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Abstract
Elastography is an emerging imaging technique that focuses on assessing the resistance to
deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses
measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-
harmonic vibration to recover images of the elastic property distribution of tissues including
breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent
behavior not described by linear elasticity, the models most commonly employed in MRE
parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to
include the interstitial fluid phase present in vivo. Alternative continuum models, such as
consolidation theory, are able to represent tissue and other materials comprising two distinct
phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions
of simulated elastic and poroelastic phantoms were performed to investigate the limitations of
current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic
media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at
amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property
distributions resulting from the complex interaction between their solid and fluid phases.

Keywords
Finite-element method (FEM); magnetic resonance elastography (MRE); poroelasticity;
reconstructive imaging

*Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA (phillip.r.perrinez@dartmouth.edu).

NIH Public Access
Author Manuscript
IEEE Trans Biomed Eng. Author manuscript; available in PMC 2010 April 20.

Published in final edited form as:
IEEE Trans Biomed Eng. 2009 March ; 56(3): 598–608. doi:10.1109/TBME.2008.2009928.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



I. INTRODUCTION
Elastography [1], [2] generally assumes that biological tissues can be modeled as linearly
elastic, single phase (i.e., solid), isotropic, nearly incompressible media. Magnetic resonance
elastography (MRE) [2] has emerged as a noninvasive, quantitative imaging technique that
often employs these assumptions to estimate the elastic properties of biological tissues
including breast [3]–[5], liver [6], [7], muscle [8]–[10], and prostate [11]. Recently,
however, there has been interest in evaluating the time-dependent deformation of cartilage
[12], brain [13], [14], and lymphedematous tissues [15], whose behavior is not well
described by linear elasticity. Driving this interest is the recognition that many soft tissues
comprise separate solid and fluid phases.

Brain tissue has long been acknowledged to display time-dependent deformation behavior
[16]. Studies performed by Miller et al. [17] indicate that use of linear viscoelastic theory is
inappropriate for modeling brain deformation. While theoretical nonlinear viscoelastic
mechanical models have been found to agree reasonably well with deformation response at
higher strain rates [18], these models fail to include the effects of the interstitial fluid phase
present in tissue. Recent studies by Franceschini et al. [19], and Cheng and Bilston [20]
have shown that incorporation of poroelastic constitutive relations into combined tissue
models is better at capturing the total deformation behavior of brain. Further, Weaver et al.
[21] have investigated the relationship between reconstructed elastic parameters and brain
interstitial fluid pressure (IFP) in porcine subjects. The average shear modulus over the brain
was observed to decrease with time after anesthesia, following a general trend of decreasing
arterial blood pressure. This trend continued after euthanasia and was found to correlate with
decreasing brain IFP. Although the deformation behavior of the brain was demonstrated to
be affected by IFP, failure to produce repeatable elastic parameter estimates may have been,
in part, due to the inability of the linearly elastic model to appropriately interpret measured
data that are better described by a more complete set of governing equations.

Poroelastic models have been used to approximate the transient mechanical behavior of
porous media such as tofu [22], [23]. Originally developed for soil mechanics [24], [25],
poroelasticity models the deformation of a solid matrix in which mechanical displacement is
affected by the resistance to fluid flow through a network of interconnected pores under a
pressure gradient. In 2001, Konofagou et al. [26] demonstrated the potential of employing
ultrasound elastography to image the deformation of poroelastic materials during stress
relaxation. The mechanism driving the time-dependent behavior was attributed to fluid flow
occurring in the material as a result of pressure gradients induced by localized compression.
Though these methods show considerable potential, displacements measured using
ultrasound techniques are generally unstable in the off-axis directions and in the presence of
uncontrolled tissue motion [27]. In addition, ultrasound methods inherently lack the ability
to investigate deep tissue structures including brain, to which access is limited by the closed
cranium. MRE, on the other hand, offers the opportunity to measure displacements in three
directions with equal accuracy and precision. Further, it is likely that poroelastic
deformation phenomena observed with ultrasound may also be captured using MRE, and
that these effects may prove to be particularly important when tissues are perturbed
dynamically.

Poroelastic modeling of the brain using finite elements has already been employed to study
hydrocephalus and edema [28]–[30], as well as brain-shift and interstitial pressure
fluctuations occurring during stereotactic neurosurgery [31]–[35]. While successful in
capturing quasi-static deformation, no information exists regarding the ability of these
models to accurately describe the motion and pressure distribution resulting from low-
frequency harmonic vibration. Lack of model equations that modify the relationship
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between force and displacement due to the presence of a pressure gradient may result in a
misrepresentation of the “true” elastic parameter distribution. Presented here is an
exploration of the effect of assuming a purely elastic model on the distribution of
reconstructed shear modulus given displacement fields obtained in fluid-saturated porous
media during steady-state MRE. The results show that systematic over-/underestimation of
the shear modulus of the solid matrix is influenced by the resistance to volumetric
deformation caused by pressure gradients that develop in the pore fluid. This type of
response is expected to be sensitive to the mechanical excitation frequency, length scale, and
inherent flow properties within a region of interest. Understanding and ultimately
accounting for those effects is likely to be critical to the success of clinical MRE in tissues
that exhibit strong poroelastic mechanical behavior. The goal of this paper is to emphasize
the differences observed between the poroelastic and estimated elastic response in fluid-
saturated porous media similar to tofu, and highlight the inability of a purely elastic
reconstruction to account for the observed poroelastic effects at frequencies applicable to
MRE.

II. METHODS
Three-dimensional (3-D) finite-element method (FEM) algorithms were developed by
Perriñez et al. [36] to solve both the elastic and poroelastic equations for the respective real-
and complex-valued displacement fields under time-harmonic forcing. Estimates of the
elastic parameter distribution for the simulated data were subsequently obtained in the
absence of measurement noise by providing the displacement fields to the finite-element-
based nonlinear inversion scheme described by Van Houten et al. [37], [38]. The resulting
elastic parameter distributions were compared with the model input values in order to
identify systematic misinterpretations of the true poroelastic property distribution due to the
underlying data model mismatch. The effective shear modulus distributions were then
compared to distributions of the absolute difference in volumetric strain between elastic and
poroelastic models, the magnitude of the pore pressure, and the magnitude of the gradient in
pore pressure. The mechanical properties used in the FEM solutions correspond to those of
commercially available tofu (Mori-Nu Silken Extra-Firm, Morinaga Nutritional Foods, Inc.),
which were measured using a TA Q800 dynamic mechanical analyzer (TA Instruments) and
a custom-built confined-compression device. The tofu was modeled as a linear,
homogeneous, isotropic, porous medium consisting of a solid elastic matrix and viscous
penetrating fluid.

A. Material Properties
Tofu has been recognized to behave as a fluid-saturated porous material [22], [23] that
exhibits acoustic properties similar to those of some soft biological tissues [39]. Though
ultrasound poroelastography has been successful in producing time-dependent lateral-to-
axial strain ratio images (poroelastograms) of tofu [22] and lymphedematous tissues [15]
under sustained axial loading, little is known about the response of these materials to the
dynamic loading that would be experienced during steady-state MRE.

To better understand the differences between the long-term (quasi-static) and acute
(dynamic) material response, a series of mechanical tests was performed on cylindrical disks
of commercially available tofu obtained from the center of spatially varying core samples
taken from four different slabs. The elastic modulus of the solid matrix was determined by
unconfined, quasi-static compression (0.05 N/min) of the cylindrical samples (diameter 28
mm, 9 mm thick), which were compressed between two flat, impermeable plates that
allowed fluid to flow freely through the cylinder sidewall. Compressing the material at a
sufficiently slow rate allowed the fluid to flow through the pores with negligible resistance
and without contributing to the bulk material stiffness. Removing the dependence on time
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ensured that the measured resistance to deformation was a function of the material properties
of the porous solid alone. The quasi-static elastic modulus for the tofu matrix in each slab
was determined to be between 6 and 14 kPa from data in the linear region with an average
variation of about 3% for samples originating from the same slab.

