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Abstract
Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma
matrix (γ) of quadratic and correlation selection gradients. Here we document that the
conventional method of testing eigenvalues (double regression) under the null hypothesis of no
nonlinear selection is incorrect. Through simulation we demonstrate that under the null the
expectation of some eigenvalues from canonical analysis will be nonzero, which leads to
unacceptably high type 1 error rates. Using a two trait example, we prove that the expectations for
both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to
slightly modify the double regression method by calculating permutation p-values for the ordered
eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear
selection on male guppy ornamentation, we show that the statistical power to detect curvature with
canonical analysis is higher compared to relying on the estimates from γ alone. We provide a
simple R script for permutation testing of the eigenvalues in order to distinguish curvature in the
selection surface induced by nonlinear selection from curvature induced by random processes.
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Empirical estimation of nonlinear selection (i.e., stabilizing, disruptive, or correlational) on
phenotypes, or curvature in the selection surface, bears on such important topics as the
topography of the adaptive landscape (Lande and Arnold 1983, Phillips and Arnold 1989,
Arnold et al. 2008), and the genetic architecture of complex traits (Blows and Hoffmann
2005, Hunt et al. 2007). Kingsolver et al.’s (2001) review of estimates of nonlinear selection
from the literature revealed that disruptive selection and stabilizing selection were generally
weak (16% were declared statistically significant), of similar magnitudes, and that
correlational selection was rarely estimated at all. It is possible that lack of natural
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phenotypic variation in traits has limited the power to detect nonlinear selection, such that
clear demonstration of stabilizing selection may require experimentally manipulated
phenotypes (Creswell 2000; Conner et al. 2003). Although a simple analytical error in not
doubling the quadratic selection gradients of the selection model may be partially to blame
(Stinchcombe et al. 2008), it is curious that a more pervasive signal of stabilizing selection
has not been found in natural populations using phenotypic selection approaches.

Although nonlinear selection estimates appear to be weak, the observed magnitude of
stabilizing selection gradients on traits measured in natural populations are too strong to
explain the observed level of genetic variation for those traits (Johnson and Barton 2005).
Ample additive genetic variation is found for almost all traits measured in nature (Lynch and
Walsh 1998), but the observed magnitudes of stabilizing selection indicate that traits should
have limited additive genetic variation. A potential explanation for this apparent paradox is
that nonlinear selection may be acting on trait combinations in the form of correlational
selection (Lande and Arnold 1983, Phillips and Arnold 1989, Blows and Brooks 2003, Hunt
et al. 2007, Reynolds et al. in press). Trait combinations may have low additive genetic
variance if multivariate stabilizing selection is strong in the direction of those trait
combinations (Hunt et al. 2007). Because adaptations can be complex and multidimensional,
e.g., the many coordinated and interacting parts of flowers, or the chemical milieu of scents
used to attract mates, natural selection would seem to favor certain combinations of traits
over others (Blows et al. 2003, Blows 2007, Reynolds et al. in press). Although it seems
reasonable that correlational selection should be a common form of nonlinear selection its
precise estimation is complicated when multiple traits and their interactions are
hypothesized to be under selection.

Statistical and analytical methods exist that can accommodate the increased complexity of
the multidimensional selection problem. If the number of traits is p then there are p
quadratic terms and p(p-1)/2correlational selection terms to estimate in the selection model.
Phillips and Arnold (1989) demonstrated for p = 2 that given the same quadratic selection
gradients the selection surface can change depending on the sign and magnitude of
correlational selection. Thus with many traits it is difficult to interpret the nonlinear
component of selection. Phillips and Arnold (1989) proposed using canonical analysis, a
matrix diagonalization technique from the response surface methodology literature (Box and
Hunter 1987), to reduce the dimensionality of the nonlinear component of the selection
model. Using the canonical transformation loads all the information on nonlinear selection
into p dimensions with the canonical coefficients (eigenvalues) now describing curvature
along latent axes of the selection surface (eigenvectors).

Canonical analysis can be a powerful tool for observing nonlinear selection when the
nonlinear selection gradients individually say little about curvature in the selection surface.
Blows et al. (2003), in a reanalysis of Brooks and Endler’s (2001) study on sexual selection
for multiple male guppy coloration traits, used canonical analysis to demonstrate that
statistically significant positive nonlinear selection was detected on two axes and negative
nonlinear selection on a third latent axis. The original analysis (Blows et al. 2003) found
little evidence of nonlinear selection using the conventional second order model. Blows and
Brooks (2003) suggested that in addition to the usefulness of canonical analysis for
estimating nonlinear selection, the power of detecting nonlinear selection is higher using
canonical analysis. Using published estimates of nonlinear selection gradients from 19
studies the magnitude of the largest eigenvalue was always higher than the magnitude of the
maximum quadratic selection gradient. Intuitively this makes sense as the information
contained in the original nonlinear selection estimates is condensed to a smaller number of
predictors. The work by Blows and Brooks (2003) suggests that nonlinear selection may be
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strongest along latent axes of the selection surface rather than on the traits actually
measured.

A testimony to the advantage of canonical analysis in detecting nonlinear phenotypic
selection is its current use in the evolution literature (e.g., Blows et al. 2004, Brooks et al.
2005, Hall et al. 2008, Reynolds et al. in press). The greatest concern to date has been
interpreting the biological meaning of the eigenvectors describing latent dimensions of
nonlinear selection (e.g., Conner 2007). Here we investigate an arguably more fundamental
aspect of canonical analysis, hypothesis testing of the eigenvalues. To test the eigenvalues
for significance the original trait data are transformed into the space of the eigenvectors and
the full second-order polynomial regression model is fit to the transformed data (Phillips and
Arnold 1989; Simms 1990). This double regression approach tests the null hypothesis that
the canonical coefficients (eigenvalues) are each zero, and it has been shown that the
standard errors of the eigenvalues are asymptotically equivalent to a delta method
approximation (Bisgaard and Ankemann 1996).

Here we demonstrate using simulations that the distribution of the ordered eigenvalues
under the null hypothesis of no nonlinear trait effects on fitness may have nonzero
expectation for finite sample sizes and will lead to unacceptably high false positive rates.
Under a two trait scenario, we prove that the expectation of each eigenvalue under the null is
only zero if the parameters corresponding to nonlinear selection are estimated without error,
i.e. with an infinite sample size. We also show via simulations that a standard permutation
procedure can provide appropriate error rate control at the desired nominal level. We apply
the permutation procedure to a real dataset on pollinator-mediated phenotypic selection on
Silene virginica floral traits. Finally we provide evidence via simulations that the power of
detecting curvature in the selection surface is higher using canonical analysis compared to
individually testing each one of the non-linear selection coefficients.

Methods
Regression Models for Nonlinear Selection

Let Wi denote the fitness measure (which we assume has been converted to relative fitness)
observed on i = 1, 2,…, N individuals. Assume Zi = [Zi1, Zi2,…,Zip] then represents p traits
measured on each individual, which have been standardized to have mean 0 and standard
deviation 1. We use boldface throughout to differentiate vector/matrix structures from scalar
quantities. Nonlinear selection is estimated through a second order polynomial regression
model of the form (Lande and Arnold 1983),

1.1

where β denotes a 1 × p vector of directional selection coefficients, γ denotes a p × p matrix
of nonlinear selection coefficients, and ‘ denotes matrix transposition.

The mathematical interpretation of the quadratic selection gradients is complicated by the
presence of the correlation gradients (γij,i ≠ j). Phillips and Arnold (1989) suggest applying
a canonical analysis by diagonalizing γ as (Box and Draper 1987),

1.2

where M contains the orthonormal eigenvectors and Λ is a matrix with the eigenvalues (λi,i
= 1,2,…, p) along the diagonal and 0’s elsewhere. To test for statistically significant
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nonlinear selection, standard errors of the eigenvalues may be estimated using a double
regression approach (Bisgaard and Ankemann 1996). The observed trait values are
transformed onto the space of M by Y = ZM'. One then fits a second regression model of
the form

1.3

Each one of the quadratic coefficients in (1.3) corresponds to an eigenvalue, and so
hypothesis tests for those coefficients provide a valid test of whether each of the eigenvalues
is non-zero.

Simulation – Type I Error
We first evaluated whether the double regression approach provides appropriate control of
the type I error rate in testing the null hypothesis of no curvature in the selection surface. To
do this, we simulated datasets consisting of p=2, 5, or 10 traits observed on 150, 250, 500,
and 1000 samples. For each simulated dataset, fitness was simulated as a normal random
variable with mean 30 and standard deviation 5, and then transformed to relative fitness.
Under the null, each trait is uncorrelated with fitness, and so the trait values were
independently generated according to a p-dimensional multivariate normal distribution, Z ~
MVN (0, I). Tests of significant nonlinear selection were then computed using the double
regression approach as well as using a permutation procedure which is described below.

Permutation tests of the eigenvalues were also calculated by randomly permuting the fitness
variable 1000 times for each simulated dataset. The permutation p-value for a particular
simulated dataset was calculated as the number of times the observed F statistic (from the
double regression method) exceeded the F statistics from the permuted datasets. The
permutation approach is testing whether the test statistic for a particular eigenvalue is larger
than one would expect assuming a purely random fitness measure, and not necessarily
whether an eigenvalue is statistically different from zero. As we will illustrate later, this
reflects the correct null hypothesis given that the expectations of the eigenvalues under the
null can be non-zero.

The type 1 error rate of testing the eigenvalues against zero using the double regression
approach was calculated by the number of times out of the 1000 simulated null data sets that
the p-value for each eigenvalue was less than the nominal values of 0.05, 0.025, 0.01, and
0.005, the latter three corresponding to a Bonferroni corrected α level for the 2, 5 and 10
trait scenarios. To calculate the type 1 error rate for the permutation test approach, a
permutation p-value for each of the 1000 simulated datasets was generated and then
compared to the nominal values indicated above over the 1000 simulated datasets.

All simulations were performed using the R Language (R Development Core Team, 2008).
In the supplementary materials, we provide an R implementation of the permutation
procedure. The script requires almost no knowledge of R to run, and can accommodate
models with additional covariates.

Simulation - Power
Intuitively, the power to detect curvature in the selection surface using canonical analysis,
because it is a dimension reduction technique, should be higher than individually testing the
elements of γ because fewer tests on coefficients are being made. All the information in γ is
being loaded onto the diagonal, with nothing left on the off diagonal. To make an explicit
measure of the gain in statistical power from performing the canonical analysis of γ, we
simulated data modeled after the published results of Brooks and Endler (2001) and Blows
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et al. (2003) for four traits describing male guppy coloration (Black, Fuzzy, Iridescent, and
Orange). 250 observations for four traits were simulated as MVN (0, P) with the phenotypic
variance-covariance matrix set as:

In order to simulate a fitness measurement, the (250 × 14) matrix containing the trait values,
cross-products, and squared terms was multiplied by the vector of selection coefficients (14
× 1) obtained from the estimates reported in Brooks and Endler (2001) and Blows et al.
(2003). Random error was then introduced by adding an error term distributed as a standard
normal random variable. Under the assumption that ε ~ N(0,1), it can be shown that the
collective variance explained by the four traits is roughly 6.5% of the total fitness variance.

Since the canonical analysis evaluates curvature along the orthogonal eigenvectors, we
chose to compare the power of finding curvature along at least one eigenvector to the power
of finding at least one statistically significant nonlinear selection gradient in γ. The power of
finding significant eigenvalues was assessed using the permutation procedure described
previously and compared to the power of finding at least one nonzero nonlinear selection
gradient. With four eigenvalues to test, the statistical power was estimated as the proportion
of times out of the 1000 datasets that the F statistic of the double regression yielded a
permutation p-value for at least one eigenvalue below the α = 0.05/4 level. Power for the
collective terms in γ was calculated as the proportion of times the p-value for the F statistic
for at least one nonlinear selection gradient was less than α =0.05/10.

Real Data Example
We also provide an illustration of the permutation procedure on data from a study of
hummingbird - mediated phenotypic selection on Silene virginica floral traits (Reynolds et
al. et al. in press). We compared permutation test p-values with the p-values from the double
regression test of non-zero eigenvalues. Note that the p-values reported in Reynolds et al. (in
press) were calculated using the permutation test. The method of collection, rationale and
study location is described in detail in Reynolds et al. et al. (in press). Briefly, it consisted of
total seed production, the number of flowers per plant (included as a covariate) and six floral
traits averaged across the flowers of each plant (corolla tube length = TL, petal length = PL,
petal width = PW, corolla tube diameter = TD, stigma exsertion = SE, and floral display
height = DHT) recorded for 212 plants in 2005. This represents only a single dataset out of
the 20 to which canonical analysis was applied in Reynolds et al. (in press).

Results
Type 1 error

Analyzing data using canonical analysis and the double regression method with independent
traits and no effect on fitness produced statistically significant non-zero eigenvalues. The
distribution of the maximum and minimum eigenvalues from the null 2, 5, and 10 trait
scenarios were shifted away from zero (Fig 1) and the magnitude of the shift increased with
the number of traits in the analysis. For example, the magnitude of the mean maximum
(minimum) eigenvalues across the 1000 simulated datasets for the two trait and ten trait
analysis of 250 observations increased nearly five-fold from 0.00702 (0.00698) to 0.0367
(0.0368), respectively. The magnitude of the mean maximum and minimum eigenvalues and
their respective standard deviations decreased as sample size increased.
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The non-zero expectation of the eigenvalues caused inflated type 1 error rates (Figure 2 and
Digital Supplementary Material). With p=2, the type 1 error rate hovered around 10% across
all sample sizes. However, these error rates displayed a distinctive U-shaped form as more
traits were considered. See Figure 2 for the case of N = 250. For the maximum and
minimum eigenvalues, the type 1 error rate approached one as the number of traits in the
analysis increased from two to ten (Figure 2 and Digital Supplementary Material). With
p=10, under the null, one is virtually assured of finding significant curvature. By contrast,
the permutation procedure maintained the correct type I error rates for all sample sizes and
number of traits considered. If one were to directly test the nonlinear parameters from the
second order regression model without performing a canonical analysis, standard linear
model theory applies and so this procedure will maintain correct type I error rates
[Ravishanker and Dey, 2002]. The observed type I error inflation is introduced solely
through performing a canonical analysis and comparing the eigenvalues to an incorrect null
hypothesis.

We derived an analytical solution that explained the behavior of the eigenvalues under the
null hypothesis (Appendix). Consider a simple two-trait (p=2) example, with γ generically
defined as

Under the null hypothesis, [γ1,γ2,γ3] follows a multivariate normal distribution with mean
[0,0,0] and some variance-covariance matrix Σ,

Let λ+ and λ− denote the two resulting eigenvalues from the diagonalization of γ. Under
these assumptions it can be shown that

(0.1)

where  (See appendix for proof). Because σU and σ33 both represent
standard errors associated with estimation of regression coefficients, both will be non-
negative, implying that the expectation of the eigenvalues will only approach zero as N →
∞.

Power
Using the simulated male guppy ornamentation data, the statistical power of finding
curvature in the selection surface was higher using canonical analysis (0.529) than the power
indicated by the combined quadratic and correlational selection gradients of γ (0.390). For
comparison’s sake, with recognition that the test does not properly control type 1 error, the
power to detect curvature along at least one of the latent axes using the standard double
regression approach was 0.883. Clearly this increase in power comes at the expense of an
unacceptably high number false positives.
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Real Data Example
Without using the permutation procedure there was statistical support for negative curvature
along two latent axes of the selection surface describing fitness and trait covariation in S.
virginica. Only one of the dimensions retained statistical support after applying the
permutation procedure (Table 2). Therefore, we could not reject the hypothesis that the
minimum eigenvalue had significantly larger magnitude than the expectation of the
minimum eigenvalue from a random permutation. However the eigenvalue corresponding to
the M2 eigenvector was statistically significant using the permutation test.

