
Covariate adjustment in randomized trials with binary outcomes:
Targeted maximum likelihood estimation

K. L. Moore*,† and M. J. van der Laan
School of Public Health, University of California, Berkeley, 1918 University Ave., #3C, Berkeley,
CA 94704, U.S.A.

SUMMARY
Covariate adjustment using linear models for continuous outcomes in randomized trials has been
shown to increase efficiency and power over the unadjusted method in estimating the marginal
effect of treatment. However, for binary outcomes, investigators generally rely on the unadjusted
estimate as the literature indicates that covariate-adjusted estimates based on the logistic
regression models are less efficient. The crucial step that has been missing when adjusting for
covariates is that one must integrate/average the adjusted estimate over those covariates in order to
obtain the marginal effect. We apply the method of targeted maximum likelihood estimation
(tMLE) to obtain estimators for the marginal effect using covariate adjustment for binary
outcomes. We show that the covariate adjustment in randomized trials using the logistic regression
models can be mapped, by averaging over the covariate(s), to obtain a fully robust and efficient
estimator of the marginal effect, which equals a targeted maximum likelihood estimator. This
tMLE is obtained by simply adding a clever covariate to a fixed initial regression. We present
simulation studies that demonstrate that this tMLE increases efficiency and power over the
unadjusted method, particularly for smaller sample sizes, even when the regression model is mis-
specified.
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1. INTRODUCTION
Suppose we observe n independent and identically distributed observations of the random
vector O = (W, A, Y) ~ p0, where W is a vector of baseline covariates, A is the treatment of
interest and Y = {0,1} is the binary outcome of interest, and p0 denotes the density of O.
Causal effects are based on a hypothetical full data structure X = ((Ya : a ∈ ), W)
containing the entire collection of counterfactual or potential outcomes Ya for a ranging over
the set of all possible treatments .

The observed data structure O only contains a single counterfactual outcome Y = YA
corresponding to the treatment that the subject received. The observed data O = (W, A, Y ≡
YA) is thus a missing data structure on X with missingness variable A. We denote the
conditional probability distribution of treatment A by g0(a|X) ≡ P (A = a|X). The
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randomization assumption or coarsening at random assumption states that A is conditionally
independent of the full data X given W, g0(A|X) = g0(A|W). In a randomized trial in which
treatment is assigned completely at random, we have g0(A|X)=g0(A). For the sake of
presentation, we assume that the treatment A is binary and that A is completely randomized
as in a typical randomized trial, but our methods are presented so that it is clear how our
estimators generalize to observational studies or randomized trials in which g0(A|W) is
known. In the binary A case, g0(1) = p(A = 1) = δ0 and g0(0) = p(A = 0) = 1 − δ0 and n1 the
number of subjects in treatment group 1 and n0 the number of subjects in treatment group 0,
and n = n1 + n0. The quantity of interest is the causal effect of treatment A on Y, for example
the risk difference (RD) ψ = E(Y1) − E(Y0), where Y1 and Y0 are the counterfactual outcomes
under treatments 1 and 0, respectively. We note that as an alternative to the counterfactual
presentation, we can write the parameter of interest as ψ = EW[E(Y|A = 1, W) − E(Y|A = 0,
W)]. This quantity is typically estimated in randomized trials with the unadjusted estimate

where . An adjusted effect is also
sometimes obtained;

Adjusting for baseline covariates and the issues involved has been discussed in [1].
Although it has been recognized, at least for linear models, i.e. continuous outcomes, that
adjusting for covariates increases the precision of the estimate of the marginal causal effect
of treatment, investigators are still resistant to adjusting in logistic models and often rely on
the unadjusted estimate. This generally appears to be due to confusion as to how to select the
covariates and how to adjust for them [1]. In addition, there is a concern that if data-adaptive
procedures are used to select the model for P(Y = 1|A, W) then investigators will be tempted
to select the model that provides the most favorable results. However, we recommend that as
long as the procedure is determined a priori we can avoid this latter issue. Thus, a black
box-type data-adaptive procedure, e.g. forward selection, can still be applied as long as the
algorithm and candidate covariates are specified a priori.

Adjusting for covariates with main terms in linear models, referred to as analysis of
covariance in the randomized trial literature, for the purpose of estimation of the marginal
causal effect has been limited to no interaction terms with treatment. When there is such an
interaction term, it is often not clear in the literature on the analysis of randomized trial data
how one uses this conditional model to obtain a marginal effect. However, even in the
absence of the interaction term, the increase in precision has not been observed for nonlinear
models such as the logistic model. In fact, it has actually been reported that the estimates are
not more precise for logistic models [2,3]. The crucial step that has been missing when the
parameter of interest is the marginal causal effect of A on Y, is that when adjusting for
covariates W, one must integrate/average the adjusted estimate over those W in order to
obtain a marginal effect estimate that is comparable to the unadjusted effect estimate ψ̂1.
This method of averaging over W has been referred to as the G-computation formula and is
often applied in observational studies when the treatment or exposure has not been assigned
randomly [4,5]. We show that with this additional step of averaging over W, even when the
outcome is binary, and even if the regression model is mis-specified, we obtain a more
efficient estimate in the randomized trial setting. Such an approach allows for interactions
between A and W in the model for P(Y = 1|A, W) while still obtaining a marginal effect. We
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note that the conditional effect may be the parameter of interest in some studies, for example
the effect of a drug conditional on age, and thus the investigator does not want to average
over age.

In this paper we focus only on the marginal effect and using the covariates W to obtain the
most efficient (precise) estimate of this marginal causal effect in a non-parametric model
under the framework of targeted maximum likelihood estimation (tMLE). This estimation
procedure is a new approach to statistical learning introduced in [6]. This general tMLE
methodology applies to any estimation problem; however, here it is applied to the estimation
of the RD, relative risk (RR) and odds ratio (OR), in the context of a randomized trial with
and without censoring. This framework provides a new approach to covariate adjustment in
randomized trials. In a few special cases the targeted maximum likelihood estimator is
equivalent to the double robust inverse probability of treatment weighted (DR-IPTW) based
on plug-in maximum likelihood estimates of the nuisance parameters. The DR-IPTW
estimator is defined as the solution to the efficient influence curve estimating equation [7–
10]. In [11], the DR-IPTW estimator was applied to the estimation of the average difference
in outcomes between treatment in randomized trials with no censoring. This is an example
where the efficient influence curve and targeted maximum likelihood estimators coincide.
However, this is not generally true as demonstrated in examples provided in this paper.

In summary, the goals of this paper are threefold. First, we apply tMLE as a method of
covariate adjustment to the estimation of marginal effects of treatment in randomized trials
with binary outcomes. The second is to demonstrate the improved performance of this
locally efficient estimator relative to the unadjusted method. The third goal is to compare
different strategies of covariate adjustment, e.g. data-adaptive model selection algorithms,
using simulation studies. This paper is structured as follows. In Section 2 we provide a brief
overview of methods for covariate adjustment that have been proposed in the literature. In
Section 4 we present the targeted maximum likelihood estimators for three marginal variable
importance parameters: the RD, RR and OR. We address missing data on the outcome and
covariates, and estimation of the treatment mechanism. In Section 6 we provide a formal
relation between R2 and efficiency gain. Section 5 provides testing and inference for the
tMLE. In Section 7 we present simulation studies that demonstrate the performance of the
tMLE. Finally, we conclude with a discussion in Section 8.

2. TARGETED MAXIMUM LIKELIHOOD ESTIMATION
Traditional MLE aims for a trade-off between bias and variance for the whole density of the
observed data. Investigators however are typically not interested in the whole density of the
data O, but rather a specific parameter of it. tMLE was purposefully named in that it carries
out a bias reduction specifically tailored for the parameter of interest. For technical details
about this general estimation approach we refer the reader to its seminal article [6].

Consider a model ℳ which is a collection of possible probability distributions of the data,
where the true distribution of the data is p0. Consider an initial estimator p̂. We are
interested in a particular feature of the data, ψ0 = ψ(p0). The goals of tMLE are twofold.
First, it aims to find a density p̂* ∈ ℳ that solves the efficient influence curve for estimating
equation for the parameter of interest resulting in a bias reduction as compared with the
maximum likelihood estimate ψ(p̂). Second, the algorithm requires that p̂* also achieves a
small increase in the log-likelihood relative to p̂. The algorithm achieves these goals by
identifying a ‘stretching’ of the initial p̂ so that it yields a maximal change in ψ. This is done
by constructing a path denoted by p̂(ε) through p̂ where ε is a free parameter. The score of
this path at ε = 0 equals the efficient influence curve. The optimal amount of ‘stretch’ is
obtained by maximizing the likelihood of the data over ε. Applying this optimal stretch to p̂
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yields p̂1, which is the first step of the targeted maximum likelihood algorithm. This process
is iterated until the ‘stretch’ is essentially zero. The final step of the algorithm gives the
targeted maximum likelihood estimate p̂*, which solves the efficient influence curve
estimating equation thereby achieving the desired bias reduction with a small increase in the
likelihood. The resulting substitution estimator ψ(p̂*) is a familiar type of likelihood-based
estimator and due to the fact that it solves the efficient influence curve estimating equation it
thereby inherits its properties including asymptotic linearity, and local efficiency [7]. Thus,
targeted maximum likelihood estimation provides a fusion between likelihood- and
estimating function-based methodologies.

However, tMLE has various important advantages relative to the estimating equation
methodology. First, by just solving the efficient influence curve equation in p itself, it does
not rely on the assumption that the efficient influence curve can be represented as an
estimating function and/or the particular representation of this estimating function. Second,
estimating equations provide no criterion to select among multiple solutions in the parameter
of interest for a given estimate of the nuisance parameters in the estimating equation, while
targeted maximum likelihood can simply use the likelihood criterion to select among various
tMLE indexed by different initial density estimators. Third, in the estimating equation
methodology the parameter estimator is typically not compatible with the nuisance
parameter estimates, while in the tMLE procedure the estimator of the parameter of interest
and the nuisance parameters in the efficient influence curve are all compatible with a single
density estimator.

The targeted maximum likelihood estimators of the parameters studied in this paper are
double robust (DR) under uninformative censoring (missing at random) in the sense that
they rely on either a consistent estimator of the treatment mechanism g or a consistent
estimator of Q(A, W) = E(Y|A, W). When the treatment is assigned completely at random, the
treatment mechanism, P(A|W) = P(A), is always known and thus the targeted maximum
likelihood estimator is always consistent whatever the estimator for Q on which it relies.
That is, even when the estimator Q ̂(A, W) of Q(A, W) is inconsistent (e.g. if it relies on a
mis-specified model), the tMLE remains consistent and one should hence not be concerned
with estimation bias with this method in randomized trials. More specifically, if Q ̂(A, W)
converges to Q*(A, W) ≠ Q(A, W) then targeted maximum likelihood estimators remain
asymptotically linear and consistent in randomized trials. In practice, this means that the
investigator is protected even when the a priori specified model selection algorithm selects a
mis-specified model for Q(A, W). Note that if Q ̂(A, W) is a consistent estimator of Q(A, W),
then the targeted maximum likelihood estimator is consistent but also efficient. In the
special case that we use, the true P(A|W) = P(A) or a marginal estimate δ̂ in the targeting step
of the targeted maximum likelihood estimator, the tMLE is achieved in zero steps. Thus, in
this case the tMLE coincides with the standard G-computation ML estimator thereby
demonstrating that this latter estimator is already locally efficient. In the appendix, in one of
our settings, we provide a relation between the DR, tMLE and G-computation estimator and
the circumstances in which they coincide.

When censoring depends on baseline covariates, consistency of the targeted maximum
likelihood estimator relies on consistent estimation of the censoring mechanism or Q(A, W).
Even in this setting, for many causal parameters such as the causal RD the targeted
maximum likelihood algorithm converges in a single step.

The targeted maximum likelihood estimator is a practically very attractive procedure since it
can be achieved by simply adding a covariate to an initial estimate of the regression Q(A,
W). The corresponding coefficient ε for this new covariate can be estimated with standard
software and thus has a straightforward implementation.
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It was shown in [12, pp. 1140–1141] that to obtain a DR estimate of the difference in two
mean outcomes, one can extend a parametric model for Q(A, W) by adding the 2-
dimensional covariate (I(A = 1)/g(1|W), I(A = 0)/g(0|W)) where in the randomized trial
setting, g(1|W) = δ and g(0|W) = 1−δ, and estimate the combined parameter by solving the
maximum likelihood estimating equation. In Section 4.1 we show that for this same additive
effect the tMLE targeting both parameters (P(Y0 = 1), P(Y1 = 1)) also adds these two
covariates, the first for P(Y1 = 1) and one for P(Y0 = 1) so that any function of these two
parameters is estimated in a targeted manner. This tMLE still differs from the proposal in
[12] by fixing the initial regression, which can thus also represent a data-adaptive machine
learning fit and simply estimating the coefficients for the additional covariates. The
proposed estimator of Scharfstein et al. [12] does not fix the initial regression but fits all
coefficients for the parametric regression and the additional covariate simultaneously. This
distinction in fixing the initial regression is important in that it allows one to apply data-
adaptive algorithms for the initial estimate and simply update the estimate with the tMLE
step. This is in contrast with the procedure proposed in [12,13], which appears to rely on a
parametric estimate for the regression. In [13] it is stated that when the initial model for
Q(A, W) is correct, one can obtain a more efficient DR estimate by adding the 1-dimensional
(rather than 2-dimensional) covariate I(A = 1)/g(1|W) − I(A = 0)/g(0|W). The covariate is
equivalent to the tMLE covariate I (A = 1)/g(1|W) − I(A = 0)/g(0|W) targeting the RD effect
P(Y1 = 1)−P(Y0 = 1). This covariate satisfies the condition of the tMLE fluctuation that the
score of the initial density p̂0 at ε = 0 must include the efficient influence curve at p̂0. Again,
the tMLE procedure fixes the initial regression and then estimates the coefficient for the
additional covariate as opposed to the proposal in [13] where all coefficients for the
parametric regression and the additional covariate are fit simultaneously. We note that the
covariate that is added in the tMLE is specific to the parameter one is estimating and thus
differs when the parameter of interest is the RR or OR as shown in Section 4.