Employing the same experimental setup used to measure the quasi-static modulus, the
dynamic viscoelastic properties [storage modulus and tan(δ)] of similar cylindrical samples
were determined by applying an oscillating axial compression at frequencies ranging
between 0.05 and 100 Hz. A small preload of 0.01 N was applied to ensure that the samples
remained in compression throughout the testing procedure. A typical plot of the dynamic
viscoelastic properties of tofu as a function of frequency is provided in Fig. 1. This graph
shows the material to be predominately elastic, with a relatively small tan(δ), which is
approximately constant over the frequency range tested. The storage modulus was observed
to increase with frequency between 0.05 and 35 Hz, possibly, in part, due to increased
pressure in the material’s pores resulting from insufficient time to allow for fluid flow
during the compression cycle. Viscoelasticity of the solid matrix may have also contributed
to the observed behavior. Data beyond 35 Hz were not included as this region was
dominated by resonance resulting from inertial effects. Comparison of the storage modulus
data with the estimated quasi-static elastic modulus suggests that tofu, when subjected to
compressive loading at frequencies relevant to MRE (O(102 ) Hz), may appear to be
significantly stiffer than would be predicted by a linear elasticity analysis based on the
quasi-static curve. Further, a preliminary investigation of the flow parameters relevant to the
FEM model was performed using a custom-built confined-compression device. Core
samples (diameter 0.5 in, 2 in long) were subjected to quasi-static confined compression
where fluid was allowed to leave through a porous filter. By fitting the time evolution of
displacement to the analytic solution for 1-D consolidation of poroelastic media [24], the
hydraulic conductivity (κ) of the tofu was estimated to be O(10−9 ) m3 · s/kg. The bulk
material density (ρ) was determined from mass and volume measurements to be
approximately 1020 kg/m3. The material porosity (ϕ) was found to be about 0.2 based on
analysis of stained histological sections.

B. Mathematical Model
The equations used to model the time-harmonic deformation of poroelastic tofu are based on
those developed by Biot in 1956 [40], [41] as an extension of his earlier work involving
quasi-static poroelasticity [24]. The frequency response of Biot’s dynamic poroelasticity
equations was later explored by Cheng et al. [42]. The dynamic parameters used by Cheng
et al. were formulated to be consistent with the notation in Biot’s earlier work [24], which
was written in terms of total stress (σ) and pore pressure (p) as opposed to “partial solid
stress” and “partial fluid stress.” Following Cheng’s description, which assumes full
saturation, the coupled set of partial differential equations (PDEs) governing the material
behavior under time-harmonic vibration and in the absence of body forces can be expressed
as

(1a)

(1b)
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where the vector ū contains the complex-valued x-, y-, and z-components of displacement,
and p̄ is the complex fluid pressure. Here, the overbar (¯) indicates the frequency-dependent
part of the dependent variable after subsequent removal of the time-harmonic factor. The
parameters α,R, φ, and β are defined as

(2)

(3)

(4)

(5)

where α is the Biot effective stress coefficient, R is a measure of the change in water content
(ζ) for a given change in water pressure (p), and ϕ is the material porosity. The densities of
the bulk material and pore fluid are given by ρ and ρf, respectively. The parameter ρa is
defined as the apparent mass density and is a measure of the work done by relative motion
between the solid and fluid phases. In addition, the matrix shear modulus and excitation
frequency are represented by μ and ω, while ν and νu designate the drained and undrained
Poisson ratios, respectively. The parameterB is often referred to as the Skempton pore
pressure coefficient [43] and is defined as the ratio of change in pore pressure to the change
in applied stress under no flow conditions (ζ = 0). In essence, B is a measure of how an
applied load is distributed between the solid matrix and the pore fluid, assuming a value
between 0 and 1 [44]. Furthermore, the hydraulic conductivity (κ) is assumed to be isotropic
and spatially uniform. For simplicity, we neglect any potential frequency dependence of
parameters κ and ρa. We may further simplify this model by assuming that the individual
material constituents are incompressible, as given by K/Ksolid ≪ 1 and K/Kfluid ≪ 1, where
K is the bulk modulus of the porous media, and Ksolid and Kfluid denote the bulk modulus of
the matrix material and pore fluid, respectively. Following the development of the
constitutive relations as outlined by Detournay and Cheng [45], and Schanz and Diebels
[46], we rewrite the parameters α and R in terms of the bulk moduli

Carrying through the assumption of incompressible constituents, the governing equations
can be rewritten as

(6a)
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(6b)

C. Finite-Element Formulation
Neglecting gravity and the presence of any pressure source, the weak form of (6) with scalar
weighting functions ϕi(x, y, z) is written as

