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Abstract
Older community dwelling adults often take multiple medications for numerous chronic diseases.
Non-adherence to these medications can have a large public health impact. Therefore, the
measurement and modeling of medication adherence in the setting of polypharmacy is an
important area of research. We apply a variety of different modeling techniques (standard linear
regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-
binomial (BB) regression; generalized estimating equations (GEE)) to binary medication
adherence data from a study in a North Carolina based population of older adults, where each
medication an individual was taking was classified as adherent or non-adherent. In addition,
through simulation we compare these different methods based on Type I error rates, bias, power,
empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is
robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy
when adherence is dichotomously measured for multiple medications per person.
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1. INTRODUCTION
Medication regimen adherence has been defined as the “extent to which patients take
medications as prescribed by their health care providers” (Osterberg and Blaschke 2005).
Adherence to a single prescribed medication is often measured as the percentage of the
medication taken by the patient over some period of time (Osterberg and Blaschke 2005).
However, adults aged 50 and over often take multiple medications for numerous chronic
diseases and the likelihood that they will be prescribed multiple medications significantly
increases with age (Murray et al. 2004; Vik, Maxwell and Hogan 2004). Measuring,
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modeling and determining the factors which predict adherence in this older adult population
is an extremely important area of research since proportions of hospitalizations as high as
11% have been attributed to medication non-adherence (Vik et al. 2004).

Numerous methods have been used to measure adherence in the older community-dwelling
population, including but not limited to biological assays, pill counts, electronic monitoring,
pharmacy records, prescription claims, third-party assessment, and self-report; however, to
date, there has been no “gold” standard (Vik et al. 2004). For a discussion of the different
methods used to measure adherences along with the pros and cons of these methods see Vik
et al. (2004). A recent community-based study in North Carolina assessing the quality of
medication use among older adults used a clinical pharmacist to evaluate one aspect of
quality, adherence (i.e. Adherent, non-Adherent), for each medication a person was
currently taking (NIH Grant 5K23AG024229). In meeting with each older individual, the
pharmacist had the individual explain how he or she used each medication and asked the
individual a series of questions to determine whether the individual was likely adhering to
the medication as prescribed. Taking all the information gathered at the interview, the
pharmacist arrived at an assessment of adherence (i.e. Adherent or non-Adherent) for each
medication the individual was taking. This resulted in multiple dichotomous responses for
each older adult with the total number of responses (medications) varying across individuals.
Just as with this method, oftentimes the estimates of adherence are reported as binary
variables (Vik et al. 2004).

Previous researchers (Lee, Grace and Taylor 2006) working in the setting of polypharmacy
have summed these binary variables and defined adherence as the proportion of adherent
medications out of the total medications prescribed per person, and analyzed the data using
linear regression models to assess person-level characteristics (Weisberg 1985). However,
due to the varying number of medications taken per individual, and the inability of linear
models to guarantee a predicted value between zero and one (Weisberg 1985; Fleiss, Levin
and Paik 2003), we hypothesize that the data may more appropriately be analyzed using
logistic regression (Hosmer and Lemeshow 1989) with an extension to models which adjust
for clustering within individuals, such as generalized estimating equations (GEE) (Liang and
Zeger 1986) and beta-binomial (BB) regression (Williams 1975; Prentice 1986). These
models account for the original binary nature of the outcome at the medication level
(Adherent vs. Non Adherent) and the intra-individual correlation (adherence statuses of
medications taken by the same individual are related). Ignoring the within-person correlation
among adherence responses could lead to invalid inferences about the rates of adherence
(Diggle, Heagerty, Liang and Zeger 2002; Hu, Goldberg, Hedeker, Flay and Pentz 1998;
Fitzmaurice, Laird and Rotnitsky 1993; Fleiss et al. 2003).

In Section 2 we discuss six methods (naïve logistic regression; GEE; BB regression;
standard, unadjusted, and weighted least squares linear regression) for analyzing binary
adherence data in the setting of polypharmacy, focusing on methods that are readily
available to implement in standard statistical software (contact the corresponding author for
code pertaining to the analysis presented in this article). In Section 3, we compare the six
methods using a sub-sample of data collected on 200 community-dwelling older adults, by
investigating how well the methods performed when comparing rates of adherence between
African American (AA) older adults and their white peers. We present simulations results in
Section 4, where we studied the influence of sample size, intra-individual correlation among
multiple medications, and the average number of total medications per person on Type I
error rates, the bias of the parameter estimates, empirical 95% coverage, and power for the
six different methods. Since we were concerned about the appropriateness of linear
regression in this setting, we conducted further simulations to examine some aspects of the
goodness of fit of this model. We provide a discussion in Section 5 and make

Esserman et al. Page 2

Stat Biopharm Res. Author manuscript; available in PMC 2010 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



recommendations about the most appropriate method for analyzing this type of data in
Section 6.

2. METHODS FOR ANALYZING ADHERENCE FOR MULTIPLE
MEDICATIONS

Let Yij, i=1, …, N and j=1, …, ni, be binary adherence responses (i.e. Adherent (Yij=1); non-
Adherent (Yij=0)), where ni is the number of current medications for the ith individual and N
is the total number of individuals in the cohort. For all analyses proposed, we assume that
the covariates of interest (X) are observed at the individual level (demographics, health
status, disease, etc), not at the medication level (type of medication, medication indication,
medication dose, etc.). For this study, each medication contributes equally towards the
adherence rate estimation. For example, a person’s adherence to daily aspirin for MI
prophylaxis would count the same in the analysis as adherence to insulin for diabetes. This
assumption may not be valid in studies where adherence to certain drugs is more important
(over the counter vs. not, by disease, etc.). In these scenarios, more “weight” could be place
on certain medications when calculating individual adherence rates. Exploring
methodologies in these scenarios is beyond the scope of this article.

Standard naïve logistic regression (Hosmer and Lemeshow 1989) can be used to analyze the
data if we assume an individual’s adherence statuses for multiple medications, Yij’s, are
independent, identically distributed Bernoulli random variables with P[Yij=1|Xi] = pij , the
rate of adherence for the ith individual, and that being adherent to one medication does not
affect the adherence status of another medication. If we assume that the probability of being
adherent to a medication is the same for each medication an individual is currently taking
(P[Yij=1|Xi] = pi), this probability can be parameterized by the logistic response function

(1)

where β is a vector containing the regression coefficients for the covariates of interests, Xi.
Also, under these assumptions the total number of medications in which the person is

adherent, , follows a binomial distribution with mean nipi and variance nipi(1-
pi). Thus, when covariates are considered at the individual level as opposed to the
medication level, this is equivalent to modeling the proportion adherent for a given
individual (Si//ni: Number of adherent medications/total number of medications for the ith
individual) via a logistic regression model. However, when adherence statuses for multiple
medications are taken from the same individual, it may be naïve to assume these repeated
observations are independent. Although the estimates of the regression coefficients and rates
of adherence will be unbiased if the dependence (intra-individual correlation) is ignored, the
variability of the coefficients will be underestimated if the correlation is positive (as was
observed in the example data set presented in Section 3) leading to improper inferences
about the importance of factors (i.e. demographics) used in the model to predict adherence
(Diggle et al. 2002; Hu et al. 1998; Fitzmaurice et al. 1993; Fleiss et al. 2003; Stokes, Davis
and Koch 2000).

We consider two extensions of the standard logistic regression, which can model the
correlation that exists among the repeated measures within individuals: beta binomial (BB)
regression and generalized estimating equations (GEE). The BB regression model extends
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the naive logistic approach by modeling the correlation through an additional parameter
which accounts for positive correlation among the multiple medications for a given
individual. This model can only accommodate correlation structures for which all responses
for a given individual are assumed to be equally correlated (i.e. the exchangeable structure;
Neuhaus 1992). With the BB model, rates of adherence across individuals (pi), are assumed
to be randomly distributed from a beta distribution, B(a, b), with a = pi/λ and b=(1-pi)/λ,
where pi is defined as in equation (1) and λ is a dispersion parameter such that the within-
person correlation coefficient, ρ, is defined by ρ=λ/(1+λ) (ρ≥0). Thus, Si, the total number of
adherent medications for individual i, follows a BB distribution (Skellam 1948; Johnson,
Kemp and Kotz 2005) with mean nipi and variance