3. CURRENT METHODS FOR OBTAINING COVARIATE-ADJUSTED
ESTIMATES

Suppose we observe O = (W, A, Y) as above except that the outcome Y is now continuous.
Let the parameter of interest be the marginal effect of A on Y, ψ = E(Y1) − E(Y0). For a
continuous outcome Y, Q(A, W) = E(Y|A, W) is typically obtained using a linear regression
model such as,

In this setting, β̂1 coincides with and has been shown to be at least as precise as the
unadjusted estimate ψ̂1. In particular, the increase in precision occurs when the correlation
between the covariate(s) and outcome is strong [14]. However, when Q(A, W) is estimated
as

then β̂1 no longer coincides with ψ̂1. In this case, to obtain the marginal effect, one must
integrate out or average over the covariate(s) W. The G-computation estimator introduced in
[4,5] is an estimator that does indeed average over W and thus gives a marginal effect,
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When Q ̂(A, W) is estimated with a linear model, and it does not contain any interaction
terms, then ψ̂Gcomp = β̂1. The G-computation estimator is not limited to a linear model for
Q(A, W) when estimating the treatment effect; for example, when the outcome is binary, one
could use a logistic regression model to estimate Q(A, W) and use the G-computation
formula to obtain the estimated RD. However, even in the absence of interaction terms,
ψ̂Gcomp is not necessarily equivalent to the estimate obtained from the logistic regression
model.

In [11], the DR estimator is applied to estimate the marginal effect where the authors
recommend estimating two regression models separately: Q1(1, W) = E(Y|A = 1, W) is
obtained using only the subpopulation of individuals for whom A = 1 and Q2(0, W) = E(Y|A
= 0, W) is obtained using only the subpopulation of individuals for whom A = 0. This was
proposed so that two different analysts could independently select these models to prevent
the analysts from selecting the model providing the most favorable results. Another
possibility is to select one model Q(A, W) = E(Y|A, W) using the whole sample pooled
together. When the procedure for selecting Q(A, W) is specified a priori this additional step
of estimating Q1(1, W) and Q2(0, W) is not necessary.

The method for estimating the marginal difference E(Y0) − E(Y1) is provided in [11].
However, when the outcome is binary, investigators are often also interested in not only the
RD E(Y0) − E(Y1) = P(Y1 = 1) − P(Y0 = 1), but the RR and ORs as well. In [15] the
approach in [11] is expanded upon by applying the estimating function approach to the
estimation of general parameters in randomized trials. The corresponding covariate-adjusted
estimators are shown to provide an increase in precision over the unadjusted method. This
general approach for constructing locally efficient double robust estimators that are
guaranteed to improve on the unadjusted estimator can be found in [7]. The approach
provided in this paper does not deviate from the line of research in [11,15], but instead
applies the relatively new targeted maximum likelihood methodology to randomized clinical
trials. A particular advantage of tMLE over the estimating function approach is that for
various effect parameters the efficient influence curve cannot even be represented as an
estimating function in a parameter of interest and nuisance parameters, while the tMLE does
not require such a representation. This is illustrated with the causal RR in a non-parametric
model in Section 4.

Covariate adjustment in logistic regression models for binary outcomes in randomized trials
has been studied in the literature. These models provide conditional effect estimates and
have been shown to actually reduce the precision as compared with unadjusted methods. In
[3] it was observed that adjusting for covariates in the logistic regression models leads to an
increase in power due to the fact that estimates of the treatment effect in the conditional
logistic models are further away from the null even though standard errors were larger for
the adjusted effects. In [2] this fact was also demonstrated using simulation studies and it
was observed that the increase in power was related to the correlation between the covariate
and the outcome. The simulations included only a single covariate and no interactions
between the covariate and treatment. Similar results were indicated in [14] in the logistic
regression models in that ORs were generally further away from the null but the standard
errors were larger than the unadjusted estimates. It appears that in general, when adjusting
for covariates in a logistic regression model, the standard error provided by the software, i.e.
standard maximum likelihood procedures, is the standard error used by the investigator
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though it is often not explicitly stated [16–19]. When adjusting for covariates in randomized
trials using logistic regression, often the investigator is interested in a conditional effect
identified by continuous covariates in which case this may be an appropriate approach. We
focus on the tMLE method for covariate adjustment, which provides inference for the
marginal (unconditional) effect. However, note that this method can be applied to different
subgroups defined by categorical or discrete-valued covariates by simple stratification.

4. TARGETED MAXIMUM LIKELIHOOD ESTIMATION OF THE RISK
DIFFERENCE, RELATIVE RISK AND ODDS RATIO

In this section we present the tMLE method for adjusting for covariates in estimating the
marginal effect of a binary treatment on a binary outcome with the following three
parameters: RD, RR and OR. We provide an overview of the derivation of the covariate that
is added to an initial regression estimate. The covariate is derived in such a way that the
update of the regression targets the specific parameter one is estimating and thus differs for
each of the three we focus on in this paper. For technical details we refer the reader to the
Appendix.

Let O = (W, A, Y) ~ p0 and ℳ be the class of all densities of O with respect to an appropriate
dominating measure: hence ℳ is non-parametric up to possible smoothness conditions. Let
the parameter of interest be represented by Ψ(p0). The first step of the algorithm involves
finding an initial density estimator p̂0 of the density p0 of O, identified by Q ̂0(A, W),

marginal distribution of A identified by , the marginal distribution of W being
the empirical probability distribution of W1,…, Wn and A being independent of W.

An initial fit Q ̂0(A, W) may be obtained in a number of ways. For example, we may fit a
data-adaptive logistic regression model for the outcome Y fixing treatment A in the model
and including covariates W as candidates. Since Y is binary, the density is given by,

We could choose a logistic regression model for Q ̂0(A, W),

for some function m ̂0.

The tMLE procedure updates the initial density by creating a parametric submodel through
p̂0 indexed by parameter ε,

In the case that the initial choice Q ̂0(A, W) is given by a logistic regression fit, then Q ̂0(ε)(A,
W) is given by the logistic regression model,
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The targeted maximum likelihood algorithm finds this covariate h(A, W) by requiring that
the score of p̂0 at ε = 0 is equal to the efficient influence curve at p̂0. In [6] it was shown that
the efficient influence curve D(p0) can be decomposed into three components corresponding
with scores for p(Y|A, W), g0(A|W) and the marginal probability distribution p(W) of W,
which we refer to as D1(p0), D2(p0) and D3(p0), respectively (see Appendix). Since the score
for p̂0 at ε = 0 corresponds with a zero score for ĝ0 and the empirical distribution of W is a
non-parametric maximum likelihood estimator, we only need to choose h(A, W) so that the
score of p̂0(Y|A, W) at ε = 0 includes the efficient influence curve component for p(Y|A, W),
i.e. D1(p0). The next step of the algorithm involves estimating ε with maximum likelihood.
The initial Q ̂0(A, W) is thus updated to obtain Q ̂1(A, W) and the algorithm is iterated by
replacing Q ̂0(A, W) with Q ̂1(A, W).

It is a fortunate result that in randomized trials the covariate h(A, W) is none other than a
linear combination of A and an intercept only. It follows that if m ̂0(A, W) includes the main
term A and the intercept, then ε̂ = 0, and the tMLE for Q0(A, W) is given by Q ̂0(A, W) itself.
Specifically, consider the following RD, RR and OR parameters,

(1)

(2)

and

(3)

Now consider the initial logistic regression fit Q ̂0(A, W). It is straightforward to demonstrate
(see Appendix) that the corresponding covariates that update the initial fit for each of the
above parameters are given by,

and

Each of these covariates is simply a linear combination of A and an intercept. Thus, if m ̂0(A,
W) includes the main term A and the intercept, then ε̂ = 0, and the tMLE for Q0(A, W) is
given by Q ̂0(A, W) itself. In other words, the tMLE for ψRD, ψRR and ψOR is given by the
standard maximum likelihood estimators,
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and

It is interesting to note that in estimating the RD, in addition to the equivalence between the
tMLE and G-computation (MLE), the tMLE solves the efficient influence curve estimating
equation by definition and thus the DR, MLE and tMLE all reduce to the same estimator in
this general setting; for details see the Appendix.

As an alternative to using a logistic fit for the initial Q0(A, W), we can instead choose a
relative risk regression fit,

In estimation of the RR parameter, the corresponding covariate added to the initial
regression model to obtain the tMLE is given by,

The maximum likelihood estimate,

can be estimated in practice by fitting a RR regression in m ̂0(A, W) and h(A, W), fixing the
coefficient in front of m ̂0(A, W) to 1 and the intercept to 0. The resulting coefficient for h(A,
W) is ε̂. In this case, the covariate is no longer simply a function of A and thus ε̂ does not
necessarily equal 0 and the tMLE is no longer achieved in one step but rather iteratively.
Now Q ̂k(A, W) is updated as,

setting k = k + 1 and one iterates this updating step. One may also derive the updating
covariate for targeting estimation of the RD or OR as well using this initial regression in
addition to the logistic initial choice.
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4.1. tMLE for the two treatment-specific means, and thereby for all parameters
Consider the OR, as an example. An alternative for targeting the OR is to simultaneously
target both μ1 and μ0 and simply evaluate the OR from the tMLEs of μ1 and μ0. This is a
straightforward approach where two covariate extensions are added to the logistic fit Q ̂0,

and,

Again, if the initial logistic regression fit already includes an intercept and main term A, then
ε̂ = (ε̂1, ε̂2) = (0,0) so that this tMLE Q ̂ = Q ̂0(ε̂) = Q ̂0 is not updated. This tMLE can now be
used to map into a locally efficient estimator of any parameter of μ0 and μ1 such as the RD
μ1 − μ0, the RR μ1/μ0 and the OR μ1(1 − μ0)/[(1 − μ1)μ0].

4.2. Estimating the treatment mechanism as well
Even when the treatment mechanism (the way treatment was assigned) is known as it is in a
randomized trial, it has been shown that efficiency is increased when estimating it from the
data if Q(A, W) is not correctly specified [7]. Estimating the treatment mechanism does not
add any benefit to the G-computation estimator since it does not use this information. The
tMLE can however leverage this information to obtain a more precise estimate of the
treatment effect. This can be particularly beneficial when the model for Q(A, W) is mis-
specified. The tMLE is still consistent when Q(A, W) is mis-specified; however, we can gain
efficiency when estimating the treatment mechanism in such a case. The treatment
mechanism can be estimated from the data using a logistic regression model; for example,
g0(1|W) = 1/1+exp[−(α1W1+α2W2)], but one can also augment an initial fit ĝ0 with a
targeted direction aiming for a maximal gain in efficiency [6]. We present the tMLE for the
RD; however, this can be immediately extended to the RR and OR as well.

The covariate that is added to the logistic regression Q ̂0(A, W) is given by,

where  can be estimated in practice by fitting a logistic
regression in m ̂0(A, W) and h(A, W), fixing the coefficient in front of m ̂0(A, W) to 1 and the
intercept to 0. The resulting coefficient ε̂ for h(A, W) is no longer necessarily (and not
typically) equal to 0. Let the tMLE for Q0(A, W) be given by Q ̂*(A, W) = Q ̂0(ε̂)(A, W). The
tMLE for ψ0 is then,

Note that Q ̂0(A, W) is now updated, contrary to the case when we were not estimating the
treatment mechanism as in previous subsections.
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4.3. Missing data
Here we provide the tMLE for the case that the outcome Y is subject to missingness that can
be informed by the baseline covariates W. In such a case the missingness cannot be ignored
as it can lead to biased estimates since treatment groups are no longer balanced with respect
to the covariates. Let C represent the indicator whether or not the outcome was observed.
The observed data can be represented as O = (W, A, C, CY) ~ p0 and the full data is given by
X = ((Ya:a ∈ ), W). We assume that the conditional distribution of the joint censoring
variable (A, C) given X satisfies coarsening at random (CAR), i.e. g0(A, C|X) = g0(A, C|W).
Let

be the parameter of interest. We wish to estimate the RD with the tMLE. In choosing an
initial logistic regression fit Q ̂0(A, W), it can be shown (see Appendix) that the updating
covariate is given by

The estimate of ε given by . Now the logistic
regression fit Q ̂0(Y |A, C = 1, W) can be updated by adding as covariate h(A, C = 1, W) to
obtain the tMLE Q ̂*(Y|A, C = 1, W) for Q0(A, C = 1, W) based on all observations with Ci =
1. The estimate for P(C = 1|A = 0, W) as required to calculate the extra covariate h(A, W) can
be obtained by using a logistic regression model selected either data adaptively or using a
fixed pre-specified model for C conditional on W, A = 0. The tMLE for ψ0 is given by

We note that the tMLE for missing covariate values is derived in exactly the same manner.

5. TESTING AND INFERENCE
Let p̂* represent the tMLE of p0. One can construct a Wald-type 0.95-confidence interval
based on the estimate of the efficient influence curve, . The influence curves
for the estimators presented in this paper are provided in the Appendix. An estimate of the
asymptotic variance of  can be estimated with

The corresponding asymptotically conservative Wald-type 0.95-confidence interval is
defined as . The null hypothesis H0: ψ0 = 0 can be tested with the test statistic
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whose asymptotic distribution is N(0,1) under the null hypothesis. To establish the
asymptotics of the tMLE estimator, we apply Theorem 2.4 as provided in [7] and also noted
in [6]. If Q ̂0(A, W) converges to a mis-specified Q ̂*(A, W), then the tMLE estimate ψ̂ is
asymptotically linear and consistent. Furthermore, if Q ̂0(A, W) is consistent, then tMLE
estimate ψ̂ is asymptotically linear, consistent and efficient. For further details, see [6].

We note that if the true treatment mechanism is used, inference based on the corresponding
influence curve is not conservative whereas with an estimated treatment mechanism the
corresponding influence curve is conservative. One can improve the variance estimator by
either applying the bootstrap procedure or by deriving the true analytical form of the
influence curve. The latter can be achieved by projecting the influence curve (based on the
estimated treatment mechanism) on the tangent space of the model for the treatment
mechanism.

First-order efficiency improves by using a larger model for the regression Q(A, W), which
can be achieved by applying machine learning algorithms (e.g. deletion/substitution/addition
(DSA)). However, the asymptotic results on which the IC-based inference relies can break
down in that the second-order terms generated by data-adaptive approaches can be an issue.
Fortunately in the case that the treatment mechanism is known we have found that neither
the estimator nor the inference are affected by the second-order terms suggesting that fairly
data-adaptive regression approaches can be used. Based on our experience model selection
algorithms based on cross validation (e.g. DSA) generally result in similar estimates of the
standard error using the influence curve or bootstrap procedure, which does take into
account model selection. Thus, if such a methodology is used in the model selection
algorithm or if the model for Q(A, W) is specified a priori then one can rely on the IC-based
standard error estimates.

