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Abstract
We study the accelerated failure time model with a cure fraction via kernel-based nonparametric
maximum likelihood estimation. An EM algorithm is developed to calculate the estimates for both
the regression parameters and the unknown error density, in which a kernel-smoothed conditional
profile likelihood is maximized in the M-step. We show that with a proper choice of the kernel
bandwidth parameter, the resulting estimates are consistent and asymptotically normal. The
asymptotic covariance matrix can be consistently estimated by inverting the empirical Fisher
information matrix obtained from the profile likelihood using the EM algorithm. Numerical
examples are used to illustrate the finite-sample performance of the proposed estimates.
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1. Introduction
In some medical studies, of cancer or AIDS for example, it is often observed that a
substantial proportion of study subjects never experience the event of interest and are thus
treated as cured or nonsusceptible subjects. A number of survival models with a cure rate
have been proposed in the literature for analyzing such data. One commonly used modeling
approach considers a two-component mixture model that assumes that the underlying
population is a mixture of susceptible and nonsusceptible subjects. Various parametric
mixture cure models have been studied. For example, Berkson and Gage (1952) considered
the exponential-logistic mixture, and Farewell (1982, 1986) considered the Weibull-logistic
mixture for survival data with a cure fraction.

More recently, semiparametric mixture cure models have attracted much attention. Kuk and
Chen (1992) proposed the so-called proportional hazards cure model in which the
proportional hazards model (Cox (1972)) is used for survival times of susceptible subjects,
while the logistic regression is used for the cure fraction. They developed a Monte Carlo
simulation-based algorithm for conducting maximum marginal likelihood estimation. The
proportional hazards cure model was further studied by Peng and Dear (2000) and Sy and
Taylor (2000) using a semiparametric EM algorithm. In addition, Fang, Li and Sun (2005)
and Lu (2008) studied nonparametric maximum likelihood estimation for the proportional
hazards cure model and derived the asymptotic properties of the resulting estimates.

Other semiparametric mixture cure models have been studied in the literature. For example,
Lu and Ying (2004) proposed a general class of transformation cure models where the linear
transformation model is used for failure times of susceptible subjects. The authors developed
a set of martingale representation-based asymptotic unbiased estimating equations for
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parameter estimation, and derived the large sample properties of the resulting estimators;
however, the proposed algorithm for solving the equations may fail to converge. Moreover,
the resulting estimators for the regression parameters are not efficient. In standard survival
data analysis when there is no cure fraction, the accelerated failure time model (Kalbfleisch
and Prentice (1980), Cox and Oakes (1984)) is a useful alternative to the proportional
hazards model due to its direct physical interpretation (Reid (1994)). In the presence of a
nonsusceptible population, Li and Taylor (2002) and Zhang and Peng (2007) considered the
accelerated failure time mixture cure model and proposed an EM-type algorithm for
parameter estimation. Instead of directly maximizing the conditional likelihood in the M-
step, they employed different estimation methods. Specifically, Li and Taylor (2002) used
an M-estimator of Ritov (1990), while Zhang and Peng (2007) considered a modified
Gehan-type weighted log-rank estimation. The theoretical properties of the proposed
estimates have not been studied. In addition, since both estimates do not maximize the
observed likelihood function they are not efficient, and classical likelihood based methods
cannot be applied here to obtain the variance of the proposed estimates. They all use the
bootstrap method to obtain the variance estimates.

In this paper, we propose a kernel-based nonparametric maximum likelihood estimation
method for the accelerated failure time mixture cure model. An EM algorithm is developed
to implement the estimation. As opposed to the methods of Li and Taylor (2002) and Zhang
and Peng (2007), we maximize a kernel-smoothed conditional profile likelihood in the M-
step. The proposed kernel estimation method is motivated by a recent work of Zeng and Lin
(2007) in efficient estimation for the accelerated failure time model without cure fraction.
We show that with a proper choice of the kernel bandwidth parameter, the resulting
estimates are consistent, asymptotically normal and efficient. In addition, we propose an
EM-aided numerical differentiation method to compute individual profile likelihood scores,
then estimate the limiting covariance matrix by inverting the empirical Fisher information
matrix obtained from them.

2. Model and Estimation
Under the mixture modelling approach, a decomposition of the event time is given by

(2.1)

where T* < ∞ denotes the failure time of a susceptible subject and η indicates, by the value
1 or 0, whether the study subject is susceptible or not. The accelerated failure time mixture
cure model is specified by the following two terms:

(2.2)

(2.3)

where β, p-dimensional, and γ, q-dimensional, are unknown regression parameter vectors of
primary interest, and is the error term with a completely unspecified continuous density
function. The baseline covariates Z and X may share some common components and X
includes 1 so that γ contains the intercept term. Furthermore, we assume that the censoring
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time C is independent of T* and η, conditional on Z and X. Define T ̃ = min(T, C) and δ = I(T
≤ C). Then the observations consist of (T ̃i, δi, Zi, Xi), i = 1, …, n, independent copies of (T ̃,
δ, Z, X).

The observed likelihood function can be written as

(2.4)

where θ = (β′, γ′)′, π(a) = exp(a)/{1 + exp(a)}, Ri(β) = log(T ̃i) − β′Zi, and f and S are,
respectively, the density and survival functions of eε. The direct maximization of (2.4) with
respect to θ and f is quite intractable due to the presence of a cure fraction. In addition, even
when there is no cure fraction (i.e. π ≡ 1), as discussed by Zeng and Lin (2007), the
maximum of (2.4) does not exist. Instead, they proposed to maximize a kernel-smoothed
profile likelihood function to obtain the estimates.

Here, we develop an EM algorithm to approximately maximize the observed likelihood
function , in which a kernel-smoothed conditional profile likelihood is used in the M-
step. To be specific, we first introduce the complete likelihood

(2.5)

Write  and . Note that δi = 1 implies ηi =
1. Then we have , where

(2.6)

(2.7)

with λ and Λ being the hazard and cumulative functions of eε, respectively.

In the E-step of the EM algorithm, we compute the conditional expectations of  and 
given the observed data and current parameter estimates. Let  denote the observed data of
the ith study subject and Ω̂[k] = (β ̂[k], θ ̂[k], λ̂[k]) be the parameter estimates at the kth iteration.
Then

(2.8)
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(2.9)

where  = { : i = 1, ···, n} and

(2.10)

In the M-step, we maximize  with respect to γ, and maximize  with respect to

β and λ, respectively. The maximization of  can be easily done using the Newton-

Ralphson method. But for , following the discussion of Zeng and Lin (2007), we
can show that it cannot achieve its maximum for finite β due to the lack of smoothness in the
estimation of λ. To overcome this difficulty, a smoothed estimate for λ needs to be
introduced. As in Zeng and Lin (2007), we start with a piece-wise constant hazard function
and then study its limits using a kernel smoother. To be specific, for all possible β’s in a
bounded set, we consider a compact interval [0, M] containing all eRi(β)’s and partition this
interval into Jn equally spaced subintervals, 0 ≡ x0 < x1 < ··· xJn ≡ M. Then the piece-wise
constant hazard function is written as

Thus, for any x, the cumulative hazard function can be represented as

Plugging these functions into , for a fixed β, we maximize the resulting likelihood
function with respect to the cj’s. The solution of cj can be obtained from the score equation
and has the closed form

After plugging the ĉj’s into  and discarding some constants, we obtain the
conditional profile log-likelihood function
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Applying similar techniques as used by Zeng and Lin (2007), we can show that as n → ∞,

Jn → ∞ and Jn/n → 0,  is asymptotically equivalent to the kernel-smoothed
conditional profile log-likelihood function

(2.11)

where Kh(x) = K(x/h)/h is a kernel function with bandwidth h obtained from a symmetric

probability density function K(x). Since  is a smooth function of β, it can be easily
maximized using the Newton-Ralphson or other gradient-based algorithms. Let β ̂[k+1] denote

the maximizer of . Then given β ̂[k+1], we estimate λ(x) by

(2.12)

In summary, the EM-algorithm is given as follows: Step 0. Set Ω ≡ (θ, λ) at its initial

estimate Ω̂[0]; Step 1. At the kth iteration, compute , and  based on the
current estimates Ω̂[k]; Step 2. Compute updated estimates γ ̂[k+1] and β ̂[k+1] by minimizing

 and  obtained from Step 1, respectively, then compute the estimator λ̂[k+1](x)
using (2.12); Step 3. Set k = k + 1. Repeat Steps 1 and 2 until convergence.

For computational convenience, we choose the standard normal density function for the

kernel K. In order to calculate , we also need Ŝ[k], or equivalently Λ̂[k] which can be
obtained from λ̂[k] by numerical integration. For the stability of the EM algorithm, we set
Ŝ[k](x) = 0 for x > eR(L)(β ̂[k]), where R(L)(β ̂[k]) is the largest uncensored residual of n study
subjects. Such a constraint has been widely used in the estimation of semiparametric mixture
cure models (Peng and Dear (2000), Lu and Ying (2004), Zhang and Peng (2007), among
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others). The choice of initial estimates Ω̂[0] and the kernel bandwidth h is discussed in detail
in Section 4.

3. Asymptotic Properties and Variance Estimation

Let  denote the true value of θ and λ0(x) be the true value of λ(x). In addition, let
θ ̂ and λ̂(x) denote the estimates at convergence obtained from the EM algorithm. We derive
here the asymptotic properties of the estimates (θ ̂, Λ ̂) and propose a EM-aided numerical
differentiation method for computing the variance of θ ̂ based on profile likelihood scores.

Theorem 3.1
Suppose that the regularity conditions (C1)–(C5) hold and that h → 0 and nh2 → ∞. Then

Theorem 3.2
Suppose that the regularity conditions (C1)–(C5) hold and that nh2m → 0 and nh6 → ∞.
Then, as n → ∞, n1/2(θ ̂ − θ0) converges in distribution to a mean-zero normal random
vector with covariance matrix achieving the semiparametric efficiency bound of θ0.

The proofs of the above theorems, along with their irregularity conditions, are given in the
Appendix, available at http://www.stat.sinica.edu.tw/statistica.

Next, we derive the variance estimate of θ ̂ obtained from the proposed EM algorithm. The
variance formula of Louis (1982) for parametric EM algorithms is not really feasible here
due to the infinite dimensional parameter λ(x) and the kernel-smoothed conditional profile
likelihood used in the M-step. An alternative way to compute variance estimates is to invert
the empirical Fisher information matrix of the profile likelihood; this has been widely done
in nonparametric maximum likelihood estimation (Nielsen, Gill, Andersen and Sørensen
(1992), Murphy, Rossini and van der Vaart (1997), Zeng, Cai, and Shen (2006), among
others). Theoretical properties of the profile likelihood estimation have been rigourously
studied in Murphy and van der Vaart (2000). The empirical Fisher information matrix of the
profile likelihood usually does not have an analytical form. Chen and Little (1999) proposed
an EM-aided numerical differentiation method for computing the second derivative of the
log profile likelihood at the maximum; the validity of the method has been established by
the authors. Here we adopt a modification of the method. To be specific, we used the EM-
aided numerical differentiation method to calculate the individual profile likelihood scores at
the maximum, then obtain the empirical Fisher information matrix of the profile likelihood
based on these scores. This modified approach can ensure that the resulting information
matrix is positively definite.

Write  and . Define , i
= 1, …, n. Perturb the jth component of θ ̂ by a small amount d, denoted as . Fix the jth
component θj of θ at  and run the proposed EM algorithm to compute the estimates for all
other parameters. Let  denote the resulting estimate for the parameters in θ except for θj,
and  denote the resulting estimate for λ. Following the suggestion of Chen and Little

(1999), we use two-sided perturbation, i.e.,  and . Correspondingly, we
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have the estimates ( ) and ( ). Then the jth component of the profile
likelihood score for the ith study subject is

where the two expectations are taken with respect to ηi given the observed data  and the

estimates  and , respectively. Define

. The empirical Fisher information matrix of the profile likelihood can

be obtained as .

4. Numerical Studies
4.1. Simulations

We examine here the finite sample performance of the proposed estimates. Event times T
were generated from the accelerated failure time cure model defined in (2.2) and (2.3). A
binary covariate Z was generated from a Bernoulli distribution with success probability 0.5.
We set X = (1, Z). The error ε in (2.2) was given by a0 + a1V, where a0, a1 were two
constants and V was a random variable generated from three scenarios: the extreme value
distribution, the standard logistic distribution, and the standard normal distribution. The
censoring time C was generated from a uniform distribution on [0, a2], with a2 a constant.
The parameters were set as β0 = 1.0 and γ0 = (0.5, −0.5) or (1.0, −0.5), which give
approximately 43.9% and 32.3% overall cure fractions, respectively. The constants a0, a1
and a2 were chosen to obtain the desired censoring proportions. For example, when the error
was from the extreme value distribution, we chose a = (a0, a1, a2) = (−0.5, 0.5, 8), which
gives approximately 50.5% censoring proportion for the 43.9% cure fraction and 40.6%
censoring proportion for the 32.3% cure fraction. In each scenario, we conducted 500 runs
of simulations with the sample size n = 100.

For the bandwidth parameter h in the kernel-smoothed conditional profile likelihood, we
followed the suggestions of Zeng and Lin (2007) and used the optimal bandwidths (Jones

(1990), Jones and Sheather (1991)),  and 41/3σ2n−1/3, where σ1 is the

sample standard deviation of the ( ) for uncensored data with β ̂1,ls the least
square estimate of β using only uncensored data, while σ2 was the sample standard deviation

of the ( ) for all the data with β ̂2,ls the corresponding least square estimate of β.
We considered both bandwidths in the simulations and found the results comparable. Thus,
we only present the results using the first bandwidth here.