The mean is identical to that of the standard naïve logistic regression, but the variance has a
multiplier, 1+(ni−1)( λ/(1+λ)), which models the overdispersion due to positive intra-
individual correlation (Johnson et al. 2005). While it is possible to observe negative
correlations in this setting, based on our example data set, we do not anticipate negative
correlations, and thus do not consider it further. However, the correlated-binomial model
proposed by Kupper and Haseman (1978) is capable of handling negative correlations.

While BB regression is a fully parameterized method of accounting for the intra-individual
correlation, the semi-parametric GEE method incorporates the dependence by robustly
estimating the variance. The “working” or approximate covariance matrix for Yi = (Yi1, …,
Yi ni ) is given by

where Ai is a diagonal matrix of the marginal variance functions var[Yij] (equal to pi(l-pi) in
the binomial case where pi is defined as in equation (1)), and R(α) is the “working”
correlation matrix (given by the investigator). Adherence statuses for the same individual are
assumed to be correlated while observations for different individuals are assumed to be
independent. The parameter α is a vector of the correlation parameters for a given
specification of the correlation matrix. A number of structures can be specified for the
correlation matrix, including but not limited to independent, exchangeable, unstructured and
autoregressive. If R(α) is correctly specified and represents the true correlation matrix for

the , then Vi will be the true covariance of Yi instead of just the “working” or approximate
covariance matrix (Liang and Zeger 1986). However, it is important to note that the variance
estimates and the regression parameters, , will be consistent even if the “working”
correlation matrix, and thus the “working” covariance matrix, is misspecified, as long as the
model for the mean μi(β) = E[Yij] is correctly specified (Liang and Zeger 1986; Fitzmaurice
et al. 1993; Hu et al. 1998). This is made possible through the use of a sandwich estimator of
the covariance; the empirical estimates of the covariance (obtained from making use of the
observed correlations) are “sandwiched” between the model-based covariance estimates
(obtained assuming working correlation assumptions are correct) to give a robust estimate of
the covariance (Liang and Zeger 1986; Kleinbaum and Klein 2002; Dunlop 1994;
Fitzmaurice et al. 1993).

While GEE can be used for a wide variety of outcome distributions, for this paper, we are
solely concerned with binary responses, since adherence status is often measured as a binary
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variable (or reduced to one). We use the logit link, as with logistic regression, where the pi=
μi(β) = E[Yij] is defined as in Equation (1). For this type of data, where the covariates of
interest are at the individual level and not the medication level, the exchangeable matrix is
most appropriate and will be the “working” correlation matrix for all data analyzed using a
GEE model below. This implies that observations for a given individual share the same
correlation and this correlation is common for all individuals in the analysis. Thus, α
consists of only one parameter, the intra-individual correlation, ρ. An autoregressive
correlation matrix was not appropriate in this setting since there was no time structure or
distance between measurements. An unstructured correlation matrix was not considered
because the type and the number of medications vary across individuals.

Each of the three models discussed above uses a logistic link function to model the
probability of adherence, which treats the outcome variable as categorical, and thus the
coefficients in the models can be used to estimate odds ratios (OR). However, if we were to
define adherence for an individual as a continuous random variable (number of medications
in which the person is adherent divided by the total number of medications in which the
person is taking, pi *=Si/ni), as has been done previously (Lee et al. 2006), we could use
standard linear regression to model adherence as a function of person level characteristics
(i.e. demographics, co-morbidities, etc.), pi*= Xi’β*. We could then compare subpopulations
using the estimated difference in adherence rates (DAR). For example, holding all other
variables constant, we could calculate the difference in adherence for two groups as

. The assumptions of this model are that the pi * are independently and
identically distributed normal random variables with mean X’β* and constant variance σ2. In
using this model, the user falsely assumes the variability will be constant, since values of pi*
closer to zero or one would naturally be less variable.

