

NIH Public Access

Author Manuscript

Neuropharmacology. Author manuscript; available in PMC 2010 April 21.

Published in final edited form as: *Neuropharmacology*. 1997 July ; 36(7): 941–949.

α Subunit Isoform Influences GABA_A Receptor Modulation by Propofol

M.D. Krasowski^{1,*}, S.M. O'Shea¹, C.E.M. Rick¹, P.J. Whiting², K.L. Hadingham², C. Czajkowski³, and N.L. Harrison^{1,†}

¹ Department of Anesthesia and Critical Care and the Department of Pharmacological and Physiological Sciences, University of Chicago, Chicago, IL 60637, U.S.A

² Merck, Sharpe, and Dohme Research Laboratories, Terlings Park, Harlow, Essex, U.K.

³ Department of Neurophysiology, University of Wisconsin, Madison, WI 53706, U.S.A

Summary

We have investigated the role of the α subunit in the modulation of γ -aminobutyric acid type A (GABA_A) receptors by the general anesthetic propofol, using whole-cell patch clamp recordings made from distinct stable fibroblast cell lines which expressed only $\alpha_1\beta_3\gamma_2$ or $\alpha_6\beta_3\gamma_2$ GABA_A receptors. At clinically relevant anesthetic concentrations, propofol potentiated submaximal GABA currents in $\alpha_1\beta_3\gamma_2$ receptors to a far greater degree than those in $\alpha_6\beta_3\gamma_2$ receptors. The α subunit influenced the efficacy of propofol for modulation, but not its potency. In contrast, direct gating of the ion channel by propofol, in the absence of GABA, was significantly larger in the α_6 than the α_1 containing receptors. The potentiation of submaximal GABA by trichloroethanol, and the potentiation and direct gating by methohexital, was also studied, and showed the same relative trends as propofol.

Introduction

GABA_A (γ -aminobutyric acid type A) receptors are the major receptors for inhibitory neurotransmission in the mammalian brain. The GABA_A receptor is a pentameric complex formed by different glycoprotein subunits (α_{1-6} , β_{1-4} , γ_{1-4} , δ) which combine to form a chloride channel (reviewed by Burt and Kamatchi, 1991; Olsen and Tobin, 1990; Rabow et *al.*, 1995). GABA_A receptor subunit expression in the central nervous system is heterogeneous (Laurie et *al.*, 1992a,b; Wisden et *al.*, 1991). For example, the GABA_A α_6 subunit isoform is localized solely in cerebellar granule cells, whereas α_1 is widely expressed throughout the brain (Luddens et *al.*, 1990; Kato, 1990; Mertens *et al.*, 1993; Wisden *et al.*, 1992).

The GABA_A receptor complex is modulated allosterically by a wide range of compounds which act at discrete but unknown sites on the receptor (Macdonald and Olsen, 1994). One major group of GABA_A receptor modulators is the class of general anesthetics, many of which have been demonstrated to augment GABA_A receptor chloride currents at clinically relevant concentrations (e.g. Zimmerman *et al.*, 1994), and are thought to elicit anesthesia by enhancing inhibitory synaptic transmission (Nicoll *et al.*, 1975; Gage and Robertson, 1985). General anesthetics known to potentiate the actions of GABA (γ -aminobutyric acid) include propofol [2,6-diisopropylphenol (PRO); Hales and Lambert (1991); Hara *et al.*

[†]To whom correspondence should be addressed. Tel: (773) 702-4055; Fax: (773) 702-4791; nh17@midway.uchicago.edu. *The first two authors contributed equally to this work.

(1994)], steroid anesthetics (Harrison and Simmonds, 1984; Harrison *et al.*, 1987), barbiturates (Study and Barker, 1981), chlormethiazole (Hales and Lambert, 1992), halogenated volatile anesthetics (Wakamori *et al.*, 1991; Jones *et al.*, 1992), and trichloroethanol (TCEt, the active metabolite of chloral hydrate; Lovinger *et al.*, 1993; Peoples and Weight, 1994).

Different combinations of GABA_A receptor subunits show variable sensitivity to allosteric modulators (e.g. Horne *et al.*, 1993). The best documented role of specific subunits is for benzodiazepine modulation, where the presence of a γ subunit is required (Pritchett *et al.*, 1989), but benzodiazepine agonist sensitivity is also influenced critically by the type of α subunit isoform. Specifically, the exchange of a single amino acid confers benzodiazepine sensitivity on the normally benzodiazepine-insensitive α_6 -containing GABA_A receptor (Kleingoor *et al.*, 1993).

The role of GABA_A receptor subunits in general anesthetic modulation is less clear. For example, modulation of GABA_A receptors by PRO is qualitatively independent of the γ subunit (Jones et *al.*, 1995) and can be observed in heteromeric $\alpha\beta$ or even in homomeric β_1 receptors (Sanna *et al.*, 1995a,b). It was recently shown that the α subunit influences modulation by pentobarbital (Thompson *et al.*, 1996). This study was therefore designed to compare the effects of PRO on GABA-induced chloride currents in receptors containing two different α subunits against a common $\alpha\beta$ background. The α_6 subunit was chosen as it shares the least homology [along with α_4 , see Wafford et al. (1996)] with the other α subunit isoforms (Tyndale et *al.*, 1995), and contributes to the differential pharmacology of benzodiazepines (Hadingham *et al.*, 1993). We hypothesized that if differences in PRO modulation were to exist among α subunit isoforms, they might be most apparent in comparisons with α_6 -containing receptors. Portions of this work were previously presented in abstract form (O'Shea et *al.*, 1996).

MATERIALS AND METHODS

Tissue culture

An Ltk⁻ mouse fibroblast cell line from ATCC (Rockville, MD, U.S.A.) was stably transfected with dexamethasone-inducible GABA_A receptor $\alpha_1\beta_3\gamma_2$ or $\alpha_6\beta_3\gamma_2$ cDNA, as previously described in detail (Hadingham *et al.*, 1992). The resultant cell lines were cultured in supplemented Eagle's minimum essential medium (Sigma, St. Louis, MO, U.S.A.) as previously described.

Electrophysiology—Electrophysiological recordings were performed at room temperature using the whole-cell patch clamp technique. The electrode solution contained (in mM): 147, N-methyl-D-glucamine hydrochloride; 5, CsCl; 5, K₂ATP; 5, 4-(2-hydroxyethyl)-l-piperazine ethane sulfonic acid (HEPES); 1, MgCl₂; 0.1, CaCl₂; and 1.1, ethylene glycol bis(b-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), pH 7.2, osmolarity 315 mosmol. Pipette-to-bath resistance was 4–7 M Ω . During an experiment, cells were constantly perfused with extracellular solution containing (in mM) 145 NaCl, 3 KCl, 1.5 CaCl₂, 1 MgCl₂, 5.5 D-glucose and 10 HEPES, pH 7.4, osmolarity 320–330 mosmol. Cells were voltage-clamped at –60 mV. Since the intracellular and extracellular solutions contained symmetrical chloride concentrations, the chloride reversal potential was *ca* 0 mV.

Electrophysiology-picospritzer—GABA was applied to the cell under study by brief pressure ejection (2–6 p.s.i., 10–100 msec) from low-resistance micropipettes filled with 20 μ M GABA for cells containing $\alpha_1\beta_3\gamma_2$ receptors and 2 μ M GABA for cells containing $\alpha_6\beta_3\gamma_2$ receptors. This produced transient inward currents which were standardized by varying the duration of the pressure pipette pulse. For both cell lines, a maximal response

was elicited by a 1 sec pulse of GABA from the pressure pipette, which was then decreased to 25–50 msec to achieve transient chloride currents that were *ca* 20% of the maximum current obtainable by 20 or 2 μ M (test response; 19.3 \pm 0.89% and 19.2 \pm 0.94% for the $\alpha_1\beta_3\gamma_2$ and $\alpha_6\beta_3\gamma_2$ cells, respectively). GABA was applied every 20 sec. Anesthetic agents were applied to the bath until a stable, maximal potentiation of the GABA response was achieved. Drugs were then washed out until the pre-drug current was regained. Using this method, anesthetic equilibrium and recovery typically took 5–10 min. Current responses were low-pass filtered at 5 kHz (-3 dB, Bessel filter 902; Frequency Devices, Inc, MA, U.S.A.), digitized (TLI-125 interface; Axon Instruments, Foster City, CA, U.S.A.), and stored for off-line analysis (AXOBASIC, Axon Instruments).

Electrophysiology-rapid solution changer—GABA and/or anesthetics were rapidly applied to the cell by local perfusion [as described in Koltchine et *al.* (1996)] using a motordriven solution exchange device (Bio Logic Rapid Solution Changer RSC-100; Molecular Kinetics, Pullman, WA, U.S.A.). An approximate EC_{10} GABA test dose was used as the control value ($\alpha_1\beta_3\gamma_2$ /PRO: 9.0 ± 2.2% of maximal current; $\alpha_1\beta_3\gamma_2$ /methohexital (MTX): 8.4 ± 0.7%; $\alpha_6\beta_3\gamma_2$ /PRO: 9.2 ± 0.2%; $\alpha_6\beta_3\gamma_2$ /MTX: 10.8 ± 1.4%) for the potentiation experiments. The solution changer was controlled by protocols in the acquisition programs AXOBASIC or pCLAMP5 (Axon Instruments). Laminar flow was maintained by applying all solutions at identical flow rates via a multi-channel infusion pump (Smelting, Wood Dale, IL, U.S.A.). Prior to recording, a blue dye (FD and C Blue No. 1 and FD and C Red No. 40, McCormick, Baltimore, MD, U.S.A.) was used to check the alignment of the solution streams from the rapid solution changer.

Data analysis-electrophysiology—Drug-induced potentiation of a GABA-induced current was defined as the percentage increase of the control GABA response (defined as the average of the pre-drug and post-drug GABA induced currents). Concentration-response data were fitted (KaleidaGraph; Reading, PA, U.S.A.) with the logistic equation: $I/I_{max} = 100*[drug]^N/([drug]^N+(EC_{50})^N)$, where I/I_{max} is the percentage of the maximum obtainable GABA response, EC_{50} is the concentration producing a half-maximal response, and N is the Hill coefficient. Pooled data are presented as mean ± SEM. Statistical significance was determined by Student's two-tailed, unpaired t-test.

[³H]Muscimol binding—Binding was performed on homogenized membranes prepared from cells cultured as above. Cells were harvested in ice-cold binding buffer containing (in mM): 20, Tris; 2, ethylenediamine tetraacetic acid (EDTA); 150, KCl, pH 7.4, then centrifuged at 2700g for 10 min at 4°C. The cell pellet was hypotonically lysed in deionized water and centrifuged at 48 000g for 20 min at 4°C. Finally, the pellet was rinsed with binding buffer and stored at -80° C for up to 2 months. Prior to experiments, membranes were thawed on ice and resuspended in assay buffer containing (in mM): 124, NaCl; 1.3, MgS0₄; 25, HEPES; 2.9, KCl; 1.2, KH₂PO₄; D-glucose, 5.2, pH 7.4. The pellet was then homogenized with a Brinkman polytron (final protein concentration 0.3-0.5 mg/ml by Bradford assay, BSA standard). Membrane homogenates, along with eight concentrations of [³H]muscimol (saturation curve) or GABA plus a fixed concentration of [³H]muscimol (inhibition curve), were incubated in triplicate. After equilibration at room temperature, the assay mixtures were vacuum filtered through GF/B filter paper (Whatman, Clifton, NJ, U.S.A.) using a cell harvester (Brandel model MB-48, Gaithersburg, MD, U.S.A.), and quickly washed 10 times with 0.25 ml assay buffer. Specific binding was determined by subtracting the radioactive counts in the presence of 10 mM GABA from the radioactive counts in buffer alone. Similar results were obtained with a centrifugation assay using binding buffer (data not shown).

Data analysis-binding—Data points are taken from specific binding in individual experiments, and represent the mean of triplicate assays±SEM. Saturation binding data were fit (KaleidaGraph; Reading, PA, U.S.A.) with the equation: $B = (B_{max} * [L])/([[L] + K_d))$, where B is the specific binding, [L] is [muscimol], and K_d is the dissociation constant for muscimol. Inhibition data were fit with the equation:

$$B=B_{max} - [drug]/(IC_{50}+[drug]) * (B_{max} - B_{min})$$

where B_{min} is the lowest specific binding, [drug] is the final concentration of GABA, IC₅₀ is the concentration producing a half-maximal displacement of [³H]muscimol. The K_i value for GABA was calculated from: $K_i = IC_{50}/(1 + ([L]/K_d))$.

Drugs used—Stock solutions of GABA, bicuculline methiodide, TCEt (Sigma), PRO (Aldrich, Milwaukee, WI, U.S.A), MTX sodium (Brevital®, Eli Lilly, Indianapolis, IN, U.S.A.), and midazolam hydrochloride (Versed®, intravenous/intramuscular solution preparation; Roche Pharmaceuticals, Manati, PR, U.S.A.) were diluted into extracellular solution daily before use. PRO was first dissolved into dimethyl sulfoxide (DMSO; Sigma) to form a stock solution of 10 mM PRO which was then dissolved into the extracellular solution to form the final PRO solutions (maximum final concentration of DMSO was 0.05% for a 50 μ M PRO solution). Carrier controls were performed with 0.05% DMSO in extracellular medium. No significant effects of this DMSO solution were observed on GABA-induced currents in cells expressing either $\alpha_1\beta_3\gamma_2$ or $\alpha_6\beta_3\gamma_2$ receptors. [³H]muscimol (sp. act. 14.9 and 19.1 Ci/mmol) was obtained from NEN (Wilmington, DE, U.S.A.).

RESULTS

Receptor characteristics

We initially characterized the electrophysiological responses to GABA of the $\alpha_1\beta_3\gamma_2$ and $\alpha_6\beta_3\gamma_2$ combinations. Application of GABA to either cell line by the rapid solution changer elicited concentration-dependent inward currents [Fig. 1(A, B)]. Analysis of the concentration-response data [Fig. 1(C) and Table 1] shows that the $\alpha_6\beta_3\gamma_2$ receptor has a higher apparent affinity for GABA (EC₅₀ 0.8 ± 0.1 µM) and a lower Hill coefficient (N= 0.9 ± 0.2) than the $\alpha_1\beta_3\gamma_2$ line (EC₅₀ 2.2 ± 0.2 µM, N = 1.9 ± 0.2, respectively; p < 0.05 for both comparisons). These results are in accord with other investigations that compared GABA responses in α_1 and α_6 -containing GABA_A receptor combinations (Ducic et *al.*, 1995; Thompson et *al.*, 1996). Also, the $\alpha_1\beta_3\gamma_2$ line produced larger maximal GABA currents than the $\alpha_6\beta_3\gamma_2$ line (2690 ± 400 pA vs 1186 ± 448 PA, p < 0.05). Midazolam (1 µM) potentiated GABA currents in cells containing the α_1 subunit, but not in cells containing the α_6 subunit, and GABA currents in both receptor subtypes were blocked by 20 µM bicuculline (data not shown).

As shown in Fig. 2(A) and Table 2, the $\alpha_6\beta_3\gamma_2$ receptor shows a higher affinity for [³H]muscimol than $\alpha_1\beta_3\gamma_2$ ($\alpha_6\beta_3\gamma_2$ K_d 28 ± 5 nM versus $\alpha_1\beta_3\gamma_2$ K_d 90 ± 23, p <0.05). A Scatchard plot of the data (Fig. 2(B)) illustrates that binding at both receptors was appropriately fit by a one-site model. In displacement assays (Fig. 2(C)), GABA binding affinity to α_6 was also higher than at α_1 -containing receptors, as shown by its lower IC₅₀ (Table 2: $\alpha_6\beta_3\gamma_2$: 45 ± 14 nM vs $\alpha_1\beta_3\gamma_2$: 370 ± 78, p <0.05), and lower K_i value ($\alpha_6\beta_3\gamma_2$: 34 ± 10 versus $\alpha_1\beta_3\gamma_2$: 337 ± 71, p < 0.05).

Propofol potentiation of GABA responses

GABA potentiation by PRO was measured electrophysiologically using two separate methods: the picospritzer and rapid solution changer. The picospritzer was used from the initial set of experiments (Fig. 3, Table 3), since this method allowed for a wide range of modulator concentrations to be tested rapidly. However, once the appropriate PRO concentration range was established, later experiments with the rapid solution changer (Fig. 4) provided the means to apply known concentrations of GABA.

Significant potentiation of submaximal GABA-induced chloride currents by PRO was first observed at 0.2 μ M and 0.5 μ M PRO for the $\alpha_1\beta_3\gamma_2$ and $\alpha_6\beta_3\gamma_2$ GABA_A receptors, respectively (Fig. 3(A), p < 0.05 for each). Table 3 shows that the magnitude of the maximal potentiation of GABA-induced currents by PRO in these picospritzer experiments was significantly greater in cells expressing the α_1 isoform relative to the α_6 isoform (maximum: 4. 1-fold greater efficacy; p < 0.05). Statistically significant differences between the efficacy for PRO modulation of α_1 and α_6 receptors were observed at all concentrations > 0.2 μ M PRO.

The rapid solution changer was then used to investigate GABA_A receptor modulation in greater detail. As shown in Fig. 4, and Table 4, the efficacy of PRO potentiation applied at 10 μ M was higher in α_1 than at α_6 -ontaining receptors (1024 ± 203% vs 120 ± 39%; percent enhancement of an EC₁₀ GABA test concentration by $\alpha_1\beta_3\gamma_2$ and $\alpha_6\beta_3\gamma_2$ -containing receptors, respectively; p < 0.05).

Direct activation of GABA_A receptors

As Fig. 4 illustrates, some of the single cell responses to PRO show an inward current during pre-equilibration of the anesthetic, prior to co-application with GABA. This direct channel gating by 10 μ M PRO was much more pronounced in $\alpha_6\beta_3\gamma_2$ than $\alpha_1\beta_3\gamma_2$ -containing receptor (Fig. 4(C): 24.0 ± 6.4% versus 5.3 ± 1.9% of maximal current, respectively; p< 0.05).

Effect of other anesthetics

To determine whether these findings applied to other GABA modulators, the barbiturate MTX was also studied (Fig. 5 and Table 4). As with PRO, the efficacy of MTX enhancement of an EC₁₀ GABA test concentration was higher in α_1 than α_6 -containing receptors (Table 4; 816 ± 63% vs 309 ± 86%, respectively; p < 0.05). Figure 5 shows that, in agreement with previously published data studying pentobarbital modulation of GABA_A receptors expressed in *Xenopus oocytes* (Thompson *et al.*, 1996), 10 µM MTX also elicits significantly larger direct current in $\alpha_6\beta_3\gamma_2$ than $\alpha_1\beta_3\gamma_2$ containing receptors (16.7 ± 3.3% versus 2.4 ± 0.8% of maximal current, respectively; p < 0.05). Trichloroethanol was also studied, using picospritzer applied GABA (Fig. 3(B), Table 3). This drug also potentiated submaximal GABA currents, although it was less efficacious than PRO (2.2-fold less efficacious at both receptor subtypes). In a similar fashion to PRO, the efficacy of TCEt potentiation was significantly greater in $\alpha_1\beta_3\gamma_2$ than $\alpha_6\beta_3\gamma_2$ -containing receptors p < 0.05).

DISCUSSION

The concentrations of PRO, TCEt, and MTX that caused enhancement of GABA-induced currents in this study correlate with clinically relevant anesthetic concentration ranges determined *in vivo*. PRO induces general anesthesia in rats and dogs with an estimated EC_{50} of 0.4 μ M free PRO (Franks and Lieb, 1994), and TCEt anesthetizes canines and humans at concentrations in the range of 0.2–2 mM (Breimer, 1977; Garrett and Lambert, 1973).

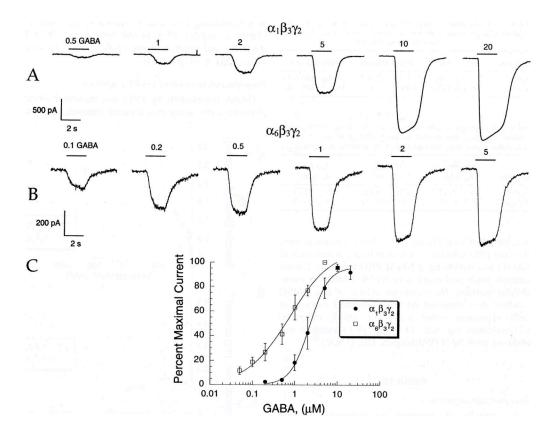
Threshold anesthetic concentrations for MTX in humans are estimated to range from 12 to 37 μ M (Lauven *et al.*, 1987).

The results of this study underline the importance of subunit composition in the modulatory effects of PRO. As summarized in Tables 3 and 4, replacing an α_6 with an α_1 subunit in GABA_A receptors with an identical $\beta_3\gamma_2$ subunit background markedly increased the modulatory action of PRO. Although the larger maximal current (as shown in Table 1) and higher maximal binding [B_{max}; Fig. 2(A and B)] suggest that more α_1 -containing receptors are being expressed, normalization of the enhancement against parallel GABA test concentrations demonstrates that the differential enhancement cannot be explained by differences in receptor expression levels.

Our data with MTX contrast slightly with other investigations of the role of the α subunit in modulation by barbiturates. Our finding that direct activation by MTX is greater in α_6 than α_1 -containing receptors is in agreement with two studies assessing pentobarbital modulation in GABA_A receptors expressed in *Xenopus oocytes* (Wafford *et al.*, 1996; Thompson *et al.*, 1996). However, in contrast to our findings, those two studies found that pentobarbital potentiated submaximal GABA currents to a slightly greater degree in α_6 than α_1 -icontaining receptors. These differences may be accounted for by the use of different expression systems, barbiturates, and $\beta\gamma$ backgrounds between those studies and ours. Use of the rapid solution changer allows for rapid equilibration of the applied GABA concentration, a condition which may be more difficult to achieve in whole oocytes. Nevertheless, from these studies, as well as our own, it is clear that the α subunit plays a significant role in both PRO and barbiturate modulation.

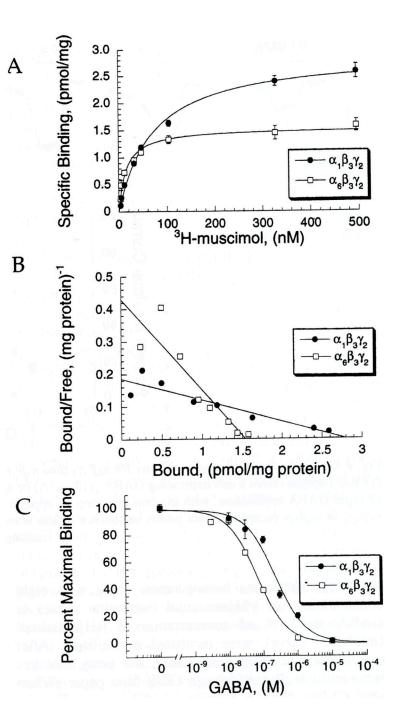
Inspection of Table 3 reveals a difference in the maximal potentiation (efficacy), but not the EC_{50} , for GABA potentiation by PRO between $\alpha_1\beta_3\gamma_2$ or $\alpha_6\beta_3\gamma_2$ GABA_A receptors. Thus, differences between the structures of the α_1 and α_6 subunit isoforms may be important in the extent of allosteric modulation by PRO, but perhaps not direct binding *per se*, of the drug to the GABA_A receptor. Previous work has already shown that modulation by PRO does not require the γ subunit (Jones *et al.*, 1995), and in fact, is even seen in β_1 homomers expressed in *Xenopus* oocytes (Sanna et al., 1995b). Our finding that the α subunit isoform type does not affect the apparent affinity of PRO is consistent with the primary determinants of PRO binding being located on the β subunit, or on components of the α subunit which are highly conserved.

Acknowledgments

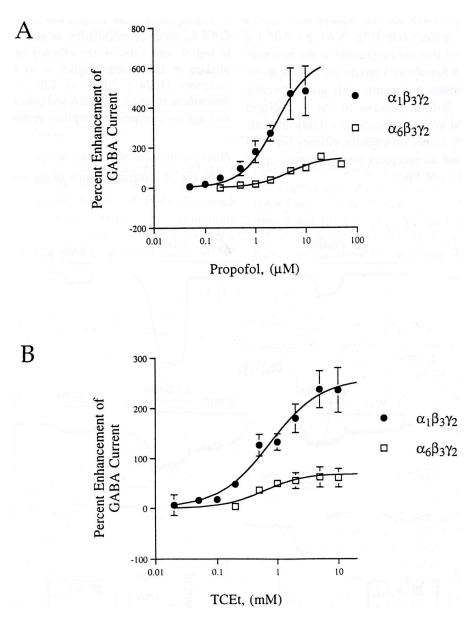

Research support was provided by NIH grants GM45129 and GM00623 (NLH), NIDA grant DA07255 (SMO), and NIMH grant MH11504 (MDK).

References

- Breimer DD. Clinical pharmacokinetics of hypnotics. Clinical Pharmacokinetics 1977;2:93–109. [PubMed: 16715]
- Burt DR, Kamatchi GL. GABA_A receptor subtypes: from pharmacology to molecular biology. FASEB Journal 1991;5:2916–2923. [PubMed: 1661244]
- Ducic I, Caruncho HJ, Zhu WJ, Vicini S, Costa E. γ-Aminobutyric acid gating of Cl⁻ channels in recombinant GABA_A receptors. Journal of Pharmacology and Experimental Therapeutics 1995;272:438–445. [PubMed: 7815361]
- Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994;367:607–614. [PubMed: 7509043]