Discussion
Canonical analysis is a powerful tool for finding curvature in the selection surface. However
the currently accepted method in the literature for testing the significance of the eigenvalues,
and hence statistical support for curvature in the selection surface, is incorrect. By all
indications, the double regression method estimates of eigenvalue standard errors may be
analytically correct, but we warn against using the method to test whether the eigenvalues
are different from zero. The central advance of this work is linking the distributional
properties of the estimates in γ with the distribution of the eigenvalues. What has perhaps
gone unnoticed is how the variance of the estimates, i.e. the precision of the nonlinear
selection gradients, is translated into eigenvalues via the spectral decomposition of γ. It is
also interesting to note (based on our derivation with p=2), that the two eigenvalues in this
case imply a saddle-shaped selection surface under the null hypothesis (Figure 3). As
expected, when the dimensionality of γ increases the saddle-shaped surface is more
pronounced (Figure 3). Therefore canonical analysis will reveal curvature in the selective
surface even if the eigenstructure in γ actually reflects only random error. The surface
describing covariance between fitness and the canonical axes can have a complex
topography (e.g. Blows et al. 2003). What we now understand is that in part some of the
topography is random. In order to get a sense of the true structure in the selection surface
that is due to nonlinear selection, the permutation test we developed here can be used to
correctly account for the random component.

The derivation also helps to explain the curious pattern of the magnitudes of the mean
maximum and minimium eigenvalues with different sample sizes under the null hypothesis.
As the sample size increased the standard error of the estimates decreased, with the
magnitudes of the eigenvalues moving closer to zero. Larger sample sizes lead to more
precise estimates of the nonlinear coefficients, implying smaller sampling variability.
However the gain in precision due to the larger sample sizes was not sufficient to overcome
the random eigenstructure in γ for the range of sample sizes considered here. This simple
derivation illustrates the problem with testing for non-zero eigenvalues. The expectations of
the eigenvalues depend on the sampling variability of the nonlinear coefficients, implying
that one should expect to see non-zero canonical coefficients even in the absence of
nonlinear selection. Only if the variance of the selection gradients is zero, which happens in
the limit as sample size approaches infinity, will the expectation of the individual
eigenvalues equal zero.

Although the permutation procedure used here maintains correct error rates, it would be
desirable to have a closed form expression for the full probability distribution of the ordered
eigenvalues from a canonical analysis of γ for any p in order to construct test statistics that
do not require permutation. Subject to certain assumptions concerning the structure of a
random symmetric matrix (e.g. γ), the distributional properties of the eigenvalues is not an
intractable problem [Edwards and Jones 1976, Füredi and Komlós 1981]. However, we are
not aware of research that has considered the specific situation inherent to the selection
problem, e.g. with potentially correlated entries in a random symmetric matrix. Furthermore,
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a general closed form expression for the expectation and variance of the eigenvalues would
make it possible to explicitly consider the issue of bias in the estimates. Unfortunately, we
are unable to address this important issue, but the permutation test is still valid for testing
whether there is curvature along latent axes of the selection surface. Until results are
developed for this specific situation, canonical analyses should rely upon nonparametric
approaches such as permutation to obtain valid tests of significance.

With an acceptable framework in hand to perform canonical analysis we can turn to the
perhaps more controversial topic of relevance. Evolutionary theory predicts that stabilizing
selection should be a common if not preeminent form of selection on phenotypes as adaptive
character states should be at or near their optimums. Proponents of canonical analysis have
encouraged its use as a tool to detect nonlinear selection. Adaptations can be complex
integrated phenotypes, and thus nonlinear selection rather than by targeting single traits,
may instead act on trait combinations (correlational selection) (Blows and Hoffman 2005,
Blows 2007, Arnold et al. 2008). Blows and Brooks (2003) claimed that canonical analysis
had greater power to detect nonlinear selection as it can detect those axes of nonlinear
selection that are not oriented in the direction of the single traits. Since the canonical
rotation reduces the dimensionality of the nonlinear selection problem it is reasonable to
expect higher power to detect nonlinear selection since fewer tests are being performed.
Using the simulated guppy data, we explicitly considered and verified that canonical
analysis indeed has higher statistical power to detect curvature than relying on the estimates
in γ alone. This rigorous approach to the question of power makes it clear that if one is
interested in detecting nonlinear selection, canonical analysis is the preferred method.

Based on our reanalysis of the real data on nonlinear selection on Silene virginica floral
traits, it is possible that many of the published estimates of nonlinear selection using
canonical analysis may not have as strong of statistical support as previously thought. Note
that Reynolds et al. in press utilized the permutation procedure outlined here, and thus their
reported p-values reflect the appropriate test for the eigenvalues’ significance. Using the
permutation test only solid statistical support was found along the M2 canonical analysis
while the conventional double regression analysis indicated curvature along the M1 and M2
axis. Of course, this result does not necessarily mean that no curvature exists along M1; we
could simply have had insufficient power to detect curvature along that axis. Hersch and
Phillips (2004) explicitly modeled the power to detect selection gradients, but their analysis
focused strictly on the linear component. How factors such as the strength of nonlinear
selection, dimensionality of γ and sample size interact to determine the power to detect
curvature using canonical analysis remains to be seen. Nevertheless the power analysis
attempted here suggests that the statistical power to detect curvature is higher using
canonical analysis than from the estimates of γ alone.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
Let X, Y, and Z be random variables that define the matrix

In what follows, let N (μ, σ2) define a univariate Normal distribution with expectation μ and
variance σ2. Similarly, let Np (μ, Σ) denote a p-dimensional Multivariate Normal distribution
with mean vector μ and variance-covariance matrix Σ.

Theorem 0.1
If (X, Y) ~ N2 (μ, Σ) with μ = [μX, μY] and

then the eigenvalues of [A]2×2 are the random variables

such that .

Proof. By the definition of eigenvalue and the non-singular properties of a matrix, λ is an
eigenvalue of the matrix A if, and only if, det(A − λI) = 0, where I is the identity matrix.
Since det(A − λ I) = λ2 − (X + Y)λ + XY − Z2, the eigenvalues of A can be solved by using
the quadratic formula. Hence

Notice that since (X − Y)2 + 4Z2 ≥ 0, the two eigenvalues are well-defined real numbers. Let
us denote these eigenvalues by

Notice that W can be simplified to . If we let , then the
distributions of G and U directly follow from the properties of Normal random variables.
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Theorem 0.2

Let  be a matrix with random entries (γ1, γ2, γ3) ~3 (0, Σ) such that

Let λ+, λ− represent the random variables defined by the eigenvalues of γ. Then we have that

where .

Proof. First, the eigenvalues result from Theorem 0.1. Then note that since the means of γ1
and γ2 are zero under the null hypothesis, it follows by the properties of expectation that

Next, we will show that , where σU is defined as above.

To see this, note that since , the properties of expectation imply that

. Also note that  by Theorem 0.1
and  by assumption under the null. This implies that

. Now to see that

, observe that by the triangle inequality we have that

. Then, again using the properties of expectation, this implies that

, with the expectations of |U| and |γ3| derived above.
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Figure 1.
The distribution of the maximum (dark grey) and minimum (light grey) eigenvalues from
canonical analysis of γ in which there were no linear or nonlinear trait effects on fitness for
two, five and ten traits and N = 250 observations.
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Figure 2.
Type 1 error rates for testing the eigenvalues from a canonical analysis under the null
hypothesis of no linear or non-linear effects on fitness for p = two, five and ten traits. Solid
black and diagonal bars refer to the Type I error rates using the double regression approach
corresponding to an α level of 0.05 and nominally adjusted α of 0.05/ p, respectively.
Horizontal and open bars refer to tests of the eigenvalues using the permutation procedure at
the unadjusted α level of 0.05 and nominally adjusted α of 0.05/ p, respectively.
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Figure 3.
Contour plots of the selection surface under the null hypothesis for p = 2, 5, and 10 traits
(left to right).
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