6. RELATION BETWEEN R2 AND EFFICIENCY GAIN WITH TMLE
An analytical relationship exists between the relative efficiency (RE) of the TMLE and the
unadjusted estimator and the predictive power of the baseline covariates W as expressed in
the following formula:

where Q(A)=E(Y | A), Q(W)=E(Y |W), σ2(TMLE(Q(A, W))) is the variance of the TMLE
influence curve at Q(A, W) and σ2(TMLE(Q(A))) is the variance of the influence curve at
Q(A) (i.e. the variance associated with the unadjusted estimator). The RE can also be

expressed with respect to  as

(4)

Thus, as the  increases, so does the gain in efficiency, i.e. the ratio of the variances of

the influence curves increases. This formula clearly shows that whenever , i.e. when
outcome prediction with W through the model Q(W) outperforms outcome prediction
through the simple intercept model (E(Y)) then one achieves a gain efficiency by adjusting
for the covariates W with the TMLE relative to the unadjusted estimation approach. Note
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that this result is in agreement with published work that demonstrated an increase in
estimation precision with the MLE when the correlation between the covariate(s) and the

outcome (e.g. as measured by ) is strong [1,14].

7. SIMULATION STUDIES
7.1. Simulation 1

In this simulation, the treatment A and outcome Y are binary and W is a two-dimensional
covariate, W = (W1, W2). The simulated data were generated according to the following
laws:

1. W1 ~ N(2,2);

2. W2 ~ U(3,8);

3. P(A = 1) = δ0 = 0.5;

4. .

We simulated the data for two scenarios based on the value for k in P(Y = 1|A, W). In the
first scenario, k = 1.2 and there is a small treatment effect and in the second k = 20, and there
is a larger treatment effect. The RD, RR and OR were estimated. The true values were given
by P(Y1=1) = 0.372, P(Y0=1) = 0.352 and (RD, RR, OR) = (0.019, 1.055, 1.087) for k = 1.2,
P(Y1 = 1) = 0.583, P(Y0 = 1) = 0.352 and (RD, RR, OR) = (0.231, 1.654, 2.570) for k = 20.
The parameters were estimated using four methods. The first method ‘Unadjusted’ is the
unadjusted method of regressing Y on A using a logistic regression model. The second
method ‘Correct’ is the targeted maximum likelihood method, which is equivalent to the
standard G-computation (maximum likelihood) estimator with

. The third method ‘Mis-spec’ used a mis-
specified fit given by Q ̂(A, W) = 1/{1+exp[−(α̂0+α̂1A+α̂2W1)]}. For the fourth method,
‘DSA’, the estimate Q ̂(A, W) was obtained using deletion/substitution/addition (DSA). The
DSA algorithm is a data-adaptive model selection procedure based on cross validation that
relies on deletion, substitution and addition and moves to search through a large space of
possible functional forms, and is publicly available at
http://www.stat.berkeley.edu/~laan/Software/ [20]. The variable A was forced into the model
and the DSA then selected from the remaining covariates. The maximum power set in the
DSA algorithm for any term in the model was set to 2, meaning square terms and two-way
interactions were allowed. Standard errors for the tMLE were estimated using the estimated
influence curve. For the OR simulations, the estimator obtained by extracting the coefficient
for A and the corresponding standard error from the logistic regression model fit is labelled
‘Adjusted’. The simulation was run 5000 times for each sample size: n = 250, 500, 1000.
For k = 1.2, W strongly predicts Y and thus the tMLE, which adjusts for W results in a large
increase in efficiency over the unadjusted method as observed by the REs provided in Table
I. The largest gain in efficiency occurs as expected when Q ̂(A, W) is correctly specified
followed closely by the DSA method, which in general shows a slightly higher variability
than the correctly specified model due to possible overfitting of Q ̂(A, W). In the scenario
where k = 20, A is more strongly predictive of Y as compared with W and thus, the increase
in efficiency is not as marked as when k = 1.2. The largest increase in efficiency for both
values of k occurs for the estimates of the OR. When Q ̂(A, W) is mis-specified, there is still a
noticeable increase in efficiency showing that it is advised to always adjust for covariates.
This is a result of the double robustness of the estimator as discussed in Section 4 and the
Appendix. A significant result is the increase in power of the tMLE as evidenced by the
proportion of rejected tests. In particular, when k = 1.2, that is when the effect of A is weaker
and more difficult to detect, the increase in power is quite significant. When k = 20, the
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performance of the unadjusted estimator is similar to the tMLE estimator with respect to
power. In the strong treatment effect case, the conditional logistic regression method for
estimating the OR (see ‘Adjusted’ in Table II) demonstrates the issue that the point
estimates are further from the null value, which is consistent with the findings in the
literature as discussed in Section 3. This is reflected in the coverage probabilities for the 95
per cent confidence intervals, ranging from 0 to 22 per cent. Another notable result is that
the tMLE circumvents the issue of singularity, i.e. Y is perfectly predicted by A and W, that
occurs when using the adjusted estimate. In this situation the adjusted estimate is drastically
inflated and for this reason, the adjusted results were not included in the consistency plots.
However, this is not an issue for the tMLE. The efficiency gain of the tMLE increases as the
covariate becomes more predictive. This becomes even more drastic when the covariate is
perfectly predictive, whereas the adjusted estimate completely breaks down. For example, in
a single run of the simulation for the OR with k = 1.2, with n = 250, the coefficient for the
treatment term in the conditional logistic fit was 25.4 and thus, an estimate OR of
approximately 1011. The corresponding tMLE using this same model gives an estimate of
1.083, noting that the true value is 1.087. This is of particular importance for small sample
sizes but still occurs even for large sample sizes as shown in the RE estimates for the
‘Adjusted’ estimate in Tables I and II. We also note that the consistency plots provided in
Figure 1 show a small positive bias for all methods for the OR and RR for smaller sample
sizes. The tMLE methods, however, are less biased than the unadjusted method for all
sample sizes.

The RR regression initial model Q0(A, W) was also applied. The G-computation estimate
based on Q0(A, W) was computed in addition to the tMLE for which the update covariate
was required as discussed in Section 4. The G-computation estimate based on this RR
regression model resulted in a small gain in efficiency of approximately 3 per cent with an
additional 1 per cent gain achieved with the tMLE with the appropriate update.

7.2. Simulation 2: OR with interaction term
In this simulation, the treatment A and outcome Y are binary and W is a two-dimensional
covariate, W = (W1, W2). The simulated data were generated according to the following
laws:

1. W1 ~ N(2,2);

2. W2 ~ U(3,8);

3. P(A = 1) = δ0 = 0.5;

4. .

