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Abstract
This paper proposes a new technique to speed up the computation of the matrix of spectral
collocation discretizations of surface single and double layer operators over a spheroid. The layer
densities are approximated by a spectral expansion of spherical harmonics and the spectral
collocation method is then used to solve surface integral equations of potential problems in a
spheroid. With the proposed technique, the computation cost of collocation matrix entries is
reduced from (M2N4) to (MN4), where N2 is the number of spherical harmonics (i.e., size of the
matrix) and M is the number of one-dimensional integration quadrature points. Numerical results
demonstrate the spectral accuracy of the method.
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1 Introduction
In this paper we consider a spectral collocation method for the surface integral equations
arising from three-dimensional potential problems

(1.1)

(1.2)

where f and g are given, r,r′ ∈ S and S is the surface of a three-dimensional spheroid defined
by
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(1.3)

The surface is called a prolate spheroid if L > R, and an oblate spheroid if L < R, and if L = R
it is a sphere. In Eqs. (1.1) and (1.2), the unknown scalar functions μ(r) and ρ(r) are called
single and double layer density functions, respectively, and n is the unit inner normal
direction at a field point r on S. The potential problems arise from many fields of physics
and engineering [16] through boundary integral formulations of differential equations of
elliptic-type. In particular, in biological applications, spheroidal geometries are often used to
model some types of molecule in the study of electrostatics [7] and the free energy [2].

There are many issues [5,19] in accurate and efficient numerical approximations of potential
problems, including the choices of basis functions, the treatment of singularities and fast
solvers for the resulting discrete algebraic systems. For problems defined on a smooth
boundary, it is natural to consider spectral methods [6,18] due to its infinite-order
convergence, so-called the spectral convergence. The spectral methods have been applied
for numerical solutions of problems in spheroidal geometries, for example, in geodesy and
in global atmospheric models [9,17], by using the spherical harmonics as the basis functions.
This is due to the fact that the spherical harmonics offer nice properties in approximating
spherical functions with exponential convergence and the ease in handling pole singularities
[6]. For the boundary integral equations considered in this paper, the spherical harmonics
have been used by Atkinson [3,4], Graham and Sloan [12], Chen [8], and Ganesh [10] to
construct spectral methods for three-dimensional potential problems. Also, double Fourier
series have found applications in solving potential problems [11].

For spectral methods of surface integral equations, the calculation of collocation coefficients
(or Galerkin coefficients in Galerkin methods) remains one of the computational challenges
as numerical quadratures over the full boundary surface is required in calculating each entry
of the coefficient matrix. For example, if N2 basis functions and M2-point two-dimensional
quadratures are used, the total operations of order (M2N4) are required to produce the
coefficient matrix of a collocation method. Here M can become large with the increase of
basis function order N in order to maintain the high-frequency information from the higher
order basis functions. Even with relatively small N, the cost can be still high. In this paper,
we will propose a new technique which will reduce the two-dimensional integral to one
dimensional one. This is made possible by an analytical formula along the longitudinal
direction for the spheroidal surface with the help of a hypergeometric function. The
hypergeometric function can be calculated fast even at singular points thanks to linear
transformation formulas. As a result, the complexity of filling up the collocation matrix is
then reduced to the order of (MN4). With some generalization, this technique can be
extended to boundary element methods and artificial boundary methods [13,20] where the
spheroidal boundary is usually adopted.

The rest of this paper is organized as follows. In Section 2, basis functions of spherical
harmonics are introduced. In Sections 3 and 4, we discuss the technique for fast calculations
of the collocation coefficients for the single and double layer potentials, respectively. In
Section 5, the treatment of singularities is discussed. Numerical test examples are then
performed in Section 6 with conclusions given in Section 7.
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2 Spectral approximations in spherical coordinates
Let us consider Eq. (1.1) with a spherical coordinate representation for the spheroidal
surface,

(2.1)

where θ and ