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Spinal cord injury I: A synopsis of the basic science

Aubrey A. Webb, Sybil Ngan, J. David Fowler

Abstract — Substantial knowledge has been gained in the pathological findings following naturally occurring 
spinal cord injury (SCI) in dogs and cats. The molecular mechanisms involved in failure of neural regeneration 
within the central nervous system, potential therapeutics including cellular transplantation therapy, neural plastic-
ity, and prognostic indicators of recovery from SCI have been studied. This 2-part review summarizes 1) basic 
science perspectives regarding treating and curing spinal cord injury, 2) recent studies that shed light on prognosis 
and recovery from SCI, 3) current thinking regarding standards of care for dogs with SCI, 4) experimental 
approaches in the laboratory setting, and 5) current clinical trials being conducted in veterinary medicine. Part I 
presents timely information on the pathophysiology of spinal cord injury, challenges associated with promoting 
regeneration of neurons of the central nervous system, and experimental approaches aimed at developing treatments 
for spinal cord injury.

Résumé — Lésions de la moelle épinière I : Sommaire de la science fondamentale. Des connaissances 
considérables ont été acquises dans les constatations pathologiques suite à des lésions de la moelle épinière (LME) 
attribuées à des causes naturelles chez les chiens et les chats. Les mécanismes moléculaires en cause lors de l’absence 
de régénération neurale dans le système nerveux central, la thérapeutique potentielle incluant la thérapie par 
transplantation cellulaire, la plasticité neurale et les indicateurs de pronostic de rétablissement à la suite de LME 
ont été étudiés. Cette revue en deux parties résume : 1) les perspectives scientifiques fondamentales concernant le 
traitement et la guérison des lésions de la moelle épinière, 2) des études récentes qui apportent des précisions sur 
le pronostic et le rétablissement des LME, 3) le courant de pensée actuel concernant les normes de soins pour les 
chiens avec LME, 4) des approches expérimentales en laboratoire et 5) des essais cliniques en cours en médecine 
vétérinaire. La partie I présente des renseignements opportuns sur la pathophysiologie des lésions de la moelle 
épinière, les défis associés à la promotion de la régénération des neurones du système nerveux central et les approches 
expérimentales en vue de développer des traitements pour les lésions de la moelle épinière.

(Traduit par Isabelle Vallières)

Can Vet J 2010;51:485–492

Introduction

T raumatic spinal cord injury (SCI) is a devastating disease 
in human and veterinary medicine. In human medicine, 

approximately 50 per 1 million people are afflicted with SCI 
annually (1). The exact incidence of traumatic SCI in dogs 
and cats is unknown. Much of the epidemiological data per-
taining to SCI in veterinary medicine is found in the older 
literature. Nevertheless, it has been estimated that up to 2% 
of all cases admitted to a veterinary hospital are afflicted by 

SCI resulting from intervertebral disc disease (IVDD) (2). 
For dogs not afflicted with IVDD, 60% of SCI result from 
motor vehicle accidents (3). When looking at dogs involved 
in motor vehicle accidents; however, 5% of the animals will 
have SCI (4). Other important causes of SCI in dogs are 
ischemia resulting from fibrocartilagenous embolism (5) and 
cervical spondylomyelopathy (6). In a retrospective study 
of cats with spinal cord disease, 7% had SCI injury due to 
vertebral column injury, 4% from intervertebral disc disease, 
2% from a penetrating injury, and 7% had SCI resulting from 
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ischemia or infarction (7). It is important to understand and 
appropriately manage dogs and cats with SCI. Substantial 
advances have been made in SCI research since the publica-
tion of veterinary review articles on SCI 10 y ago (8–10). 
Advances have been made in understanding 1) details of white 
matter changes occurring after naturally occurring SCI in dogs 
and cats; 2) the molecular mechanisms involved in failure of  
neural regeneration within the central nervous system (CNS); 
3) potential therapeutics including cellular transplantation 
therapy; 4) neural plasticity; and 5) prognostic indicators of 
recovery from SCI in dogs. Given this, we review in 2 parts; 
1) basic science perspectives regarding treating and curing spinal 
cord injury, 2) recent studies that shed light on prognosis and 
recovery from SCI, 3) current thinking on standards of care 
for dogs with SCI, 4) experimental approaches being inves-
tigated in the laboratory setting, and 5) current clinical trials 
being conducted in veterinary medicine. It is hoped that this 
information will provide both timely and topical information 
for veterinarians.

Spinal cord injury results from primary 
and secondary injury mechanisms
Traumatic SCI in dogs results from either endogenous or 
exogenous trauma, namely, intervertebral disc herniation and 
motor vehicle accidents, respectively. Regardless of the cause, 
the resultant pathology arises from both primary and secondary 
injury mechanisms. Primary injury is physical injury to the spi-
nal cord and is the result of laceration, contusion, compression, 
and traction of the neural tissue. Pathological changes result-
ing from primary injury mechanisms include severed axons, 
direct mechanical damage to cells, and ruptured blood vessels. 
Secondary injury is of paramount importance and is responsible 
for expansion of the primary injury. Secondary injury results 
from alterations in local ionic concentrations (11); loss of regu-
lation of local and systemic blood pressure (depending on the 
level of the injury) (12,13), reduced spinal cord blood flow (13), 
breakdown of the blood-brain barrier (12–14); production of 
free radicals (15), imbalance of activated metalloproteinases 
(16,17), and release of cytotoxic neurotransmitters (18,19). The 
results of both primary and secondary injury mechanisms are 
conduction block of neuronal impulses resulting from local ionic 
changes and demyelination, ischemia, necrosis, and apoptosis 
of spinal cord tissue, and characteristic pathological findings.

Though the pathological features of SCI have been previously 
described (20–23), neuropathological changes have recently 
been re-examined in dogs and cats following naturally occur-
ring SCI (24). Neuropathological findings were characterized by 
hemorrhage and infarction, and gray matter damage. Detailed 
analysis of axonal and myelin changes revealed axonal swelling 
and myelin degeneration, that developed soon after the SCI. In 
particular, demyelination of axons developed by 2 wk following 
SCI. In the chronic phases of SCI the spinal cord reveals char-
acteristic central areas of cavitation with peripheral rim sparing 
of white matter (24). These findings are similar to those in the 
chronic phases of SCI in humans and rats following natural and 
experimental injury, respectively. In fact, the pathological find-
ings are so similar to those seen in traumatized human spinal 

cords that a strong argument has been made to consider using 
dogs with naturally occurring SCI as a translational model prior 
to evaluating potential therapies in humans (25).

Regeneration of axons is limited within the CNS
Physical injury to the spinal cord results in the mechanical dis-
ruption and degeneration of ascending and descending axons. 
Consequently, connections between neurons and their targets 
within the CNS are disrupted and various neurological abnor-
malities (notably paresis and paralysis) ensue. One of the main 
therapeutic strategies for SCI is to promote axonal regeneration. 
Although neuronal regeneration and neuronal sprouting are used 
interchangeably by some, we define neuronal regeneration, more 
specifically axonal regeneration, as regeneration of a previously 
lost axon. Meanwhile, we define neuronal sprouting as sprout-
ing of an axon from an uninjured and viable neuron (explained 
more in subsequent sections). There are many confounding 
factors that contribute to the success of neuronal regeneration 
following SCI [for review see (26,27)].

These factors include the physical and biochemical barriers 
that are induced or inherent within the injured spinal cord and 
include inhibitory molecules in myelin [Nogo, myelin-associated 
glycoprotein (MAG), oligodendrocyte-myelin glycoprotein 
(OMgp), ephrins, semaphorins, netrins, repulsive guidance 
molecule (RGM)] (26). Aside from the inhibitory properties of 
myelin, the astrocyte-lined glial scar is also an impediment for 
neural regeneration (28).

The glial scar helps seal the injury site from the spared tissue, 
possibly preventing spread of secondary injury. An undesirable 
effect of “walling-off ” the injury site from intact axons is that 
axons are unable to cross the injury site. Further, and possibly 
more importantly, the glial scar itself produces a number of 
factors that make the biochemical milieu surrounding the 
injury site inhospitable for regenerating axons. These fac-
tors include tenascic acid, semaphorins, ephrins, and various 
proteoglycans (27).

In addition, mature CNS neurons themselves have limited 
regenerative capabilities compared with peripherally projecting 
neurons (29). In particular, various regeneration-associated 
genes (RAGs) are not upregulated or expressed appropriately 
in adult CNS neurons following injury (for reviews see 30,31). 
Regeneration-associated gene expression plays a role in the 
synthesis of various proteins that are important in regenera-
tion. Such proteins include the regeneration-associated proteins 
GAP-43, CAP-23, and neurotrophins; the cellular downstream 
signaling molecules cyclic-AMP and CREB; and the integrins 
that are important in cell adhesion (30,31). Though neurons 
atrophy and have declining neuroregenerative capability after 
axotomy in the CNS, pathways important for regeneration can 
be stimulated with growth factors (see next section), up to at 
least 1 y after axotomy, and partially promote regeneration (32).

Experimental approaches for promoting 
recovery from spinal cord injury
Logically, research is aimed at overcoming the factors that are 
involved in impeding recovery from SCI. Specifically, research 
is conducted with the following aims: 1) preventing secondary 
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injury, 2) promoting regeneration and/or sprouting of remain-
ing axons, 3) enhancing the purposeful function of remaining 
neural circuitry, 4) replacing destroyed spinal cord tissue, and 
5) combining a number of the above approaches.

Preventing secondary injury. Primary injury mechanisms are 
minimized through surgical decompression of the spinal cord 
and/or stabilization of vertebrae (in the case of vertebral frac-
tures) to prevent further damage to the spinal cord. Secondary 
injury, the cellular and molecular events resulting from primary 
injury, occurs predominantly in the acute (hours) and subacute 
(days to weeks) stages of SCI. The end result of secondary injury 
is the expansion of the size of the primary injury through a 
variety of mechanisms already mentioned. Given this, therapies 
aimed at controlling secondary injury mechanisms offer the 
potential to reduce the extent of the injury and thus improve the 
potential for recovery after SCI. Various potential therapeutics, 
aimed at reducing secondary injury, have been examined. In 
particular, a variety of approaches have been studied to alter 
neuroinflammation (administration of immunomodulator drugs 
such as minocycline or antibodies against leukocyte adhesion 
molecules) (33–36), reduce free radical damage (administra-
tion of glucocorticoids, iron chelators, and glutathione pro-
moters) (15,37–40), reduce excitotoxic damage to neurons 
[administration of N-methyl-D-aspartate (NMDA) receptor 
antagonists] (41), improve blood flow (administration of opioid 
antagonists or calcium channel blockers) (42), seal damaged 
membranes (systemic administration of surfactants) (43,44), 
and counter the effects of local ionic imbalances (administration 
of sodium and calcium channel blocker) (45–49) [for a detailed 
review see (50)]. So far, none of these treatments have been use-
ful for treating spinal cord injury.

Promoting regeneration and/or sprouting of remaining 
axons. Inhibitory molecules that reside near and at the site of 
SCI limit axonal regeneration. A variety of techniques have been 
used to counter the inhibitory aspects of the spinal cord micro-
environment, or to promote regeneration of spinal cord axons.

There are a variety of proteins expressed in myelin that 
interfere with axonal regeneration. These molecules include 
MAG (51,52), OMgp (53), and Nogo (54). Consequently, a 
rational approach to improving neural regeneration would be to 
eliminate or immunologically prevent regenerating axons from 
coming in contact with these inhibitory substrates. In fact, such 
strategies have been performed experimentally and have resulted 
in variable improvement in neural regeneration and sensorimo-
tor recovery (55–59).

An alternative approach to eliminating or immunologically 
preventing axons from encountering these inhibitory myelin 
proteins is to block interaction of these molecules with their 
receptors using a receptor antagonist. Alternatively, interfering 
with downstream signaling pathways would also be expected to 
ameliorate the inhibitory effects of these proteins on regenerat-
ing neurons. Fortunately, there is a common receptor known as 
the Nogo-66 receptor (NgR), through which MAG, OMgp, and 
Nogo act (60,61). Molecules that block the NgR promote mod-
est regeneration and variable behavioral recovery in vivo (62–64).