- Gage PW, Robertson B. Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane, and ketamine in CA1 pyramidal cells in rat hippocampus. British Journal of Pharmacology 1985;85:675–681. [PubMed: 2992670]
- Garrett ER, Lambert HJ. Pharmacokinetics of trichloroethanol and metabolites and interconversions among variously referenced pharmacokinetic parameters. Journal of Pharmaceutical Science 1973;62:550–572.
- Hadingham KL, Harkness PC, McKeman RM, Quirk K, Le Bourdelles B, Horne A, Kemp JA, Barnard EA, Ragan CI, Whiting PJ. Stable expression of mammalian type A γ-aminobutyric acid receptors in mouse cells: demonstration of functional assembly of benzodiazepine-responsive sites. Proceedings of the National Academy of Sciences of the USA 1992;89:6378–6382. [PubMed: 1321437]
- Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. British Journal of Pharmacology 1991;104:619–628. [PubMed: 1665745]
- Hales TG, Lambert JJ. Modulation of GABA_A and glycine receptors by chlormethiazole. European Journal of Pharmacology 1992;210:239–246. [PubMed: 1319334]
- Hara M, Kai Y, Ikemoto Y. Enhancement by propofol of the γ-aminobutyric acid_A response in dissociated hippocampal pyramidal neurons of the rat. Anesthesiology 1994;81:988–994.
 [PubMed: 7943850]
- Harrison NL, Simmonlds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Research 1984;323:287–292. [PubMed: 6098342]
- Harrison NL, Majewska MD, Harrington JW, Barker JL. Structure-activity relationships for steroid interaction with the γ-aminobutyric acid_A receptor complex. Journal of Phunnacology and Experimental Therapeutics 1987;241:346–353.
- Horne AL, Harkness PC, Hadingham KL, Whiting P, Kemp JA. The infuence of the gamma 2L subunit on the modulation of responses to GABA_A receptor activation. British Journal of Pharmacology 1993;108:711–716.
- Jones MV, Brooks PA, Harrison NL. Enhancement of gamma-aminobutyric acid-activated Cl⁻ currents in cultured rat hippocampal neurones by three volatile anesthetics. Journal of Physiology 1992;449:279–293.
- Jones MV, Harrison NI, Pritchett DB, Hales TG. Modulation of the GABA_A receptor by propofol is independent of the γ subunit. Journal of Pharmacology and Experimental Therapeutics 1995;274:962–968. [PubMed: 7636760]
- Kato K. Novel GABA_A receptor α subunit is expressed only in cerebellar granule cells. Journal of Molecular Biology 1990;214:619–624. [PubMed: 2167378]
- Kleingoor C, Wieland H4, Korpi ER, Seeburg PH, Kettenmann HL. Current potentiation by diazepam but not GABA sensitivity is determined by a single histidine residue. Neuroreport 1993;4:187– 190. [PubMed: 8384024]
- Koltchine VV, Ye Q, Fimi SE, Harrison NL. Chimeric GABA_A/glycine receptors: expression and barbiturate pharmacology. Neuropharmacology 1996;35:1445–1456. [PubMed: 9014160]
- Laurie DJ, Seeburg PH, Wisden W. The distribution of 13 GABA_A receptor subunit mRNAs in the rat brain II. Olfactory bulb and cerebellum. Journal of Neuroscience 1992a;12:1063–1076. [PubMed: 1312132]
- Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABA_A receptor subunit mRNAs in the rat brain III. Embryonic and postnatal development. Journal of Neuroscience 1992b;12:4151–4172. [PubMed: 1331359]
- Lauven PM, Schwilden HI, Stoeckel H. Threshold hypnotic concentration of methohexitone. European Journal of Clinical Pharmacology 1987;33:261–265. [PubMed: 3691614]
- Lovinger DM, Zimmerman SA, Levitin M, Jones MV, Harrison NL. Trichloroethanol potentiates synaptic transmission mediated by γ-aminobutyric acid_A receptors in hippocampall neurons. Journal of Pharmacology and Experimental Therapeutics 1993;264:1097–1103. [PubMed: 8383736]

- Lüddens H, Pritchett DB, Kohler M, Killisch I, Keinanen K, Monyer H, Sprengel R, Seeburg PH. Cerebellar GABA_A receptor selective for a behavioural alcohol antagonist. Nature 1990;346:648– 651. [PubMed: 2166916]
- Macdonald RL, Ols'en RW. GABA_A receptor channels. Annual Reviews in Neuroscience 1994;17:569–602.
- Mertens S, Benke D, Mohler H. GABA_A receptor populations with novel subunit combinations and drug binding profiles identified in brain by alpha 5- and delta-subunit-specific immunopurification. Journal of Biological Chemistry 1993;268:5965–5973. [PubMed: 8383681]
- Nicoll RA, Eccles JC, Oshima T, Rubia C. Prolongation of hippocampal inhibitory post-synaptic potentials by barbiturates. Nature 1975;258:625–627. [PubMed: 1207741]
- Olsen RW, Tobin AJ. Molecular biology of GABA_A receptors. FASEB Journal 1990;4:1469–1480. [PubMed: 2155149]
- O'Shea SM, Krasowski MD, Rick CE, Whiting PJ, Hadingham KL, Czajkowski C, Harrison NL. Subunit-dependent modulation of recombinant GABA_A receptors by general anesthetics. Society for Neuroscience Abstracts 1996;26:511–512.
- Peoples RW, Weight FF. Trichloroethanol potentiation of γ-aminobutyric acid-activated chloride current in mouse hippocampal neurons. British Journal of Pharmacology 1994;113:555–563. [PubMed: 7834208]
- Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH. Importance of a novel GABA_A receptor subunit for benzodiazepine pharmacology. Nature 1989;338:582–585. [PubMed: 2538761]
- Rabow LE, Russek SJ, Farb DH. From ion currents to genomic analysis: recent advances in GABA_A receptor research. Synapse 1995;21:189–274. [PubMed: 8578436]
- Sanna E, Mascia MP, Klein RL, Whiting PJ, Biggio G, Harris RA. Actions of the general anesthetic propofol on recombinant human GABA_A receptors: influence of receptor subunits. Journal of Pharmacology and Experimental Therapeutics 1995a;274:353–360. [PubMed: 7616420]
- Sanna E, Garau F, Harris RA. Novel properties of homomeric beta 1 gamma-aminobutyric acid type A receptors: actions of the anesthetics propofol and pentobarbital. Molecular Pharmacology 1995b; 47:213–217. [PubMed: 7870027]
- Study RE, Barker JL. Diazepam and (-)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of γ-aminobutyric acid responses in cultured central neurons. *Proceedings of the National Academy of* Sciences *of the U.S.A.* 1981;78:7180–7184.
- Thompson SA, Whiting PJ, Wafford KA. Alpha subunits influence the action of pentobarbital on recombinant GABA-A receptors. British Journal of Pharmacology 1996;117:521–527. [PubMed: 8821543]
- Tyndale, RF.; Olsen, RW.; Tobin, AJ. GABA_A receptors. In: North, RA., editor. The Handbook of Receptors and Channels: Ligand and Voltage-gated Zon Channels. CRC Press; Boca Raton, FL: 1995. p. 265-290.
- Wafford KA, Thompson SA, Thomas D, Sikela J, Wilcox AS, Whiting PJ. Functional characterization of human γ-aminobutyric acid_A receptors containing the α₄ subunit. Molecular Pharmacology 1996;50:670–678. [PubMed: 8794909]
- Wakamori M, lkemoto Y, Akaike N. Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. Journal of Neurophysiology 1991;66:2014–2021. [PubMed: 1667416]
- Wisden W, Gundlach AL, Barnard EA, Seeburg PH, Hunt SP. Distribution of GABA_A receptor subunit mRNAs in rat lumbar spinal cord. Brain Research and Molecular Brain Research 1991;10:179–183.
- Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABA_A receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. Journal of Neuroscience 1992;12:1040–1062. [PubMed: 1312131]
- Zimmerman SA, Jones MV, Harrison NL. Potentiation of gamma-aminobutyric acid_A receptor Cl⁻ current correlates with *in vivo anesthetic* potency. Journal of Pharmacology and Experimental Therapeutics 1994;270:987–991. [PubMed: 7932211]