In the standard linear model (referred to as linear), the number of medications an individual
is currently taking is not taken into account. Thus, an individual adherent to two out of three
medications would contribute the same amount of information to the model estimation as an
individual adherent to eight out of twelve medications. Therefore, in addition to the standard
linear model we considered two variations: an adjusted linear model, in which we control for
the total number of medications a person is taking (referred to as adjusted); and a weighted
linear model, where the weight is the number of medications taken per individual (referred
to as weighted). These latter two models are only appropriate if the number of medications
differs across individuals and are considered here because intuitively, these are possible
models investigators may use in order to control for the number of medications an individual
is taking. Lee et al. (2006) adjusted for the number of medications when using linear models
to model the proportion of adherent medications.

In this article, we do not consider Poisson and negative binomial regression (Cameron and
Trivedi 1998), as these are not valid models for this type of data in which there are a finite
number of successes (adherent medications) bounded by a finite number of trials (total
number of medications per person). Using these models violates the assumption of the
number of trials being “essentially” infinite and the number of successes being allowed to be
indefinitely large. In addition, as was noted by Kupper and Haseman (1978), the Poisson
model, and thus by extension the negative binomial model, does not account for the number
of medications, nor is the assumption of the probability of adherence following a gamma
distribution theoretically justified.

Of note, the models discussed in this paper are population-averaged approaches in which the
focus is on making inferences about group differences. Random intercept models (Singer
and Willet 2003) constitute a subject-specific approach in which inferences about individual
differences are of primary interest. Discussion of these models is beyond the scope of this
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article. For further comparisons of population-average versus subject-specific approaches
see Hu et al. (1998).

3. EXAMPLE
For our example, we used data from an ongoing study assessing the quality of medication
use among community-dwelling older adults (NIH Grant 5K23AG024229). Participants met
the following inclusion criteria: (a) age ≥ 60 years, (b) residing independently in the
community setting; and (c) taking ≥3 regularly scheduled medications. Patients were
excluded if they had cognitive impairment (made ≥3 errors on a cognitive screening
instrument). Baseline information was obtained on 200 older adults (100 White; 100 AA)
during home interviews by a trained clinical pharmacist. Information was collected on
demographics, medication history and current use (prescription; over the counter; dietary;
alternative or complementary medicine), drug therapy concerns, functional status, health
literacy, and quality medication use.

During the baseline home interview, the clinical pharmacist conducted a comprehensive
medication review, which included the assessment of adherence status for each medication
an individual was taking, including prescription, over-the-counter, and herbal therapies. The
pharmacist classified the individual as “Adherent” or “non-Adherent” for each particular
medication using the information provided by the patient along with her clinical judgment.
For example, if an individual was taking an opioid medication used twice daily as needed
for pain, and the individual had not experienced any pain over the past week and therefore
had not required the use of the medication, then the patient was considered “adherent” with
this medication. Following the interview with the patient, the pharmacist did have access to
the patient’s medical record and used this information as well in determining medication
adherence. At this time, this method of measuring adherence has not been validated;
however, work is currently being done to assess the validity and reproducibility of this
measure. Although this method of measuring adherence has not been validated, these
methods could be used with other measures of adherence in which the outcome is binary at
the medication level (i.e., Adherent if > 80% pills taken).

The study is ongoing with follow-up data collections planned for 6 and 12 months. We only
used the baseline information for our methods demonstration. For all participants (N=200),
the average (standard deviation (SD)) number of current medications per person (ni) was
10.68 (4.61) and ranged from 3 to 27; the mean age was 77 years (range 60-96); 77% were
female; and the average (SD) proportion adherent was 84.0% (21.2%). Since the results of
this study have not yet been published, we focused on the difference between white and AA
community-dwelling older adults and took a random sample of 100 individuals, 50 white
and 50 AA, for demonstration purposes. The average number (SD) of current medications
was 11.28 (4.51) and 9.88 (4.43) and the average (SD) proportion adherent was 84.9%
(19.9%) and 80.0% (24.8%), for whites and AA’s, respectively, in the sub-sample.

The linear, adjusted, and weighted models estimated that older white adults have
approximately a 5-7% higher rate of adherence than older AA adults as indicated by the
DAR ranging from 0.05 (0.05*100% = 5% difference) to 0.07 in the three models. However,
the confidence interval (CI) contains zero (for all three models) and thus, we are unable to
conclude that the rate is higher in the white group compared to the AA group (see Table 1).
Using the results of the naïve logistic regression, we would conclude older white adults have
a greater odds of being adherent compared to older AA adults (Table 1; OR=1.57, 95% CI
1.14-2.16). According to the results of the BB regression and the GEE analysis with
exchangeable correlation structure, we conclude there is no significant difference in
adherence between older white and older AA adults. Note, the parameter estimates are
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similar for the three models but the standard error (SE) estimate for the logistic model is
40-50% smaller than the SE from the GEE (obtained by using the robust sandwich
covariance estimator) and BB regressions.

4. SIMULATIONS
4.1 Type I error, Bias, Empirical 95% Coverage and Power

In order to compare the models discussed in Section 2, we conducted a simulation study
modeled after the example dataset, in which we examined the effects of cohort size (N=100;
N=200), intra-individual correlation (ρ) in adherence among medications taken by the same
individual, and the total number of medications per person (ni). Data were generated under
two different methods: the BB distribution (fully parametric model) and the shared response
model (Lunn and Davies 1998; Pang and Kuk 2005). We expected the BB model to perform
well when data were generated from a BB distribution, but we also wanted to explore how
robust this model was to more general correlated binomial data. Intra-individual correlations
were varied from 0 to 0.5 for both a fixed number (n=10) and varying number (ni ~ negative
binomial with μ=10 and θ=10, for σ2= μ + μ2/ θ) of total medications per individual. When
the randomly generated ni resulted in a zero value (no medications for a given individual),
the 0 was replaced with a regenerated value of ni; this was an extremely rare event,
occurring approximately 0.1% of the time. A dummy group covariate (X=0 or X=1) was
generated with each level containing an equal number of individuals (50 per group for
N=100; 100 per group for N=200). Ten-thousand datasets were generated for analysis.

The evaluation of the simulations was based on Type I error rates, bias, power and empirical
95% coverage. The parameter of interest for the linear models is the DAR: β1 * = pi *|Xi=1 -
pi *|Xi=0; the parameter of interest for the naïve logistic, GEE, and BB models is the natural
log of the odds ratio ((lnOR); β1). For the BB and GEE models we were also interested in
the bias in estimating the intra-individual correlation. The adherence probability was
modeled using the logistic response function defined by Equation (1) with the probability of
being adherent in the reference group set at p=0.731 (β0=1). To explore Type I error rates,
we set the difference between groups to be zero (β *1=β1=0; OR=1). It is important to note
that for all models, we are interested in being able to unbiasedly estimate the difference
between the two groups with a Type I error rate close to the expected Type I error rate
(nominal 0.05 level). The robust covariance estimator with an exchangeable correlation
structure was used to estimate all GEE standard errors.

Figures 1(a) and 1(b) present Type I error rates (the nominal error rate is α=0.05) when the
number of total medications is the same across individuals (ni=n=10) for data generated
under the BB distribution and the shared response model. Adjusted and weighted linear
regression models were not applied to this scenario, since the number of medications is
constant across individuals. Our results show that the linear, BB, and GEE models have
Type I error rates close to the nominal value of 0.05 regardless of the amount of intra-
individual correlation. In contrast, the logistic model has highly inflated Type I error rates;
even for the smallest amount of intra-individual correlation (ρ=0.05), the Type I error rate is
already two times larger than expected. This rate only increases as the intra-individual
correlation increases. Regardless of N and the data generation method, the pattern of the
Type I error rate is approximately the same for all four models presented (linear; BB; GEE;
logistic). The biases of the parameter estimates for these models are negligible ranging from
−0.6% to 0.6% (data not shown) regardless of the method of data generation with the range
decreasing as the cohort size increases.

The results of the simulations with varied number of medications across individuals (Figures
2(a) and 2(b)) showed the same patterns as those when the number of medications was the
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same for each person (n=10). The biases of the parameter estimates for the six models
presented (linear; adjusted; weighted; logistics; GEE; BB) are negligible ranging from
−0.6% to 0.8% (data not shown) regardless of the method of data generation with the range
decreasing as the cohort size increases. However, the weighted model has a slightly inflated
Type I error rate compared to the linear and adjusted models, as well as the BB and GEE
models, and on average, its 95% confidence interval does not cover 0.05 (data not shown).
The generation method and the cohort size do not seem to impact the Type I error rates.

As can be in seen in Figure 3(a) for fixed n, for data generated under a BB distribution, the
correlation is estimated well by both the GEE and BB models regardless of cohort size.
However, when the data are generated under the shared response model (Figure 3(b)), the
BB model tends to underestimate the intra-individual correlation with the bias increasing as
the true correlation increases. The same pattern can be seen when the total number of
medications varied across individuals (Figures 3(c) and 3(d)).

To explore power, data were generated under the methods described above but with β1
values ranging between 0 and 1.5. This range in β1 values sets the probability of adherence
in the nonreference group to range from 73.1% to 92.4% (OR to range from 1 to 4.48; β1 *
to range from 0 to 0.193). As demonstrated in Figure 4, for data generated under a shared
response model with random ni, the power curves are similar for all models. The logistic
model is not presented here since the power will be inflated due to the inflated Type I error
rates we observed (Figures 1 and 2). The BB model tends to have slightly larger power than
the linear, adjusted, weighted, and GEE models, and this difference increases as the intra-
individual correlation increases. For all models, as the cohort size (N) increases, the power
increases; and as the intra-individual correlation increases, the power decreases, reflecting
the loss of information for a fixed sample size when observations within individuals are
highly correlated. Similar results were observed for data generated under a BB distribution
with random ni and both the shared response model and BB distribution for fixed n (results
not shown).

The empirical 95% coverage is presented in Table 2 for the same scenarios presented for the
power study (β1 values ranging between 0 and 1.5; data generated under shared response
model with random ni; ρ=0.1, 0.3, 0.5; N=100, 200). The linear, adjusted, GEE, and BB
models all have coverage close to the nominal 0.95 value for varying values of β1 and ρ. The
empirical coverage for the weighted linear model tends to be slightly lower than the nominal
0.95 value, while the coverage for the naïve logistic model is grossly lower than the nominal
0.95 value and is strongly influenced by the strength of the correlation.

4.2 Goodness of Fit of Linear Model
In addition to exploring the bias and accuracy of the linear model, we also explored
goodness of fit using two criteria: (1) the average proportion of times the linear model
predicts values of the probability of being adherent outside of the range of a legitimate
probability (0-1); and (2) how often the GEE predicted values closer to the “true”
probability of being adherent compared to the linear model. (Note: We chose to focus on the
GEE here since it has the same expected mean as the naïve logistic and BB models, but
performed as well or better than these two models during the simulations presented in
Section 4.1.)

Data were generated under the shared response model with fixed sample size (n=10), fixed
cohort size (N=200), varied intra-individual correlation (ρ = 0.1, 0.3, 0.5), and pi ranging
from 0.01 to 0.99. Ten-thousand data sets were generated. Over these data sets, the average
probability of being adherent was 0.73 with a range from 0.01 to 0.99; on average, the 10th

percentile of individual adherence was 0.28, the 25th percentile was 0.59, the median was
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0.84, the third quartile was 0.94, and the 90th percentile was 0.97. For all three intra-
individual correlations, approximately 15% of the values predicted by the linear model were
outside of the 0-1 range. On average 85%, 79% and 75% of the predicted adherence
probabilities were closer (as measured by absolute distance) to the “true” adherence
probabilities for the GEE compared to the linear model for ρ = 0.1, 0.3 and 0.5, respectively.

5. DISCUSSION
The results from the example dataset demonstrated that the naïve logistic regression would
have led us to declare higher adherence among whites compared to AA older adults while
results from the other models would not have led to this conclusion. The results of the
simulations demonstrate that even when the smallest amount of correlation is present among
adherence statuses of multiple medications taken by the same individual, the naïve logistic
model has an inflated Type I error rate. This rate of inflation increased with increased intra-
individual correlation. Although the estimates for the rates of adherence using this model
will be unbiased, the standard errors are severely underestimated, leading to this inflated
Type I error rate and incorrect inference (Diggle et al. 2002; Hu et al. 1998; Fitzmaurice et
al. 1993; Stokes et al. 2002). Thus, in any dataset in which the assumption of independent
and identically distributed binary responses could be violated (i.e. repeated measures from
the same individual), naïve logistic regression should not be the method of choice for the
analysis.

All of the linear models appeared to perform fairly well, although the weighted linear model
had a slightly inflated Type I error rate (on average, the 95% confidence interval did not
cover 0.05) and a slightly lower 95% empirical coverage; the adjusted and standard linear
models had Type I error rates close to the nominal value of 0.05 across increasing intra-
individual correlation. The estimates of the DAR had negligible to no bias. In addition, the
power curves of these models were similar to that of the GEE and BB models and the 95%
empirical coverage was close to the nominal value of 0.95. Due to these results, researchers
may be tempted to use these models to analyze binary adherence (or any data presented as a
percentage, i.e. percentage of medication taken), especially since they are easy to implement
and interpret; however, these models, in theory, are not appropriate for this type of data.
First, the outcome, adherence rate, is a probability with a restricted range of zero to one.
When using linear models, there is no restriction placed on the probability of adherence such
that predicted probabilities and their corresponding confidence intervals will fall into this
range (Weisberg 1985; Fleiss et al. 2003). As was shown in our simulations, approximately
15% of the predicted values fell outside of the zero to one range. In using linear regression
to analyze proportion data for four example datasets, Zhao, Chen and Schaffner (2001)
found that between 21% and 32% of the values were predicted outside of the zero to one
range. They also observed that model predictions are especially poor when the observed
values are close to zero and one. Second, the model assumes that the rates of adherence
across individuals are normally distributed with constant variance. The distribution of the
probability of adherence will be close to the normal distribution if the probability lies
between 0.1 and 0.9 (Fleiss et al. 2003); however, in Vik et al.’s (2004) review, they
reported estimates of individual medication adherence ranging between 43.7% and 100%. In
our example, we saw individual adherence rates ranging between 0 and 100%. Thus, there is
no guarantee that adherence probabilities will remain between the “normal” range. In
addition, the variance of the probability of adherence (pi(1-pi)) is dependent on the
covariates (X) since the pi is dependent on Xi(see Equation (1)), and thus the assumption of
constant variance is violated (Zhao et al. 2001). Third, more than 75% of the time, compared
to the GEE, the linear model predicted probabilities farther (in absolute distance) from the
“true” value.
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With the standard linear model, we assume that each individual makes the same contribution
to the model regardless of the number of medications being taken (i.e., a person who is
adherent to four out of five medications, pi *=0.80, is equivalent to a person who is adherent
to 12 out of 15, pi *=0.80, of their medications.); with adjusted linear regression we assume
that the number of medications is linearly related to the proportion of adherence; and with
weighted linear regression we assume that each individual should be given a weight that is
proportional to the number of medications the individual is taking. The most appropriate of
these assumptions seems to be the weighted linear model; however, it was the model that
performed the worst of the three in terms of Type I error rate and empirical coverage. In
addition, none of these models allows estimation of the intra-individual correlation which
could be informative to investigators designing interventions to increase rates of adherence
for general medication use, nor do they allow medication-specific covariates to be factored
into the model which could be important if the type of medication impacts adherence. Since
the probability of adherence is calculated by summing across all of the medications of an
individual, if an individual is more likely to be adherent to insulin for diabetes than daily
aspirin for MI prophylaxis, these medication-level covariates could not be accounted for in a
linear model nor could variations in correlation between the medications if we had a more
structured dataset (i.e. medication level covariates).