Once myelin-associated inhibitors (MAIs) are activated, a 
downstream signal to RhoA GTPase (RhoA), an enzyme that 

is important in cytoskeletal regulation, is also activated (65). 
Subsequently, RhoA activation leads to recruitment of Rho 
kinase (ROCK) (an enzyme involved in phosphorylation of 
other molecules important in cytoskeletal regulation), trig-
gering the reorganization of actin networks in the neuronal 
growth cone, and ultimately growth cone collapse and neurite 
inhibition (failed axonal regeneration) (65). Growth cones are 
found at the tips of developing axons, guiding neurite out-
growth (66). Inhibitors of RhoA and ROCK signaling promote 
neural regeneration in vitro and in vivo, and modest behavioral 
recovery (65–68).

Another inhibitory obstacle is the glial scar, formed by reac-
tive astrocytes, that acts as both a physical and chemical barrier 
for regeneration and sprouting (69). Chondroitin sulphate pro-
teoglycans (CSPGs), a component of the glial scar, are upregu-
lated following CNS injury (70). Proteoglycans are made up of 
a glycoprotein and glycosaminoglycan (GAG) sugar side chains. 
Aggrecan, brevican, neurocan, and NG2, are examples of proteo-
glycans that contain the chondroitin sulphate side chains (28). 
CSPGs are found in the extracellular matrix, and interact with 
other matrix constituents by receptors on the GAG chains or 
the glycoprotein (71). Degradation of CSPG by the bacterial 
enzyme chondroitinase ABC (ChABC) permits CNS tissue to 
regenerate, in vitro (72). Application of ChABC-therapy has 
been beneficial for regeneration in vivo but such regeneration 
had mixed results in promoting behavioral recovery (73–76). 
The effects of blocking or degrading inhibitory molecules should 
be investigated for promoting recovery after SCI in veterinary 
medicine.

Many compelling studies using neurotrophins to promote 
axonal sprouting have been conducted. Neurotrophins are 
growth factor proteins that promote the development, growth, 
and survival of neurons. Brain-derived neurotrophic factor 
(BDNF), nerve growth factor (NGF), neutrophin-3 (NT-3), 
and neutrophin-4 (NT-4), are the core neurotrophins known 
to promote neuron survival (77). The common receptor for the 
core neurotrophins is known as p75, although the tropomyosin-
receptor-kinase (Trk) family of receptor (Trk receptors) tyrosine 
kinases have higher affinity for specific neurotrophins (78). 
A variety of studies have reported that neurotrophins and 
neurotrophin receptors improve aspects of behavioral recov-
ery following SCI (79–87). Furthermore, neurotrophins in 
combination with other treatments have also been useful in 
promoting behavioral recovery (88–95). Important side-effects 
of neurotrophin administration observed in human clinical trials 
for neurodegenerative diseases, and from experimental animal 
studies, that may preclude their use in SCI include weight loss, 
inappetance, nausea, and psychiatric disturbances (96). Though 
these side-effects may be due to route of administration of the 
neurotrophin and/or the particular neurotrophin being admin-
istered, these considerations will undoubtedly need to be taken 
into consideration when planning clinical trials investigating 
their use in SCI.

Enhancing the purposeful function of remaining neural 
circuitry. Physical activity has been linked with improved out-
come following CNS trauma. It has been well-documented for 
more than 20 y that cats with a completely transected spinal 



488 CVJ / VOL 51 / MAY 2010

A
R

T
IC

L
E

cord can be trained to step or stand on a treadmill (97). This 
phenomenon occurs because of the “retraining” of the spinal 
cord networks responsible for the alternating pattern of flexion 
and extension. Referred to central pattern generators (CPGs), 
the CPGs for hind limb stepping are located within the lower 
thoracic and upper-mid lumbar regions of the spinal cord in 
mice, rats, and cats (98–101). The ability to “learn” to step, 
in these cats, depends on a specific training regimen, however. 
In fact, spinal cord transected cats that are trained to stand 
are unable to walk on a treadmill, while those trained to walk 
are unable to stand (102). Albeit, stand-trained animals can 
be trained to step, and vice versa. An important aspect to this 
training is that the spinal cord “remembers” what it was trained 
to do. For instance, if a spinal cord transected cat was trained 
to walk on a treadmill, the cat is able to walk on the treadmill 
after a period of not being trained (103). Interestingly, a recent 
study showed that “training” of the CPG occurs in cats having 
only a partial SCI (104). Specifically, cats that received a partial 
SCI, and were treadmill-trained, regained bilateral stepping 
ability within hours after a subsequent complete spinal cord 
transection. Cats that did not receive any training prior to a 
complete transection were asymmetrical in their hind limb 
locomotor ability. Biochemical changes associated with training 
of the CPG have also been described (105,106). Specifically, 
spinal cord transected animals not trained to step on a treadmill 
had elevated levels of the inhibitory neurotransmitter gamma 
aminobutyric acid (GABA) in spinal cord motor neurons, while 
those that were trained to step had reduced levels of the inhibi-
tory neurotransmitter. Interestingly, it was originally thought, 
for specific physiological reasons that treadmill training was 
likely more efficacious compared to conventional rehabilitation 
step-training in SCI humans. A recent multicenter study in 
humans, however, indicated that treadmill training is good but 
no better at promoting recovery following SCI compared with 
conventional step-training physiotherapy (107).

Aside from the effects of training on the CPG, physical 
therapy also promotes recovery through sprouting of axons that 
remain following SCI. In particular, brain-derived neurotrophic 
factor (BDNF) and growth-associated protein (GAP-43) are 
thought to play a role in exercise-induced plasticity by promot-
ing regeneration and axonal growth (108,109). GAP-43 is found 
in high concentrations in axonal growth cones, and thus, is 
thought to be associated with guiding the growth of axons and 
forming new connections after injury (110,111). However, over-
expression can lead to motor neuron death even with continual 
growth of axons (110). Gomez-Pinilla et al (112) demonstrated 
that voluntary exercise increased the expression of BDNF and 
its receptors, and also increased GAP-43 (112). Experimentally, 
SCI rats also exhibit greater recovery when placed in enriched 
environments or where running wheels are provided to promote 
self-training and this is seen with enhanced neural regeneration 
(113,114).

In addition to exercising, recent findings show that dietary 
manipulations also affect recovery. Diet restriction increases 
levels of BDNF (115), and increases lifespan (116). In one 
study, rats provided with food every other day (beginning after 
the SCI) showed higher levels of performance after SCI than 

the control group (117). Importantly, the recovery that was 
observed with every other day food restriction in SCI rats was 
associated with a reduction in spinal cord lesion volume and 
increased sprouting of neurons within the spinal cord (118). In 
a non-SCI study, rats that were food restricted had significantly 
less neuronal loss in the hippocampus after excitotoxic-induced 
damage to their hippocampus (119). Interestingly, this effect 
was only present in rats that had been food restricted for lon-
ger than 8 wk. The mechanisms by which food restriction is 
associated with increased resistance of the brain after injury are 
still being investigated. The evidence suggests that neurodegen-
erative processes, including SCI, may be alleviated by dietary 
manipulations.

Taken together, exercise and a specific dietary regime may be 
advantageous for recovery from SCI. It is no longer appropriate 
to simply place a paraplegic animal in a harness with wheels 
without appropriate physical rehabilitation. Mounting evidence 
exists, however, that stress plays an important role in recovery 
in many diseases of the CNS. In particular, stress appears to 
impair recovery (120,121). Given this, rehabilitation therapy 
is important for spinal cord-injured patients and stress should 
be minimized. As for all clinical studies, future research into 
rehabilitation therapy, stress reduction, and food restriction for 
dogs affected with naturally occurring SCI is required, though 
stringent experimental rigour must be employed (studies should 
be blind, controlled, and use appropriate behavioral outcomes).

Replacing destroyed spinal cord tissue. Given that SCI 
results in necrosis and apoptosis of various cells within the 
spinal cord and that loss of this tissue is related, in part, to the 
loss of sensorimotor function, many researchers are involved in 
trying to replace this lost tissue in an effort to promote recovery. 
Recently, there has been substantial effort in transplanting stem 
cells, olfactory ensheathing glia, and Schwann cells into the 
spinal cord at or near the site of injury.

Stem cells can replace themselves (self-renewal) and are able 
to change into any type of cell in the body (pluripotent), albeit, 
the term “stem cells” is often used more broadly to encompass 
a variety of precursor or progenitor cells that may or may not 
be truly pluripotent (122,123). Nevertheless, stem cells are an 
attractive potential therapy for use in many diseases, not simply 
SCI. However, there are potential risks (such as, tumorigenesis) 
involved in introducing these cells into the spinal cord. Though 
there is controversy over the use of embryonic-derived stem cells 
for therapy, stem cells can be harvested from adults and offer the 
advantage of being used autologously. For example, pluripotent 
cells can be obtained from the adult bone marrow (124) and 
skin (125,126). There has been a significant amount of research 
investigating various aspects of stem cell therapy for SCI. It is 
unlikely that transplanted stem cells will bring about recovery 
by changing their phenotype to that of a functional neuron. 
Rather, there is clear evidence that using stem cells to produce 
a sufficient number of cells that have been forced into becom-
ing a particular cell type, in vitro and prior to transplantation, 
is practical and useful for goal-directed therapies in SCI. For 
example, it has recently been demonstrated that Schwann cells 
derived from skin-derived precursor cells (127) and oligoden-
drocyte precursor cells (128) can be safely and successfully 
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transplanted, and remyelinate demyelinated axons, and bring 
about some sensorimotor recovery in rodents after experimental 
SCI. Given the number of different types of stem cells, much 
research is needed to identify safety and efficacy of stem cell 
therapy. Presently there are clinical trials in SCI in humans 
investigating the efficacy of bone marrow and peripheral blood 
stem cells (129).

Transplantation of olfactory ensheathing cells (OECs) has 
gained much attention in recent years. Olfactory ensheathing 
cells, glial cells found exclusively in the olfactory system, pro-
mote axonal regeneration (130,131), remyelination (132), and 
neural protection (133,134). These properties highlight why 
OECs are promising candidates for repairing the damaged spinal 
cord. The first use of these cells as a therapy for SCI demon-
strated remarkable beneficial effects for regeneration and senso-
rimotor recovery in rats that had their spinal cords completely 
transected (135). The results were so phenomenal that many labs 
around the world began investigating the therapeutic potential 
of these cells for SCI. Disappointingly, the dramatic effects of 
these cells on sensorimotor recovery have not been replicated to 
the same degree. Nevertheless, recent studies have shown that 
OECs transplanted into experimentally spinal cord-injured 
rodents can promote neural regeneration and sensorimotor 
recovery (130,136,137). In vitro studies have demonstrated 
that OECs, in the presence of a demyelinated rat spinal cord, 
can remyelinate axons up to several millimeters in length, and 
bring axonal conduction velocities back to standard values (132). 
Other attempts at providing favorable microenvironments that 
facilitate axonal regeneration include the transplantation of 
Schwann cells (SCs).

The premise behind transplanting SCs into the spinal cord 
is that these cells provide a suitable environment for success-
ful regeneration of neurons within the central nervous system 
(138,139). Although SCs can remyelinate axons (140) and do 
not contain NOGO (141), they have limited migratory capabili-
ties to pass the lesion site and to gain access to the non-injured 
spinal cord caudal to the injury. Interestingly, cultured OECs 
can facilitate the migration of SCs, perhaps due to the secre-
tion of nerve growth factor (NGF) by OECs (142). In fact, 
when NGF produced by OECs was blocked, SC migration 
was suppressed. After transplantation of OECs and SCs into 
the injured spinal cord, however, there is a lack of migration 
of the OECs and SCs although axonal growth and sprouting 
into the lesion site occur (143). Though the evidence for using 
SC therapy looks promising, especially in combination with 
other modalities, to date no studies have used this approach for 
SCI in veterinary medicine.

Combined approaches. The monomodal approaches for 
treating spinal cord injury, as described, have been modestly 
successful in treating experimental SCI. It will likely take multi-
modal approaches to succeed in curing SCI. There are now 
many investigators examining combinations and permutations of 
multi-modal therapies. Given the complexity of the factors that 
are involved, research into multi-modal therapies will require 
many years of investigation before identification of an appropri-
ate therapy that could be tested in human and veterinary clinical 
trials. Nevertheless, efforts are presently underway to identify 

the most appropriate and efficacious multimodal therapy  
for SCI. CVJ
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