(7a)

(7b)

An alternate weak form of (7) is obtained through application of the divergence integral
identities

(8)

(9)

yielding

(10a)

(10b)

where ∮ denotes integration over the domain boundary and n ̂ is the outward-pointing normal
vector. The 3-D stress–strain relations for a linearly elastic solid containing an infiltrating
pore fluid can be written in the following form [47]:

(11a)

(11b)

where σE is the Cauchy stress tensor, λ is a Lame constant, and ε is the infinitesimal strain
tensor. Expanding the first term in (10a) we achieve
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(12)

Applying the identity

(13)

the second term in (12) becomes

(14)

Substituting (14) and simplifying, (12) is reduced to

(15)

In order to quantify the effect of poroelastic displacement fields on our current linearly
elastic reconstruction algorithm, it was necessary to develop a 3-D FEM solver for the
solution to the dynamic poroelasticity problem described by (6). The 3-D FEM formulation
requires that the approximate solution variables û, v̂, ŵ, and p̂ be expanded on a basis set (ϕ),
yielding

(16)

(17)

(18)

(19)

Developing the Galerkin weak form of (10) leads to a system of equations in terms of an
unknown solution vector {χ̂} under the influence of a known forcing vector {b}
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(20)

where {χ̂} is defined as

(21)

and where {b} is defined as

The system stiffness matrix [A] is composed of integrals of the basis functions, their
derivatives, and the continuum’s physical properties [48], and is described by the set of
subelements
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Given the nature of these equations, the resulting system is sparse, complex, and
unsymmetric. For these reasons, it was solved using multifrontal massively parallel sparse
direct solver (MUMPS), a freely available package based on parallel processing software
developed during the Esprit IV European project PARASOL (1996–1999) [49]–[51].
Solutions to the equations of motion for a linearly elastic continuum were obtained via the
finite-element formulation described by Van Houten et al. [38] and solved using MUMPS,
yielding a real-valued displacement field. Displacements generated through the solution of
(20) were supplied to a reconstruction algorithm based on linear elasticity, requiring a real-
valued displacement field (i.e., all points within the domain have a 0° or 180° phase value)
extracted from the poroelastic solution as

(22)

where Ai and Pi represent the amplitude and phase in the x-, y-, and z-directions derived
from the poroelastic model. This procedure is also a required step in the postprocessing of
clinical data reconstructed with linear elasticity and is used to identify the direction of
motion in the case where the imaginary part of the measured data is small (as would be the
case if the material were purely elastic). Numerical solutions were computed on a Linux
cluster comprising 75 PSSC AMD Opteron nodes, each containing two dual-core Opteron
CPUs.

D. Numerical Simulations
Simulated data was generated for two different geometries (Fig. 2), a 28-mm-diameter, 10-
mm-thick cylindrical disk consistent with the dimensions of the tofu core samples used in
mechanical testing, and a 10 × 7.5 × 4.5 cm rectangular prism corresponding to the
dimensions of the unmodified tofu slab.