In the proposed EM algorithm, we also need to obtain the initial estimate Ω̂[0]. Here we
chose the initial estimate for β as β ̂[0] = β ̂1,ls. For computing γ ̂[0], we considered a logistic
regression of δ on X, i.e., we treated all the censored subjects as cured at the initial step. For
Ŝ[0](·), we used the Kaplan-Meier estimate based on the (T ̃e−(β ̂[0])′Z, δ). In addition, we set
Ŝ[0](x) = 0 for all the x greater than the largest uncensored transformed time T ̃e−(β ̂[0])′Z. We
found that the proposed initial estimates combined with the chosen bandwidth parameter
worked quite well in all our simulations and that the proposed EM algorithm usually
converged within 10 iterations. To compute the variance estimate of θ ̂, we used the proposed
EM-aided numerical differentiation method discussed at the end of the previous section.
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Following the suggestion of Chen and Little (1999), we chose the perturbation δ = α/n, with
α a positive constant. We tried different values of α in simulations, and found α = 2 gave
reasonable variance estimates for all the scenarios. The proposed EM algorithm and the EM-
aided numerical differentiation method were implemented in R, the code is available from
the author upon request. The simulation results are summarized in Table 2. For comparison,
we also report the rank regression-based estimator of Zhang and Peng (2007), denoted as
ZP. We did not evaluate the variance of the ZP estimators because of the heavy
computational burden. The relative efficiency (RE) of the ZP estimator compared with the
proposed estimator was computed as the ratio of sample variances of the two estimators with
the ZP estimator being a reference.

It is clear that the proposed estimates were unbiased in all the scenarios, and the proposed
variance estimates based on the EM-aided numerical differentiation method matched the
sample standard deviations of the parameter estimates reasonably well. Furthermore, the
Wald-type 95% confidence intervals had proper coverage probabilities. Under the extreme
value error, the proposed estimators were slightly less efficient than the ZP estimators.
Under other error distributions, the proposed estimators were generally more efficient than
the ZP estimators, especially for the short-term parameters β.

4.2. Application to breast cancer data
We applied the proposed method to a data set obtained from a breast cancer study of 139
breast cancer patients who were randomly assigned to three treatment groups (control,
treatment A and treatment B). The endpoint of interest is time to relapse or death. There
were 95 censored and 44 uncensored among 139 patients. Besides the treatment assignment,
four other covariates, namely clinical stage I, pathological stage, histological stage, and
number of lymph nodes were recorded. The data set was first analyzed by Farewell (1986)
using a Weibull-logistic cure model. Kuk and Chen (1992) and Peng and Dear (2000)
further studied a subset of the data with three covariates: treatment assignment, clinical stage
I, and number of lymph nodes, using the proportional hazards cure model. The number of
lymph nodes was converted to a binary covariate indicating whether more than four lymph
nodes had disease involvement.

To check the proportional hazards assumption for the survival distribution of susceptible
subjects, we used the method of Zhang and Peng (2007). To be specific, we plot in Figure 1
the logarithm of the estimated cumulative hazard functions for the uncensored patients in the
three treatment groups, respectively, based on the Kaplan-Meier estimators of survival
functions. Figure 1 shows that the logarithm of cumulative hazard functions of the three
treatment groups clearly cross each other and thus the proportional hazards assumption is
not appropriate for this data set. Here, instead, we considered the accelerated failure time
cure model for the same subset of the data and applied the proposed kernel-smoothing-based
profile likelihood method for parameters estimation. The results are summarized in Table 1.
Based on the results, we observe that compared with the control group, treatment A has a
significant beneficial effect on the short-term survival of susceptible subjects while
treatment B has a significant beneficial effect on long-term survival, i.e. the cured fraction.
In addition, clinical stage I has significant effects on both the short-term and the long-term
survivals while the number of lymph nodes is not significant for either of them. Our findings
are generally in agreement with those obtained by Peng and Dear (2000) using the
proportional hazards cure model. Note that the interpretations of short-term parameters (β’s)
in the proportional hazards cure model and accelerated failure time cure model are different.
In general, they show opposite signs since one is for the hazard ratio and the other directly
describes the log survival time.
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5. Concluding Remarks
In this paper, we have developed a kernel-smoothing-based EM algorithm for efficient
estimation in the accelerated failure time cure model, and derived the asymptotic properties
for the resulting estimates. A convenient EM-aided numerical differentiation method was
also proposed for computing the variance estimates. The mixture modeling approach is one
of the commonly used methods for formulating cure models. Another widely used approach
is to consider bounded cumulative hazard models (see Tsodikov (1998, 2001), Tsodikov,
Ibrahim and Yakovlev (2003), Zeng, Ying and Ibrahim (2006)). Such cure models may have
nice biological interpretations, but the short-term and long-term effects cannot be naturally
separated as in mixture cure models. It is of great interest to develop some diagnostic tools
for various types of cure models.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Logarithm of the cumulative hazard functions for uncensored subjects.
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