Fig. 1.

GABA has higher apparent affinity for $\alpha_6\beta_3\gamma_2$ than $\alpha_1\beta_3\gamma_2$. GABA was applied with the rapid solution changer. (A and B) GABA responses from a cell expressing GABA_A $\alpha_1\beta_3\gamma_2$ (A) or $\alpha_6\beta_3\gamma_2$ (B) receptors. Bars over current traces indicate the duration of rapid GABA application, with the concentration of applied GABA in μ M. (C) Concentration-response curves for GABA_A $\alpha_1\beta_3\gamma_2$ or $\alpha_1\beta_3\gamma_2$ receptors. Data points are shown as the normalized means of multiple experiments (5 ≤ n ≤ 7), error bars indicate SEM.

Fig. 2.

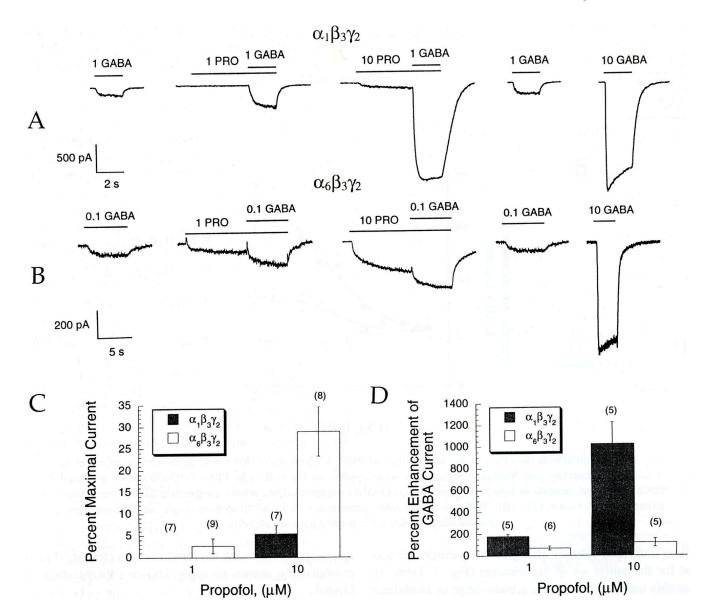

Binding affinity is higher for muscimol and GABA at $\alpha_6\beta_3\gamma_2$ than $\alpha_1\beta_3\gamma_2$. (A) Saturation binding isotherms for $\alpha_1\beta_3\gamma_2$ and $\alpha_6\beta_3\gamma_2$ receptors obtained by using increasing concentrations of [³H]muscimol. Data points show the means ± SEM from a single experiment, with each concentration performed in triplicate. This experiment was performed five times, with similar results. (B) Shows a Scatchard plot from the same experiment from (A). Data points are the means of triplicate measurements. (C) An inhibition curve showing displacement of 10 nM [³H]muscimol with increasing concentrations of GABA. This figure represents the means ± SEM from a single experiment, with each point performed in triplicate. This experiment was performed three times with similar results.

Fig. 3.

α subunit affects the efficacy, but not potency of PRO. Submaximal GABA was applied by picospritzer as detailed in Materials and Methods; anesthetics were applied to the bath. (A) PRO (0.05–50 μM) potentiates GABA-induced currents in both $\alpha_1\beta_3\gamma_2$ and $\alpha_6\beta_3\gamma_2$ GABA_A receptors. Data points are means ± SEM from pooled experiments ($4 \le n \le 13$). (B) TCEt (0.02–10 mM) potentiates GABA-induced currents in both receptor combinations ($5 \le n \le 15$; pooled data are shown).

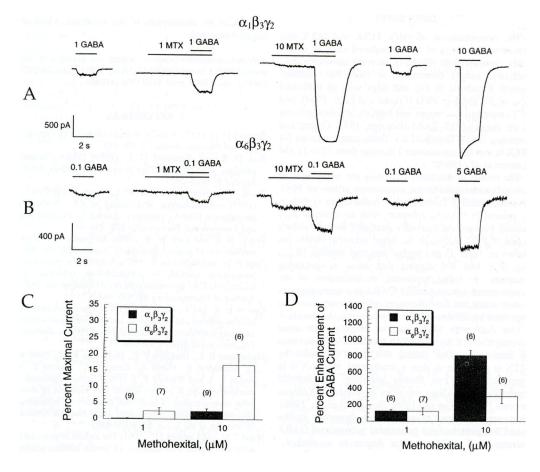

Page 12

Fig. 4.

PRO causes greater direct gating in α_6 than α_1 , but greater potentiation in α_1 than α_6 containing receptors. GABA and anesthetics were applied with the rapid solution changer. (A and B) PRO enhances EC₁₀ GABA responses in either (A) $\alpha_1\beta_3\gamma_2$ or (B) $\alpha_6\beta_3\gamma_2$ GABA_A receptors. The first trace shows a pre-anesthetic control response to GABA; the last trace shows the response to a maximal concentration of GABA. Bars over current traces indicate GABA and PRO applications, respectively, with the concentration of each drug applied given in μ M. In both receptor combinations, pre-application of PRO often elicited a direct inward current in the absence of GABA. (C) PRO directly elicits an inward current in the absence of applied GABA, displayed here as a percentage of the maximal GABA response. Bars show the percentage of direct gating \pm SEM from pooled experiments, with the number of experiments given in parentheses. This direct current is significantly greater at 10 μ M PRO for the $\alpha_6\beta_3\gamma_2$ receptors (p < 0.05). (D) Enhancement of an EC₁₀ GABA by 1 and 10 μ M PRO is significantly greater in the $\alpha_1\beta_3\gamma_2$ -containing receptors. The ordinate shows the

percentage enhancement of the GABA dose (\pm SEM) in the presence of PRO compared to the GABA dose alone. (Number of experiments shown in parentheses.)

Fig. 5.

MTX causes greater direct gating in α_6 than α_1 , but greater potentiation in α_1 than α_6 containing receptors. Experimental design and figure representations are analogous to Fig. 4. (A and B) enhancement of submaximal GABA responses by MTX in cells expressing either (A) $\alpha_1\beta_3\gamma_2$ or (B) $\alpha_6\beta_3\gamma_2$ GABA_A receptors. As with PRO, preapplication of MTX often elicited an inward current directly. (C) MTX directly activates an inward current in the absence of applied GABA, shown as a percentage of the maximal GABA response. This direct current is significantly greater at both 1 and 10 µM MTX for the $\alpha_6\beta_3\gamma_2$ receptors (p < 0.05). (D) Enhancement of an EC₁₀ GABA current response by 1 and 10 µM MTX is significantly greater in the $\alpha_1\beta_3\gamma_2$ at 10 µM.

A summary of electrophysiological data using the rapid solution changer (values shown are means \pm SEM with number of experiments in parentheses)

Cell line	$EC_{50}\left(\mu M\right)$	Hill coefficient	Maximum (pA)
$\alpha_1\beta_3\gamma_2$	2.2 ± 0.2 (6)	1.9 ± 0.2 (6)	2690 ± 400 (18)
$\alpha_6\beta_3\gamma_2$	0.8 ± 0.1 (7)	0.9 ± 0.2 (7)	1186 ± 448 (8)

A summary of radioligand binding data using [³H]muscimol (values represent the pooled means±SEM from curve fits of individual experiments with number of experiments in parentheses)

Cell line	$Muscimol\;K_{d}\left(nM\right)$	GABA IC ₅₀ (nM)	GABA K _i (nM)
$\alpha_1\beta_3\gamma_2$	90 ± 23 (5)	370 ± 78 (3)	337 ± 71 (3)
$\alpha_6\beta_3\gamma_2$	28 ± 5 (5)	45 ± 14 (3)	10 ± 10 (3)

A comparison of electrophysiological data from $\alpha_1\beta_3\gamma_2$ and $\alpha_6\beta_3\gamma_2$ using bath-applied PRO or TCEt, picospritzer-applied GABA (values are pooled means \pm SEM, $4 \le n \le 15$)

Anesthetic	Cell line	EC ₅₀	Hill coefficient	Maximum (% enhancement)
PRO	$\alpha_1\beta_3\gamma_2$	$2.6\pm0.5~\mu M$	1.3 ± 0.2	564 ± 53
	$\alpha_6\beta_3\gamma_2$	$4.6\pm1.9\;\mu M$	1.3 ± 0.3	136 ± 17
TCEt	$\alpha_1\beta_3\gamma_2$	$0.8\pm0.2\ mM$	1.0 ± 0.6	258 ± 21
	$\alpha_6\beta_3\gamma_2$	$0.6\pm0.2\ mM$	1.3 ± 0.3	60 ± 3

A comparison of $\alpha_1\beta_3\gamma_2$ and $\alpha_6\beta_3\gamma_2$ using the rapid solution changer to apply GABA or PRO or MTX (values represent means ± SEM pooled from multiple experiments with number of experiments in parentheses)

Cell line	$Concentration \ (\mu M)$	PRO (% Enhancement)	MTX (% Enhancement)
$\alpha_1\beta_3\gamma_2$	1	178 ± 21 (5)	125 ± 16 (6)
	10	1024 ± 203 (5)	816 ± 63 (6)
$\alpha_6\beta_3\gamma_2$	1	70 ± 18 (6)	124 ± 43 (7)
	10	120 ± 39 (5)	309 ± 86 (6)