The boundary conditions imposed on the cylindrical disk were those of: 1) unconfined
compression and 2) unconfined shear. For the compression case, in an attempt to simulate
the conditions experienced during mechanical testing, the cylinder base was fixed in all
directions (u = v = w = 0), while the top was fixed in the x- and y-directions and excited by
an applied stress (20 Pa) varying sinusoidally in the z-direction. The magnitude of the
applied stress was determined as the value required to produce deformations on the order of
those measured by MRE (O(10−6 ) m). The force applied at each node was calculated by
integrating over the participating boundary elements. Consistent with the experimental
setup, fluid flow was allowed through the exposed sidewall (p = 0 Pa) but not through the
top or bottom surfaces (∂p/∂n = 0 Pa). For the case of shear, the conditions applied were
intended to simulate unconfined shear excitation of the tofu cylinder fixed to an
impermeable plate. Unidirectional excitation (10 µm) was imposed at the base along the x-
direction (v = w = 0) and a zero-stress condition was applied to all other surfaces (∂ū/∂n =
0). Fluid flow was allowed only through the top and sidewall. The slab geometry was also
excited (50 µm) in unconfined shear at its base along the x-direction. As with the tofu
cylinder, a zero-stress condition was applied to the top and sides of the slab while fluid flow
was allowed only through the exposed surfaces. In all cases, the excitation frequency was
100 Hz. The dynamic elasticity and poroelasticity problems were solved using the MUMPS-
based FEM implementation described in Section II-C. Inverse calculations based on the
elastic model were performed on the same mesh and without noise. This idealized case was
used to asses the systematic misinterpretation of the poroelastic displacement data by the
reconstruction algorithm. The relevant parameters for both models are provided in Table I.
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III. RESULTS
To visualize the results, the elastic parameter reconstructions were interpolated onto 16 2-D
slices along the z-axis (Fig. 3–Fig. 5). The bottom slices begin in the upper left-hand corner
of the image and continue left-to-right with the topmost slice occurring in the lower right. A
summary of the results for the tofu cylinder and the tofu slab is provided in Table II. The
values for average shear modulus and standard deviation were computed across the entire
problem domain. Reconstructions obtained from elastic displacement fields were found to
be consistent with the values used in the model inputs. Reconstructions obtained from the
poroelastic displacement fields, however, contain anomalous regions of high and low shear
modulus, regardless of actuation method. In the case of the tofu cylinder, the maximum
shear modulus overestimate was found to be 5.9 times greater in compression, and 5.0 times
greater in shear than that of the input value. For the tofu slab, the maximum overestimation
was found to be 4.4 times that of the input value. Overestimates for the tofu cylinder
undergoing compression appeared to be uniformly distributed along the mesh perimeter at
the base, while overestimates for the cylinder undergoing shear excitation appeared to be
concentrated on opposing sides of the mesh. For the tofu slab, the spatial distribution of
shear modulus overestimates was more complex, yet still contained patterning consistent
with shear excitation. It should be noted that the horizontal in-plane axes of the interpolated
images correspond to the global x-direction (i.e., the direction in which shear displacement
was applied). Fig. 6 provides images indicating nodal locations where the estimated shear
modulus value for the poroelastic input data is greater than or equal to 100% of the true
value for each case.

From (6a), it is clear that Navier’s equations of motion for a linearly elastic solid are
modified by the presence of a gradient pressure and a nonzero fluid density. Further, the
flow of fluid through the porous material described in (6b) is coupled to the matrix
deformation through the divergence of the displacement field (∇ · ū) or volumetric strain.
Given that the displacement fields generated by an elastic forward solver are inherently real-
valued, while those generated by the poroelastic forward solver are complex, simply
comparing their amplitudes is not sufficient to explain the differences observed in the
resulting reconstructions as the phase of each component of displacement plays an important
role. For this reason, distributions of the absolute difference in volumetric strain between the
elastic and poroelastic models, the magnitude of the pressure field, and the magnitude of the
gradient in pressure were computed and are presented for each case in Fig. 7–Fig. 9 against
the appropriate shear modulus distribution, respectively. In addition, the phase of the
volumetric strain computed from the elastic and real parts of the poroelastic displacement
fields for each case is presented in Fig. 10. Qualitative inspection of Fig. 10(a) and (b)
indicates that differences in spatial variation in the phase of the volumetric strain for the tofu
cylinder in compression correlate with the presence of effective shear modulus estimates at
the base. Similarly, the most striking differences in phase for the tofu cylinder in shear [Fig.
10(c) and (d)] occur on opposing sides along the length of the mesh. In both cases, the
regions are found to be in agreement with the nodal distribution shown in Fig. 6(a) and (b).
The plots for the tofu slab presented in Fig. 10(e) and (f) show intricate phase distributions
that result from the presence of multiple wavelengths. Still, shear modulus overestimates
appear to correspond with phase differences occurring at the top and bottom of the mesh in
locations where clear patterns are discernible.

IV. DISCUSSION
Experimental measurements on tofu samples show a considerably larger stiffness (modulus)
during dynamic testing relative to static, suggesting that resistance to fluid motion may have
a significant impact on the resulting deformation behavior of tofu and other poroelastic

Perriñez et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2010 April 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



materials. These data indicate that MRE, which elicits a dynamic response, will produce
different mechanical property results than would be expected from static tests such as
indentation.

