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 Introduction 

 Efforts to identify genes predisposing to or protecting 
against common complex disease have been at the fore-
front of epidemiological research over the last 30 years; 
linkage studies in particular. Unfortunately, however, 
these studies are often riddled with difficult decisions, 
from choosing the most efficient ascertainment scheme 
and correct phenotype measure, to the most appropriate 
and powerful statistical technique. One tool that has 
proven to be both powerful and robust for the mapping 
of trait loci is Haseman-Elston regression (HE). This ro-
bust test to detect linkage between a putative disease lo-
cus and a marker locus was first proposed in 1972  [1]  and 
has since been revised  [2]  and extended several times 
 [3–10] .

  Consider the situation where we have  n  sibling pairs, 
which may or may not be independent. For the  j -th sibling 
pair let their trait values be ( x  1  j ,  x  2  j ), for either a continu-
ous or a dichotomous trait. The original HE  [1]  regresses 
the squared trait difference, ( x  1  j  –  x  2  j ) 2 , on the average 
identical by descent (IBD) allele sharing for the  j- th pair 
 � ̂  j . Replacing the squared trait difference with the mean 
corrected cross product:

( ) ( )( ) ( ) ( )( )2 2

1 2
1

,       
4 j jx x x x+ 1j 2j                     (1)
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 Abstract 

  Objective:  One of the first tools for performing linkage anal-
ysis, Haseman-Elston regression (HE), has been successfully 
used to identify linkages to several disease traits. A recent 
explosion in extensions of HE leaves one faced with the task 
of choosing a flavor of HE best suited for a given situation. 
This paper puts this dilemma into perspective and proposes 
a modification to HE for highly ascertained samples (BLUP-
PM).  Methods:  Using data simulated for a range of models, 
we evaluated type I error and power of several dependent 
variables in HE, including the novel BLUP-PM.  Results:  When 
analyzing a continuous trait, even in highly ascertained sam-
ples, type I error is stable and approximately nominal across 
dependent variables. When analyzing binary traits in highly 
ascertained samples, type I error is elevated and unstable for 
all except BLUP-PM.  Regardless of trait type, the optimally 
weighted HE regression and BLUP-PM have the greatest 
power.  Conclusions:  Ascertained samples do not always re-
flect the population from which they are drawn and there-
fore choice of dependent variable in HE becomes increas-
ingly important. Our results do not reveal a single, universal 
choice, but offer criteria by which to choose and demon-
strate BLUP-PM performs well in most situations. 
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 leads to an increase in the power of HE in some situations 
 [2] , largely depending on the residual sibling correlation 
 [5] . Since the original HE can be more powerful than the 
cross product in some situations, the following depen-
dent variable: 

 
( ) ( )( ) ( ) ( ) ( )( )2 21

1 ,      
4 j jw x x w x x+ 1 2j j1 2j j  (2)

  which is a weighted sum of the mean corrected sum and 
difference, with optimally chosen weights was proposed 
 [6] . 

 In a further extension, it was shown that when using 
the cross product, replacing  �  with the Best Linear Un-
biased Predictor (BLUP) of  �  j , the mean of the  j -th sibship 
(assuming a random mean model), leads to better results 
than the optimally weighted cross product  [11] . The au-
thors also showed that such a dependent variable did not 
require adjustment for dependence between sibling pairs 
in a sibship. In particular, the BLUP of  �  j  is given by:

   �   ̃    j  =  w *   j   X
–  j  + (1 –  w *   j   )  �  ̂   , (3)

  where the weights,  w *   j  , are determined by the between and 
within sibship variances and the size of the sibship. The 
term  X–  j  is the mean of the  j -th sibship and  �  ̂   , is an esti-
mate of the overall, or population, mean, taken to be the 
sample mean. Often, however, a sample is ascertained for 
individuals with extreme values of a trait or in the case of 
a binary trait, presence of the phenotype of interest, ren-
dering the sample mean a poor estimate of the population 
mean. In this study, we propose yet another revision to 
HE for highly ascertained samples and evaluate both type 
I error and power for many of the dependent variable op-
tions for HE as available in the software SIBPAL, imple-
mented in the program package S.A.G.E.. We further of-
fer a guide by which to determine the dependent variable 
that is most suitable given either continuous or binary 
phenotypes and various ascertainment schemes and 
modes of inheritance. 

 A binary trait is a special case of a quantitative trait, 
and hence HE can be applied without any modifications 
 [12] . The only requirement of this application of HE is 
that the sample has discordant as well as concordant sib-
ling pairs. This requirement is often satisfied simply be-
cause, when multiplex families are ascertained, unaffect-
ed siblings are collected and genotyped to increase infor-
mation to infer IBD sharing. HE has been shown to have 
correct type I error and good power with unaffected sib-
lings providing linkage information as shown by both 
our own results and Davis et al.  [13] . Further, the affected/
discordant-sib-pair design guards against possible biases 

due to Mendelian transmission distortions  [14]  and bi-
ased estimation of multi-point IBD sharing probabilities 
due to marker to marker linkage disequilibrium  [15] . Fi-
nally, unlike some likelihood based methods, HE, as im-
plemented in S.A.G.E., correctly handles dependencies in 
large sibships using Generalized Estimating Equations.

  Methods 

 Simulation 
 To explore the different dependent variables available in HE, 

we simulated quantitative traits, both continuous and binary, to 
reflect realistic data for common, complex diseases. We further 
employed ascertainment schemes most common to genetic epide-
miological studies today.

  Continuous Traits 
 For the continuous traits we simulated nuclear families with 

three siblings each. The sample size was taken to be 250 families, 
leading to 750 sibling pairs when the families were ascertained 
using the 70th percentile of the population trait value. When the 
90th percentile was used, we took a sample size of 100 pedigrees, 
leading to 300 sibling pairs, this difference in sample sizes was to 
demonstrate power at levels where differences were appreciable 
and results distinguishable (i.e. analyses of 250 families ascer-
tained at the 90% level would yield close to 100% power for all 
models).

  Two basic models, ‘Strong’ and ‘Weak’ ( table 1 ) were simulated 
with total variance ( V  T ) of 20. Both had equal additive and ge-
netic variance ( V  A  and  V  G , respectively). Strong had a large re-
sidual variance due to environment ( V  C ) and a strong residual 
sibling correlation ( r    ), while Weak had a lesser residual environ-
mental variance and more than 2-fold lesser  r . Both models had 
heritabilities less than 20%. To model often used ascertainment 
schemes ( table 1 ), a family was ascertained if at least  k  siblings, 
where  k  = 1, 2, had trait values equal or greater than the 70th and 
90th percentile of the population trait values. SS is used to desig-
nate single simplex ascertainment, in which a family was ascer-
tained if one member met criteria (i.e., k = 1), and SM designates 
single, multiplex ascertainment in which at least 2 members of the 
family met the criteria for ascertainment (i.e., k = 2).

 As mentioned, the power of the various dependent variables 
in HE to detect linkage to a quantitative trait locus is closely re-
lated to the sib-sib correlation. In particular, the squared differ-
ence is a more powerful dependent trait than the cross product 
when the sib-sib correlation is greater than (2 – �3) = 0.268 (proof 
shown in the Appendix). However, because of possible ascertain-
ment, the sib-sib correlation in selected samples is not the same 
as the true population sib-sib correlation.  Table 2  gives the esti-
mated sib-sib correlation in a large ascertained population for 
various ascertainment schemes. These values were estimated us-
ing FCOR  [16] , from 2,500 simulated families with three siblings 
each and denoted trait model and ascertainment scheme.

 Binary Traits 
 For the binary traits, we simulated 400 families each with four 

siblings, of whom two were affected and two were unaffected, re-
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sulting in families with one pair of affected siblings, one pair of 
unaffected siblings and four discordant sibling pairs.

