at all and whether an additional predictor is worth measuring. Wider adoption of
decision analytic methods will provide better insights as to whether any of the plethora of
new prediction tools do more good than harm.
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Figure 1.
Hypothetical survival curve for a risk prediction model. Grey line: High risk; Black line: low
risk.
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Figure 2.
Hypothetical calibration plot
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Figure 3.
Decision curve analysis: models for the prediction of prostate biopsy. Thin black line:
statistical model involving four kallikrein markers. Dashed line: statistical model for free
and total PSA. Dotted line: standard clinical model. Grey line: biopsy all men. Thick black
line: biopsy no man.
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Table 2
Classification table for use of breast density in breast cancer prediction

Numbers in brackets give frequency and percentage of events. “High risk” is defined as a 5-year risk of breast
cancer ≥ 1.67%.

Risk for model incorporating breast density

Low risk High risk Total

Risk for standard prediction model

Low risk 379,084 (0.90%) 38,245 (2.06%) 417,329 (4216, 1.01%)

High risk 56,981 (1.27%) 154,919 (2.48%) 211,900 (4568, 2.16%)

Total 436,065 (4151, 0.95%) 193,164 (4633, 2.40%) 629,229 (1.40%)
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Table 3
Classification table for use of breast density in breast cancer prediction, using an
alternative definition of high risk

Numbers in brackets give frequency and percentage of events. “High risk” is defined as a 5-year risk of breast
cancer ≥ 1%.

Risk for model incorporating breast density

Low risk High risk Total

Risk for standard prediction model

Low risk 176,831 (0.66%) 38,571 (1.08%) 215,402 (1576, 0.73%)

High risk 73,128 (0.82%) 340,699 (1.94%) 413,827 (7208, 1.74%)

Total 249,959 (1761, 0.70%) 379,270 (7023, 1.85%) 629,229 (1.40%)

Semin Oncol. Author manuscript; available in PMC 2011 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Vickers and Cronin Page 16

Table 4

Net benefit for alternative strategies for breast cancer prediction

Probability threshold 1%

True positives False positives Net benefit calculation Net benefit per 1000

Screen all women intensively 8784 620445
8784 − 620445 ×

0.01
1 − 0.01

629229

4.00

Standard prediction model 7208 406619
7208 − 406619 ×

0.01
1 − 0.01

629229

4.93

Prediction model with breast density 7023 372247
7023 − 372247 ×

0.01
1 − 0.01

629229

5.19

No intensive screening 0 0
0 − 0 ×

0.01
1 − 0.01

629229

0

Probability threshold 1.67%

True positives False positives Net benefit calculation Net benefit per 1000

Screen all women intensively 8784 620445
8784 − 620445 ×

0.0167
1 − 0.0167

629229

−2.79

Standard prediction model 4568 207332
4568 − 207332 ×

0.0167
1 − 0.0167

629229

1.66

Prediction model with breast density 4633 188531
4633 − 188531 ×

0.0167
1 − 0.0167

629229

2.27

No intensive screening 0 0
0 − 0 ×

0.0167
1 − 0.0167

629229

0
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