Agreement between reconstructed shear modulus and actual (input) modulus values is
dependent on whether the mathematical model used in the reconstruction agrees with that
used to generate the data. The numerical simulations show that shear modulus
reconstructions obtained from elastic displacement fields in both the cylindrical disc and
slab geometries yielded accurate and precise parameter distributions as expected because of
the agreement between the mechanical model used in the inversion and that used to generate
the synthetic data. On the other hand, reconstructions performed using poroelastic
displacement fields appear to exhibit systematic shear modulus overestimates as well as
underestimates. Qualitative inspection of Figs. 7 and 8 indicates that regions of higher
predicted shear modulus correspond with regions of high nodal pressure and pressure
gradient, in agreement with the observations reported by Weaver et al. [21]. In addition,
regions of high pressure gradient corresponded to areas where significant differences in
volumetric strain occurred between the two models. This is because these regions
experienced time-dependent fluid flow invoked by conditions of rapidly changing volume
that served to resist deformation, producing a gradient in pressure. Applying this same
rationale to the case of the tofu slab (Fig. 9) again indicates that the regions with the greatest
difference in volumetric strain correlate with regions of high pressure gradient and over-/
underestimated shear modulus. While distinct patterning is apparent, it is clear that the
deformation behavior across the simulated phantom is more complicated and harder to
interpret than that observed in the tofu cylinder. This behavior is attributed to the complex
motion patterns, including resonance and surface wave propagation, owing to the large size
of the problem domain relative to the mechanical wavelength involved. Poroelastic data
containing significant imaginary components in the displacement and pressure fields
indicate the presence of time-harmonic pressure and elemental volume changes that are
likely to occur out of phase with respect to the equivalent elastic data, thus requiring a
different metric to accurately predict regions of artifactual shear modulus values. Using (22)
to obtain the real-valued displacements from the fully complex data can have a significant
effect on the spatial distribution of the phase of the volumetric strain for the resulting time-
harmonic field. From the images presented in Fig. 10, it is apparent that simply taking the
real-part of the complex displacement data is not sufficient to capture a representative
displacement field for the purposes of MRE reconstruction. Processing the data in this way
can disrupt the smooth distribution of phase across the problem domain, thereby invoking
additional artifactual deformation behavior, which may exacerbate the data model mismatch
due to the poroelastic effects within a region of interest.

In addition, it is important to note that the spatial distribution of the estimated elastic
parameters obtained from poroelastic input data will likely vary with a number of
mechanical and geometrical parameters, including density, hydraulic conductivity, length
scale, pressure boundary conditions, as well as the frequency and amplitude of vibration.
Differences between the actual and recovered shear modulus for the poroelastic material are
influenced by differences in the perceived stiffness of the material. Stiffness is the
relationship between force and displacement. In linear elasticity, there is a direct relationship
between stiffness and modulus, although that relationship is more complicated for 3-D stress
fields, such as those being treated here. In poroelasticity, however, the presence of time-
dependent fluid flow and related pressure gradients modifies the stiffness–modulus
relationship. Boundary conditions also affect the deformation behavior of the material.
Unlike simple elasticity where a solution for the displacement field requires knowledge of
only the displacement or the stress vector at each node on the boundary, a solution to the
poroelastic forward problem requires additional knowledge of the pore pressure or its
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gradients everywhere on the boundary. If fluid flow is restricted by low hydraulic
conductivity or by impermeable boundaries, displacement can be substantially smaller than
would be expected in the elastic case under the same loading conditions, even though the
modulus of the material may remain unchanged. In addition, the expression of this
phenomenon in the distributions presented here is likely influenced by the symmetry of both
the geometry and excitation mode, especially at the boundaries. Modulus artifacts observed
in vivo are expected to occur throughout the volume due to nonuniform excitation and be
more pronounced at anatomical boundaries, which limit/prevent fluid flow.

Owing to the complex nature of tissue composition, it is likely that viscoelasticity may also
contribute in part to the time- and frequency-dependent deformation behavior observed in
tofu, and in normal and diseased tissue. Therefore, viscoelastic material models should be
considered in future developments. While viscoelastic reconstructions do not include a fluid
phase and cannot take into account pore pressure changes in tissue, use of the fully complex
dataset should compensate for some of the shortcomings of a purely elastic model and may
be able to capture some of the effects of poroelasticity. Given the significant inaccuracies
that can occur in recovering elastic properties of poroelastic tissue using conventional
linearly elastic MRE, further investigation is warranted leading to the development of a
reconstruction algorithm that incorporates the poroelastic constitutive relations.