  Two disease models were simulated, both with a prevalence of 
approximately 4%, a phenocopy rate of 4% and heritability of 1.8% 
(when all families are linked to the disease locus). The recessive 
model (Rec), and the dominant model with a low penetrance of 
disease allele (Dom) had underlying disease locus genotype (  f  DD , 
 f  Dd ,  f  dd ) frequencies corresponding to an 8 and 4% sporadic rate, 
respectively. In addition we simulated varying degrees of hetero-
geneity in the population, that is, a portion of the sample is simu-
lated using the disease model and the rest are assigned null chro-
mosomes ( table 3 ).

  Analysis Methods 
 As mentioned, there are several options for the dependent 

variable to be used in HE. The options to be evaluated as a part of 
study include: the difference in the two siblings’ trait values  [1] , 
referred to as ‘Diff ’; the mean-corrected cross product of the two 

siblings’ trait values  [2] , referred to as ‘Prod’; the weighted combi-
nation of the ‘Diff ’ and mean-corrected sum (Sum) of the two 
siblings’ trait values assuming difference and sum are indepen-
dent  [16]  referred to as ‘W2’; the weighted combination of the Diff 
and Sum of the two siblings’ trait values further allowing for the 
correlation between sibling pairs within a sibship  [16] , referred to 
as ‘W3’; the weighted combination of the Diff and Sum of the two 
siblings’ trait values allowing for the correlation between sib-pairs 
within a sibship as well as the correlation of the Diff and Sum  [6] , 
referred to as ‘W4’. All of these, with the exclusion of ‘Diff ’, require 
specification of a ‘mean’ value,  � , for the trait. In a random sam-
ple from the population, the sample mean provides a reasonable 
estimate of the population mean  � . However, samples are often 
enriched with extreme values of the trait of interest to increase the 
possibility of identifying linkage. In such a situation the sample 
mean is no longer a good estimate of the population mean and the 
choice of  �  becomes even more important. It is our hypothesis 
that, while the BLUP of  �  j  (Equation 3), in which  �  ̂    is taken to be 
the sample mean (from here forward referred to as BLUP-SM), 
performs quite well in most situations. However, in the presence 
of strong ascertainment, a dependent variable in which the esti-
mate of the population mean is used in place of the sample mean 
for  �  ̂    (referred to now as BLUP-PM) will perform better, assum-
ing, of course, that the population mean is well estimated from 
independent epidemiologic studies. It is important to note that 
while this study focuses on the selection of the mean, HE, as with 
other regression based methods, does require estimation of the 
variance. This is done, using either Generalized Least Square re-
gression or, when accounting for the dependence of observations, 
Generalized Estimating Equations.

  To compare the type I error of the various dependent variables 
in HE ( table 4 ), we analyzed, for the continuous and binary traits, 
2,000 and 5,000 replicates, respectively, simulated under the null 
hypothesis of no linkage. To compare power for both the contin-
uous and binary traits, we analyzed 1,000 replicates simulated 
under the alternate hypothesis of linkage. SIBPAL, a subroutine 
of the program package S.A.G.E. (v5.2) and a script in R  [17]  were 
used for all analyses.

  Results 

 Continuous Traits 
 The type I error rates are comparable and close to the 

nominal level across dependent variables, strength of fa-
milial correlation, ascertainment scheme, level of ascer-
tainment ( table 5 ), and values of  �    ( fig. 1  and  2 ).

Familial
correlation

VA = VG VC VT r Herita-
bility, %

Ascertainment

cut-off, % number of sibs
attaining cut-off

Strong 3 5 20 0.325 15 70, 90 1, 2
Weak 2 2 20 0.15 10 70, 90 1, 2

Table 1. Parameter values used to 
 simulate a continuous trait

Table 2. Estimates and standard errors of sib-sib correlation in 
2,500 families with three siblings

Familial
correlation

Ascer-
tainment

Cut-off
%

Estimated sib-sib
correlation

Standard
error

Strong none 0.3271 0.0074
SM 70 –0.0442 0.0110

90 –0.1633 0.0090
SS 70 0.0322 0.0119

90 –0.0886 0.0103

Weak none 0.1486 0.0074
SM 70 –0.1800 0.0087

90 –0.2529 0.0071
SS 70 –0.0864 0.0104

90 –0.1928 0.0085

Table 3. Parameter values used to simulate a binary trait

Model P(D) fDD fDd fdd Proportion
not linked

Herita-
bility 

Preva-
lence

Rec 0.04 0.70 0.04 0.04 0.0 0.5 0.75 1.8% 4.1%
Dom 0.01 0.24 0.24 0.04 0.0 0.5 0.75 1.8% 4.4%
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  Power for the dependent variables, depending on the 
strength of the residual familial correlation and the sam-
pling scheme varies from 0.207 to 0.696 ( table 6 ), when 
using the sample mean in conjunction with the depen-
dent variables Prod, W2, W3 and W4. The power of these 
same dependent variables used in conjunction with the 
population mean can be read from the  figures 3  and  4  
(indicated by the vertical lines). The power of BLUP-PM, 
on the other hand does not correspond to any value of the 
abscissa and hence included only in the tables. As ex-
plained earlier, these values were kept purposefully low. 

Because we were interested in seeing differences in the 
various options, we maintained a power level that would 
most accentuate these differences. BLUP-PM performs 
well in a number of the situations, with the biggest gains 
for the SM ascertainment. W4 performs well when the 
sample mean is close to the population mean, which is 
true for SS ascertainment with 70% cut-off, and Diff per-
forms well (best in one situation) for a trait with strong 
familial correlation but poorly for a trait with low famil-
ial correlation. W3 and W4 perform similarly across 
models when using the sample mean while BLUP-PM 

Table 5. Type I errors of using different dependent variables for a continuous trait, Diff, Prod, W2, W3 and W4, with the sample mean, 
BLUP-SM, and BLUP-PM

Familial
correlation

Ascer-
tainment

Cut-off
%

Dependent variable

Diff Prod W2 W3 W4 BLUP-SM BLUP-PM

Strong SM 70 0.053 0.044 0.045 0.051 0.051 0.044 0.049
90 0.061 0.051 0.052 0.061 0.061 0.051 0.055

SS 70 0.054 0.052 0.054 0.055 0.055 0.052 0.051
90 0.054 0.056 0.055 0.060 0.060 0.056 0.046

Weak SM 70 0.052 0.046 0.044 0.054 0.054 0.046 0.042
90 0.056 0.055 0.054 0.057 0.057 0.055 0.050

SS 70 0.046 0.048 0.050 0.058 0.058 0.048 0.051
90 0.048 0.048 0.049 0.052 0.052 0.048 0.046

Table 4. Dependent variables compared in this study

Dependent
variable name

Definition

Diff* –1/2 ! squared trait difference

Prod* Mean-corrected cross-product, m equal to either the sample mean or a pre-specified value

W2* Weighted combination of squared trait difference and squared mean-corrected trait sum. Weights are chosen pro-
portional to the inverses of the residual variances of the squared differences and sums.

W3* Weighted combination of squared trait difference and squared mean-corrected trait sum, as W2 but further adjusted 
for the possible non-independence of sib-pairs.

W4* Weighted combination of squared trait difference and squared mean-corrected trait sum, as W3 but further adjusted 
for the non-independence of sib-pairs and the non-independence of squared trait sums and differences.