The true values were given by P(Y1 = 1) = 0.312, P(Y0 = 1) = 0.352 and OR = 0.833. The
same methods used in simulation 1 were used here to estimate the OR. The simulation was
run 5000 times for each sample size: n = 250, 500, 1000. For the ‘Mis-spec’ tMLE, the mis-
specified fit was given by Q ̂(A, W) = 1/{1+exp[−(α̂0 + α̂1A + α̂2W1)]}. Figure 2 provides the
consistency plot for each of the estimators. The results are similar to OR for simulation 1 in
that there is a small positive bias for all methods. The tMLE methods are again less biased
than the unadjusted method for all sample sizes. Even when Q ̂(A, W) is mis-specified the
MSE is reduced as compared with the unadjusted estimate (Table III). The DSA, which
allows for interactions, shows a significant improvement in terms of the MSE. A notable
increase in power is again observed for the tMLE over the unadjusted method.
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7.3. Simulation 3: Estimating the treatment mechanism as well
In this simulation, the treatment mechanism, P̂(A|W) is estimated from the data using a
logistic regression model with covariates that are predictive of the outcome Y. The simulated
data were generated according to the following laws:

1. W1 ~ N(1,2);

2. W2 ~ U(1,4);

3. W3 ~ U(0,20);

4. P(A = 1) = δ0 = 0.5;

5. .

The true values were given by P(Y1 = 1) = 0.569, P(Y0 = 1) = 0.419 and RD = 0.150. The
treatment mechanism was estimated with the logistic regression model given by g(A|W) = 1/
{1+exp[−(γ0+γ1W1+γ2W2+γ3W3)]}. The tMLE estimator, represented as ‘Est tx’ in Table IV
and Figure 3, with the estimated treatment mechanism is no longer equivalent to the G-
computation estimator. The mis-specified fit for Q(A, W) = 1/{1+exp[−(α0+α1A+α2W1)]} is
used as the initial fit and the covariate h(A, W) provided in Section 3.4 is then added to this
logistic regression. The tMLE is then estimated as usual. Thus, we are interested in
comparing the mis-specified tMLE to the estimated treatment mechanism tMLE (Table IV).
The efficiency is increased when estimating the treatment mechanism, from approximately
1.0 to 1.5. The power was approximately equal for the mis-specified and estimated treatment
mechanism tMLE. The DSA tMLE method again shows a large improvement in efficiency
and power over the unadjusted method.

7.4. Efficiency gain and R2

To demonstrate the relation between efficiency gain and R2, a simulation was run according
to the following laws:

1.

2. P(A=1)=δ0=0.5;

3. Q0(A, W)= P(Y =1|A, W)=1/1+exp[−(1.2A−cW)].

The data were sampled 5000 times with a sample size n = 1000 for each c = {0,0.25, 2,10}.
That is covariate W is increasingly predictive. The R2 was estimated in the ordinary least-
squares sense,

A gain in R2 was computed as the difference between R2 in the covariate-adjusted model
and the covariate-unadjusted model. Figure 4 depicts the RE to the unadjusted model for the
targeted MLE of the RD and OR against the gain in R2. Clearly, a gain in RE comparing the
tMLE with the unadjusted estimate corresponds with a gain in R2.

7.5. Simulation discussion
The simulations were based on relatively simple data generating distributions but were
useful in demonstrating the following results:
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• The tMLE shows a clear increase in both efficiency and power over the unadjusted
method, even when Q(A, W) is not correctly specified.

• The DSA method for selecting Q(A, W) provides a significant increase in efficiency
and power over the mis-specified fixed Q(A, W) method. The highest RE of
approximately 13 was observed for the weak effect case with a sample size of n =
1000 in our simulations.

• The tMLE circumvents the singularity issue that occurs when using the adjusted
method of extracting the coefficient from the logistic regression model Q(A, W).

• Interaction terms in the model for Q(A, W) fit entirely into the framework of the
tMLE.

• Estimating the treatment mechanism provides a further small increase in efficiency
over targeting only Q(A, W).

• There is a clear relation between increasing R2 and efficiency gain.

• The method of covariate adjustment that extracts the coefficient for treatment from
the conditional logistic model demonstrated a loss in efficiency with a gain in
power due to the inflated point estimates, which corresponds with previous findings
in the literature.

8. DISCUSSION
The tMLE provides a general framework that we applied to estimation of the marginal
(unadjusted) effect of treatment in randomized trials. We observed that the traditional
method of covariate adjustment in randomized trials using logistic regression models can be
mapped, by averaging over the covariate(s), to obtain a fully robust and efficient estimator
of the marginal effect, which equals the tMLE. We demonstrated that the tMLE does just
this and results in an increase in efficiency and power over the unadjusted method, contrary
to what has been reported in the literature for covariate adjustment for logistic regression.
The simulation results demonstrated that data-adaptive model selection algorithms such as
the DSA, which we used in this paper, or forward selection, should be applied if the
algorithm is specified a priori. However, we showed that even adjusting by a mis-specified
regression model results in gain in efficiency and power. Thus, using an a priori specified
model, even if it is mis-specified, can increase the power, and thus reduce the sample size
requirements for the study. This is particularly important for trials with smaller sample sizes.
The tMLE framework can also address missing data, either in the outcome as we
demonstrated in Section 4.3 for the RD, but also missingness in covariates and treatment as
well for any of the parameters of interest. In these scenarios the tMLE covariate may not be
as straightforward as those that were presented in this paper, but its derivation is analogous.
We focused on logistic and RR regression, but the methodology can be extended to any
other regression models for Q(A, W). The tMLE framework can also be applied to other
parameters of interest in randomized trials such as an adjusted effect, for example by age or
biomarker, and can also handle survival times as outcomes [6].

APPENDIX A
Details for derivations provided in the text are provided in this appendix.

A.1. Decomposition of efficient influence curve
Following the strategy of van der Laan and Rubin [6], the efficient influence curve D(p0)
can be decomposed as
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Let D1(p0) = D(p0) − E(D(p0)|A, W), D2(p0) = E(D(p0)|A, W) − E(D(p0)|W) and D3(p0) =
E(D(p0)|W) − E(D(p0)). Then, D1(p0) is a score for p(Y|A, W), D2(p0) is a score for g0(A|W)
and D3(p0) is a score for the marginal probability distribution p(W) of W. Note that in this
randomized trial setting, .

A.2. Finding covariate for RD tMLE update based on logistic regression
submodel

Consider an initial density estimator p̂0 of the density p0 of O identified by a regression fit

Q ̂0(A, W), marginal distribution of A identified by , the marginal distribution
of W being the empirical probability distribution of W1,…, Wn and A being independent of
W. Since Y is binary, we have the following density:

where

for some function m ̂0. Now, consider the parametric submodel through p̂0 indexed by
parameter ε

where Q ̂0(ε)(A, W) is given by the logistic regression model

with an extra covariate h(A, W), which needs to be chosen so that the score of ε at ε = 0
includes the efficient influence curve component D1(p0) [6]. The required choice h will be
specified below. We estimate ε with the maximum likelihood estimator

. The score for this logistic regression model at ε = 0 is
given by

We now set the score equal to the part of the efficient IC for p(Y|A, W), that is D1, at p̂0 to
obtain
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This equality in h(A, W) is solved by

A.3. Relation between tMLE, DR and G-computation estimators
The efficient influence curve D(p0) can be represented as an estimating function in ψ
indexed by Q and g, D(p0) = D(Q0, g0, Ψ(p0)). In this randomized trial setting,

. The DR estimate is the solution to the corresponding estimating equation in

ψ,  and is given by

where . In the logistic regression fit, log[Q ̂ (A, W)/1−Q ̂ (A, W)]=α̂X, where X
= (1, A, W), the MLE α̂ solves the score equations given by

for j = 1,…, p. The linear span of scores includes the covariate,

when A and an intercept are included in X. Thus, it follows that

Hence,
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Thus, in this quite general scenario, we have that the double robust estimator, the G-
computation estimator and the tMLE, all reduce to the same estimator.

A.4. Finding covariate for RR tMLE update based on logistic submodel
We apply the delta method to obtain the efficient influence curve of the log of the RR
parameter, i.e. log(μ1/μ0) = log(μ1)−log(μ0). The efficient influence curve is given by

In order to find the covariate h(A, W) that is added to the regression model, we note the
following equality given in [7]:

(A1)

if V is a function with conditional mean 0 given A and W. We apply this equality to D(p0) =
V(Y, A, W) to obtain h(A, W).

Let p̂0(ε1) be the logistic regression fit with an extra covariate extension ε1h(A, W). Based on
(A1) we can immediately observe that the covariate h(A, W) added to the logistic regression
is V(1, A, W) − V(0, A, W) since,

Thus, evaluating D(p̂0) at Y = 1 and Y = 0 gives,

A.5. Finding covariate for RR tMLE update based on RR regression
submodel

Consider now the parametric submodel p̂0 indexed by parameter ε,

where Q ̂0(ε)(A, W) is given by the RR regression model,

The score for this model evaluated at ε=0 is given by
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and it follows that the covariate added to the logistic regression model to obtain the tMLE is
given by

A.6. Finding covariate for OR based on the logistic regression submodel
We apply the delta method to obtain the efficient influence curve of the log of this
parameter, i.e.

We have

and thus the efficient influence curve is given by

Applying equality (A1) to D(p̂0), we obtain

A.7. Finding covariate for RD with missing data based on logistic
regression submodel

The efficient influence curve is given by

where g0(A = 1, c|W) = δ0g(c|A=1, W) and g0(A = 0, c|W) = (1 − δ0) g(c|A = 0, W). We now
present the analogue to the derivation of the tMLE for ψ0. Consider the parametric submodel
through p̂0 indexed by parameter ε
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where Q ̂0(ε)(A, C = 1, W) is given by the logistic regression model

At C = 0, the likelihood of P(Y | A, C, W) provides as contribution a factor 1, which can thus
be ignored. The score for this logistic regression model at ε = 0 is given by

We now set this score equal to the component of the efficient influence curve, which equals
a score for P(Y |A, C = 1, W), at p̂0, to obtain the equality

Solving for h(A, C = 1, W) we obtain

REFERENCES
1. Pocock SJ, Assmann SE, Enos LE, Kasten LE. Subgroup analysis, covariate adjustment and

baseline comparisons in clinical trial reporting: current practice and problems. Statistics in Medicine
2002;21:2917–2930. DOI: 10.1002/sim.1296. [PubMed: 12325108]

2. Hernández AV, Steyerberg EW, Habbema JDF. Covariate adjustment in randomized controlled
trials with dichotomous outcomes increases statistical power and reduces sample size requirements.
Journal of Clinical Epidemiology 2004;57(5):454–460. DOI: 10.1016/j.jclinepi.2003.09.014.
[PubMed: 15196615]

3. Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression
models. International Statistical Review 1991;59:227–240.

4. Robins JM. A new approach to causal inference in mortality studies with sustained exposure periods
—application to control of the healthy worker survivor effect. Mathematical Modelling
1986;7:1393–1512.

5. Robins JM. A graphical approach to the identification and estimation of causal parameters in
mortality studies with sustained exposure periods. Journal of Chronic Disease 1987;40:139S–161S.

6. van der Laan MJ, Rubin D. Targeted maximum likelihood learning. The International Journal of
Biostatistics 2006;2(1):1–38. Article 11.

7. van der Laan, MJ.; Robins, JM. Unified Methods for Censored Longitudinal Data and Causality.
New York: Springer; 2002.

8. Neugebauer R, van der Laan MJ. Why prefer double robust estimators in causal inference? Journal
of Statistical Planning and Inference 2005;129:405–426. DOI: 10.1016/j.jspi.2004.06.060.

Moore and van der Laan Page 21

Stat Med. Author manuscript; available in PMC 2010 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



9. Robins, JM. Proceedings of the American Statistical Association. Alexandria, VA: 2000. Robust
estimation in sequentially ignorable missing data and causal inference models.

10. Robins JM, Rotnitzky A. Comment on the Bickel and Kwon article, ’Inference for semiparametric
models: Some questions and an answer’. Statistica Sinica 2001;11(4):920–936.

11. Tsiatis AA, Davidian M, Zhang M, Lu X. Covariate adjustment for two-sample treatment
comparisons in randomized clinical trials: a principled yet flexible approach. Statistics in
Medicine. 2007 DOI: 10.1002/sim.3113.

12. Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for nonignorable drop-out using
semiparametric nonresponse models. Journal of the American Statistical Association
1999;94:1096–1120. (with Rejoinder, 1135–1146).

13. Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models.
Biometrics 2005;61:962–972. [erratum to appear in Biometrics]. DOI: 10.1111/j.
1541-0420.2005.00377.x. [PubMed: 16401269]

14. Assmann SF, Pocock SJ, Enos LE, Kasten LE. Subgroup analysis and other (mis)uses of baseline
data in clinical trials. Lancet 2000;355:1064–1069. DOI: 10.1016/S0140-6736(00)02039-0.
[PubMed: 10744093]

15. Zhang M, Tsiatis AA, Davidian M. Improving efficiency of inferences in randomized clinical trials
using auxiliary covariates. Biometrics. 2008 DOI: 10.1111/j.1541-0420.2007.00976.x.

16. Belda FJ, Aguilera L, de la Asunción JG, Alberti J, Vicente R, Ferrándiz L, Rodríguez R,
Company R, Sessler DI, Aguilar G, Botello SG, Ortí R. Supplemental perioperative oxygen and
the risk of surgical wound infection. Journal of the American Medical Association
2005;294:2035–2042. DOI: 10.1001/jama.294.16.2035. [PubMed: 16249417]

17. Frasure-Smith N, Lespérance F, Prince RH, Verrier P, Garber R, Juneau M, Wolfson C, Bourassa
M. Randomised trial of home-based psychological nursing intervention for patients recovering
from myocardial infarction. Lancet 1997;350:473–479. DOI: 10.1016/S0140-6736(97)02142-9.
[PubMed: 9274583]

18. van der Horst CM, Saag MS, Cloud GA, Hamill RJ, Graybill JR, Sobel JD, Johnson PC, Tuazon
CU, Kerkering T, Moskovitz BL, Powderly WG, Dismukes WE. The National Institute of Allergy
and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. Treatment of
Cryptococcal meningitis associated with the acquired immunodeficiency syndrome. New England
Journal of Medicine 1997;337:15–21. DOI: 10.1056/NEJM199707033370103. [PubMed:
9203426]

19. Randolph AG, Wypij D, Venkataraman ST, Hanson JH, Gedeit RG, Meert KL, Luckett PM,
Forbes P, Lilley M, Thompson J, Cheifetz IM, Hibberd P, Wetzel R, Cox PN, Arnold J. the
Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) network. Effect of mechanical
ventilator weaning protocols on respiratory outcomes in infants and children. Journal of the
American Medical Association 2002;288:2561–2568. DOI: 10.1001/jama.288.20.2561. [PubMed:
12444863]

20. Sinisi S, van der Laan MJ. The deletion/substitution/addition algorithm in loss function based
estimation: applications in genomics. Statistical Applications in Genetics and Molecular Biology
2004;3(1):1–38. Article 18.

Moore and van der Laan Page 22

Stat Med. Author manuscript; available in PMC 2010 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Simulation 1: Consistency graphs: (a) risk difference, k = 1.2; (b) risk difference, k = 20; (c)
relative risk, k = 1.2; (d) relative risk, k = 20; (e) odds ratio, k = 1.2; and (f) odds ratio, k =
20.
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Figure 2.
Odds ratio with interaction: consistency graph.
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Figure 3.
Risk difference, estimated treatment mechanism: consistency graph.
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Figure 4.
Efficiency Gain and R2: (a) risk difference and (b) odds ratio.
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Table I

Simulation 1: k = 1.2: ‘MSE’ is mean squared error for unadjusted estimate, RE (relative efficiency) is the
ratio of unadjusted MSE to MSE of remaining estimators’ and ‘Rej’ is the proportion of rejected tests at 0.05
level with the coverage probability of a 95 per cent confidence interval in parenthesis. Three methods for
selecting Q(A, W), ‘Correct’ is correctly specified, ‘Mis-spec’ is mis-specified, ‘DSA’ is data-adaptive
selection based on DSA algorithm. ‘Adjusted’ method for the OR results based on the conditional logistic
regression model.

n = 250 n = 500 n = 1000

Risk difference

Unadjusted MSE   3.8e−03   1.9e−03   9.5e−04

Correct RE 10.46 13.70 13.67

Mis-spec RE   2.14   2.19   2.18

DSA RE 11.72 13.31 13.49

Unadjusted Rej   0.07 (0.94)   0.08 (0.95)   0.10 (0.95)

Correct Rej   0.26 (0.90)   0.42 (0.94)   0.67 (0.95)

Mis-spec Rej   0.08 (0.94)   0.10 (0.95)   0.16 (0.95)

DSA Rej   0.26 (0.90)   0.43 (0.93)   0.67 (0.94)

Relative risk

Unadjusted MSE   3.6e−02   1.7e−02   8.2e−03

Correct RE   9.70 13.97 13.70

Mis-spec RE   2.22   2.27   2.25

DSA RE 12.50 13.59 13.53

Unadjusted Rej   0.05 (0.95)   0.07 (0.95)   0.10 (0.95)

Correct Rej   0.25 (0.90)   0.41 (0.94)   0.67 (0.95)

Mis-spec Rej   0.03 (0.95)   0.05 (0.96)   0.10 (0.96)

DSA Rej   0.19 (0.91)   0.37 (0.94)   0.64 (0.96)

Odds ratio

Unadjusted MSE   1.0e−01   4.6e−02   2.2e−02

Adjusted RE   0.46   0.51   0.48

Correct RE   2.83 14.60 14.04

Mis-spec RE   2.24   2.28   2.21

DSA RE 13.46 14.19 13.86

Unadjusted Rej   0.06 (0.95)   0.08 (0.95)   0.10 (0.95)

Adjusted Rej   0.05 (0.97)   0.07 (0.96)   0.11 (0.96)

Correct Rej   0.26 (0.90)   0.42 (0.94)   0.67 (0.95)

Mis-spec Rej   0.08 (0.94)   0.10 (0.95)   0.15 (0.95)

DSA Rej   0.26 (0.90)   0.43 (0.93)   0.67 (0.95)
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Table II

Simulation 1: k = 20.

n = 250 n = 500 n = 1000

Risk difference

Unadjusted MSE 3.9e−03 2.0e−03 9.5e−04

Correct RE 3.58 4.70 4.60

Mis-spec RE 2.51 2.55 2.51

DSA RE 4.40 4.65 4.59

Unadjusted Rej 0.96 (0.94) 1.00 (0.94) 1.00 (0.95)

Correct Rej 1.00 (0.94) 1.00 (0.94) 1.00 (0.95)

Mis-spec Rej 1.00 (0.95) 1.00 (0.94) 1.00 (0.95)

DSA Rej 1.00 (0.94) 1.00 (0.94) 1.00 (0.94)

Relative risk

Unadjusted MSE 6.5e−02 3.1e−02 1.4e−02

Correct RE 2.14 4.13 3.97

Mis-spec RE 2.23 2.30 2.28

DSA RE 4.01 4.06 3.96

Unadjusted Rej 0.95 (0.95) 1.00 (0.95) 1.00 (0.95)

Correct Rej 1.00 (0.94) 1.00 (0.94) 1.00 (0.95)

Mis-spec Rej 1.00 (0.99) 1.00 (0.99) 1.00 (1.00)

DSA Rej 1.00 (0.99) 1.00 (0.99) 1.00 (1.00)

Odds ratio

Unadjusted MSE 5.7e−01 2.6e−01 1.2e−01

Adjusted RE 0.00 0.01 0.00

Correct RE 2.89 5.05 4.67

Mis-spec RE 2.63 2.65 2.52

DSA RE 5.01 4.97 4.67

Unadjusted Rej 0.96 (0.95) 1.00 (0.94) 1.00 (0.95)

Adjusted Rej 1.00 (0.22) 1.00 (0.03) 1.00 (0.00)

Correct Rej 1.00 (0.94) 1.00 (0.94) 1.00 (0.95)

Mis-spec Rej 1.00 (0.95) 1.00 (0.95) 1.00 (0.95)

DSA Rej 1.00 (0.94) 1.00 (0.94) 1.00 (0.95)
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Table III

Odds ratio, with interaction.

n = 250 n = 500 n = 1000

Unadjusted MSE 6.1e−02 2.7e−02 1.3e−02

Adjusted RE 0.68 0.55 0.39

Correct RE 6.59 6.12 5.89

Mis-spec RE 2.58 2.52 2.46

DSA RE 7.47 7.87 7.40

Unadjusted Rej 0.10 (0.95) 0.16 (0.95) 0.27 (0.96)

Adjusted Rej 0.13 (0.94) 0.26 (0.92) 0.48 (0.87)

Correct Rej 0.40 (0.94) 0.66 (0.94) 0.91 (0.95)

Mis-spec Rej 0.20 (0.95) 0.34 (0.95) 0.57 (0.95)

DSA Rej 0.50 (0.92) 0.78 (0.94) 0.97 (0.94)
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Table IV

Risk difference, estimated treatment mechanism.

250 500 1000

Unadjusted MSE 2.6e−03 1.3e−03 6.5e−04

Correct RE 4.34 4.41 4.54

DSA RE 4.17 4.35 4.51

Mis-spec RE 1.01 1.03 1.01

Est tx RE 1.42 1.47 1.46

Unadjusted Rej 0.25 (0.94) 0.42 (0.95) 0.69 (0.94)

Correct Rej 0.79 (0.92) 0.97 (0.94) 1.00 (0.94)

DSA Rej 0.80 (0.92) 0.97 (0.93) 1.00 (0.94)

Mis-spec Rej 0.25 (0.94) 0.42 (0.95) 0.70 (0.95)

Est tx Rej 0.21 (0.98) 0.40 (0.98) 0.73 (0.98)
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