V. CONCLUSION
Results from this investigation suggest that shear moduli obtained from common linear-
elasticity-based parameter reconstructions of displacements fields measured in fluid
saturated media may not be representative of the true solid matrix parameter distribution.
Further, harmonic excitation of simulated poroelastic media was found to produce a
signature in the displacement fields on time scales relevant to MRE but too short for
significant bulk fluid flow to occur. Here, the observed poroelastic effect is related to the
resistance to volumetric deformation of the solid matrix in the presence of pressure gradients
that develop in the pores; the significance of this will likely change with frequency, length
scale, and hydraulic conductivity. Clinically, these findings are relevant in that useful
diagnostic information obtained from MRE reconstructions will depend on either the
absolute or relative estimated parameter values between normal and diseased tissues. While
viscoelastic effects in the solid matrix are likely to augment the complex deformation
behavior observed in simulation, it is clear that accounting for the poroelastic effects in fluid
saturated media will be important in capturing the total deformation behavior. To this end,
incorporation of the poroelastic equations into a parameter reconstruction may be required
for investigations of many soft biological tissues. Though in vivo estimation of hydraulic
conductivity remains a challenge, poroelasticity-based MRE offers an opportunity to
estimate variations in the volumetric pressure distribution within fluid-saturated porous
media noninvasivley, which may be useful in monitoring pathology such as cancer, diabetes,
stroke, and other disease associated with edema, increased oncotic pressures, and ischemia.
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Fig. 1.
Representative frequency sweep of the viscoelastic properties of extra firm silken tofu
undergoing unconfined compression.
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Fig. 2.
3-D tetrahedral finite-element mesh used for analysis of the (a) tofu cylinder (15 998 nodes,
81 159 elements) and (b) tofu slab (45 749 nodes, 259 200 elements).
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Fig. 3.
Interpolated linear-elasticity-based shear modulus reconstructions for the simulated tofu
cylinder in compression obtained from the respective (a) elastic and (b) poroelastic
displacement fields. Axial excitation applied in the z-direction corresponds to the out-of-
plane direction in these images.
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Fig. 4.
Interpolated linear-elasticity-based shear modulus reconstructions for the simulated tofu
cylinder in shear obtained from the respective (a) elastic and (b) poroelastic displacement
fields. Shear excitation applied in the x-direction corresponds to the horizontal direction
(left–right) in these images.
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Fig. 5.
Interpolated linear-elasticity-based shear modulus reconstructions for a simulated tofu slab
obtained from (a) elastic and (b) poroelastic displacement fields. Shear excitation applied in
the x-direction corresponds to the horizontal direction (left–right) in these images.
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Fig. 6.
Nodal locations containing reconstructed shear modulus values obtained from poroelastic
displacement fields greater than or equal to 100% of the true value for the tofu cylinder in
(a) compression, (b) shear, and (c) tofu slab.
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Fig. 7.
(a) Reconstructed shear modulus (in pascals), (b) absolute difference in volumetric strain,
(c) pressure magnitude (in pascals), and (d) magnitude of the gradient in pressure (in pascals
per meter) for the tofu cylinder experiencing unconfined compression.
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Fig. 8.
(a) Reconstructed shear modulus (in pascals), (b) absolute difference in volumetric strain,
(c) pressure magnitude (in pascals), and (d) magnitude of the gradient in pressure (in pascals
per meter) for the tofu cylinder experiencing unconfined shear.
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Fig. 9.
(a) Reconstructed shear modulus (in pascals), (b) absolute difference in volumetric strain,
(c) pressure magnitude (in pascals), and (d) magnitude of the gradient in pressure (in pascals
per meter) for the tofu slab experiencing unconfined shear.
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Fig. 10.
Interpolated views of the phase of the volumetric strain for both the elastic (left) and real
parts of the poroelastic data (right). Images are provided for [(a) and (b)] the tofu cylinder in
compression, [(c) and (d)] the tofu cylinder in shear, and [(e) and (f)] the tofu slab. Units are
given in radians.
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