BLUP-SM* Mean-corrected cross-product, m equal to the BLUP of the sibship mean, assuming a random sibship mean model; 
sample mean used to represent the overall  mean

BLUP-PM Mean-corrected cross-product, m equal to the BLUP of the sibship mean, assuming a random sibship mean model; 
population mean used to represent the overall  mean

* Denotes features available in SIBPAL, a subroutine of the program package S.A.G.E. Details of each of these options can be found 
in the S.A.G.E., Version 5.3 User Manual pages 235–244.
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Table 6. Power of using different dependent variables for a continuous trait, Diff, Prod, W2, W3 and W4, with the sample mean, BLUP-
SM, and BLUP-PM

Familial
correlation

Ascer-
tainment

Cut-off
%

Dependent variable

Diff Prod W2 W3 W4 BLUP-SM BLUP-PM

Strong SM 70 0.672 0.645 0.654 0.619 0.619 0.647 0.696
90 0.571 0.520 0.574 0.400 0.400 0.520 0.641

SS 70 0.629 0.591 0.497 0.681 0.681 0.613 0.617
90 0.501 0.448 0.426 0.473 0.473 0.448 0.484

Weak SM 70 0.305 0.373 0.353 0.332 0.332 0.373 0.417
90 0.370 0.382 0.380 0.237 0.237 0.382 0.433

SS 70 0.261 0.305 0.309 0.329 0.329 0.305 0.323
90 0.207 0.225 0.222 0.235 0.235 0.225 0.252
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  Fig. 1.  Trait with strong familial correlation. Type I errors of different dependent variables for a continuous trait 
with different levels and schemes of ascertainment. The abscissa of the vertical line denotes a known popula-
tion mean of the trait. The ordinates of ‘x’ and ‘+’ denote the type I error of BLUP-PM and Diff, respectively. 
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Table 7. Power of using different dependent variables for a binary trait, Diff, Prod, W2, W3 and W4, with the 
sample mean, and BLUP-PM

Model Proportion
not linked

Dependent variable

Diff Prod W2 W3 W4 BLUP-prod

Recessive 0 0.555 0.555 0.555 0.555 0.556 0.624
0.5 0.274 0.274 0.274 0.274 0.274 0.289
0.75 0.147 0.147 0.147 0.147 0.149 0.121

Dominant 0 0.519 0.519 0.519 0.519 0.521 0.662
0.5 0.226 0.226 0.226 0.226 0.226 0.291
0.75 0.130 0.130 0.130 0.130 0.130 0.133

  Fig. 2.  Trait with weak familial correlation. Type I errors of different dependent variables for a continuous trait 
with different levels and schemes of ascertainment. The abscissa of the vertical line denotes a known popula-
tion mean of the trait. The ordinates of ‘x’ and ‘+’ denote the type I error of BLUP-PM and Diff, respectively. 
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performs better than BLUP-SM in all models, the differ-
ence being most pronounced when the population and 
sample means differ substantially. Note that the BLUP- 
SM and BLUP-PM are only used in conjunction with 
‘Prod’. This is because using BLUP leads to independence 
of the cross-product between sibling pairs and such inde-
pendence renders the corrections involved in W2, W3, 
and W4 unnecessary.

  Over a range of  �  values, the powers of W3 and W4 are 
exactly the same regardless of the strength of the familial 
correlation and hence, the power curve for W3 is not plot-
ted in  figures 3  and  4 . Note that W4 performs well over 
the entire range of  �    and has consistently more power 
than Prod. BLUP-PM performs reasonably well for most 

situations but, because it is bounded by the power curve 
of Prod, is always less powerful than W4. Using W4 with 
the population mean (represented by a solid vertical line) 
performs well for all situations ( fig. 3  and  4 ).

  Binary Traits 
 Across models, the type I error rate is slightly elevated 

( � 0.07) and quite unstable, except BLUP-PM, which has 
a type I error rate that is close to the nominal ( fig. 5 ).

  For a binary trait, the power does not vary greatly by 
dependent variables: Prod, W2, W3 and W4 with the 
sample mean, and Diff ( table 7 ). Using BLUP-PM leads to 
improved power, except for a recessive disease with high 
heterogeneity. As expected the power decreases when a 
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  Fig. 3.  Trait with strong familial correlation. Power of different dependent variables for a continuous trait with 
different levels and schemes of ascertainment. The power of W3 was not plotted because it was the same as that 
of W4. The abscissa of the vertical line denotes a known population mean of the trait. The ordinates of ‘x’ and 
‘+’ denote the power of BLUP-PM and Diff, respectively. 
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smaller percent of families are linked to the locus (i.e. 
heterogeneity). BLUP-SM is ignored in the table because 
it has the same power as Prod with sample mean.