As expected, the BB model performed extremely well when the data were generated under a
BB distribution, but did not perform as well when the data were generated under a shared
response setting. Although the Type I error rates and empirical coverage probabilities were
close to the nominal 0.05 and 0.95 values, respectively, under both circumstances, the intra-
individual correlation was underestimated resulting in slightly higher power than the three
linear models and the GEE model. The BB can estimate the intra-individual correlation, but
is important to note that the BB model is limited to positive correlations and correlation
structures which assume responses within an individual share the same correlation (i.e.,
exchangeable; Neuhaus 1992). Therefore, we would expect that the BB model would not
perform as well if the true correlation structure differed from an exchangeable matrix. And
just as with the linear model, BB regression is unable to account for medication- level
covariates (Neuhaus 1992). In comparison, the GEE is capable of handling medication-level
covariates, a wide variety of correlation structures with both positive and negative
correlations, and performed extremely well under all circumstances of data generation with
negligible bias in the estimates of the regression parameters and the intra-individual
correlation. The Type I error rates and empirical coverage probabilities were close to the
nominal values of 0.05 and 0.95, respectively, as well. The variance estimate of the GEE is
considered a “robust” estimator of the variance because the estimates of the regression
parameters and their variances are consistent even if the “working” correlation matrix is
misspecified as long as the model for the mean is correctly specified (Zeger and Liang 1989;
Dunlop 1994; Stokes et al. 2000). However, a caveat of the GEE is that it does not perform
as well when the number of individuals (the number of medications per individual is not
important here, only the cohort size) is less than 50 (Mancl and DeRouen 2001), especially
if the intra-individual correlations are high (Stokes et al. 2000). We do not expect small
sample sizes in the community level setting similar to our example but investigators working
with smaller sample sizes should be aware of the small-sample properties of GEE.

6. CONCLUSIONS
Measuring medication adherence in the setting of polypharmacy is a complex issue and one
that we anticipate will become more prevalent in research regarding the quality of
medication use. We recommend using the GEE approach for analyzing adherence data
measured dichotomously in the setting of polypharmacy. The GEE is more robust and can
accommodate a wider variety of correlation structures than the BB model for situations
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where the dataset is more structured with respect to specific medications, as well as being
able to handle negative correlations. In addition, GEE can incorporate medication-level
covariates when researchers are interested in adherence differences across types of
medications (Prentice 1988), or when the intra-individual probability of adherence (pij ≠ pi,
for at least one j, j=1,…ni) is not constant across all medications, a property both the BB and
linear models (as used in these circumstances, where the probability is a function of the total
number of medications) lack. If in fact the pij ≠ pi for at least one j, then the unexplained
error would most likely increase in both the linear and BB models due the introduction of
another level of variability (between the pij’s) and the inability of both models to account for
the variability because of their use of summary measures in their modeling. The GEE can
also be extended to situations in which adherence is measured for each medication with a
nominal or ordinal scale having more than two levels, or even as a continuous measure (i.e.,
using pill counts to assess the percentage of each medication taken). While the linear
regression model in which the probability of adherence is treated continuously performed
well in terms of bias, Type I error, and power, we warn investigators about this model,
especially since as we have shown through simulations and Zhao et al. (2001) have shown in
four example datasets, there is no guarantee that the model will only predict valid
probabilities, nor is it possible to guarantee that adherence rates will remain within the
“normal” range and not violate the linear model assumptions.
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Figure 1.
(a) Comparison of Type I error rates for data generated under a beta-binomial model with n
fixed at 10 for all individuals. (b) Comparison of Type I error rates for data generated under
a shared response model with n fixed at 10 for all individuals.
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Figure 2.
(a) Comparison of Type I error rates for data generated under a beta-binomial model with ni
varying for each individual. (b) Comparison of Type I error rates for data generated under a
shared response model with ni varying for each individual.
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Figure 3.
(a)-(b) Comparison of the true intra-individual correlation with the estimated intra-
individual correlation for the GEE and BB models for data generated under both the beta-
binomial and shared response models for fixed n. (c)-(d) Comparison of the true intra-
individual correlation with the estimated intra-individual correlation for the GEE and BB
models for data generated under both the beta-binomial and shared response models for
random n.
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Figure 4.
Power plots for data generated under a shared response model with random n.
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