  Across values of  � , the power of the different depen-
dent variables is quite variable, but highest around the 
population mean value or prevalence (0.04, denoted by 
the solid vertical line in  fig. 6 ). Using W4 with the popu-
lation mean provides close to optimal power. However, as 
shown in  figure 5 , the type I error of W4 is elevated. As a 
result, it might be better to use BLUP-PM, which has the 
correct type I error and close to optimal power for all 
dominant models and the recessive model with no het-
erogeneity.

  Discussion 

 As shown in  table 2 , the properties of an ascertained 
sample do not always reflect that of the population from 
which it is drawn. For this reason, and others, careful at-
tention should be given in choosing an analysis method 
for an ascertained sample, to both minimize false posi-
tives and maximize power. It was the aim of this study to 
(1) offer a slight modification of the HE for highly ascer-
tained samples, (2) report the type I error and power of 
various dependent variables for HE in light of this ascer-
tainment, and (3) provide users of HE a guide by which 
to choose a dependent variable most suited for their 
 particular study and trait of interest. As can be seen in 
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 figures 7  and  8 , no one method or choice of mean correc-
tion factor is always superior. However, in the case of a 
continuous trait, for the models we examined, W3 and 
W4 perform consistently better than the others. For a bi-
nary trait, the BLUP-PM is consistently better, but the 
power of all models is highly dependent on the choice of 
the mean correction factor.  Certainly, the more one 
knows about the trait of interest the more informed the 
decision. However, we are not always so enlightened and 
must therefore choose a method that, while it may not be 
the most powerful in a particular situation, is consistent-
ly powerful across models, with correct type I error. In 
linkage studies, particularly now that we have the capa-
bility of generating data every few kb, it is important to 

protect against a large number of false positives while at 
the same time preserving as much power as possible. In 
this study, we provide users of the HE yet another option 
in doing this. We offer a recommendation of statistical 
technique, given a variety of study designs, underlying 
genetic model, and amount of information.
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  Fig. 7.  Choice of dependent variable and 
mean correction factor given various sce-
narios for a continuous trait. 

  Fig. 8.  Choice of dependent variable and 
mean correction factor given various sce-
narios for a binary trait. 
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  Appendix 

 For a set of independent sibling pairs, let  x  ij  be the trait value 
of sib  i  in pair  j ;  �  be the overall mean;  g  ij  be the effect of a quan-
titative trait locus;  p  ij  be a polygenic effect;  c  j  be a common sibship 
environmental effect; and  e  ij  be a sib specific random effect. A 
general model describing the trait value is given by

   x  ij   =   �  +  g  ij    +  p  ij  +  c  j    +  e  ij 

  Assume that polygenic, common-environmental and random ef-
fects are independently and identically distributed as  N (0,  �  2  p ), 
 N (0,    �  2  c ) and  N (0,    �  2  e ), respectively. Then the variance of the trait 
value is given by 

    V  =  �  2  g  +  �  2  p  +  �  2  c  +  �  2  e  ,

  and the covariance between the trait values of the two sibs is 
 2

2 2 ,
2 2

p
g c

k
C= + +

  where  k  is the number of alleles shared IBD. Also, let  r  =  C / V 
be the correlation between two sibling trait values and define  D  = 
–1/2( x  1j  –  x  2  j ) 2  and  S  = 1/2( x  1j  +  x  2  j  – 2 � ) 2 . 

 Let  R  2  be the proportion of the variance of the dependent vari-
able explained by �̂. Then, Wang & Elston  [11]  show that  R  2  o  and 
 R  2  CP , the  R  2  values for the original HE and cross product, respec-
tively, are given by
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2 2
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r r

r .
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  The above implies that, when the sib-sib correlation is greater 
than 0.268, the Diff has more power than the Prod. 
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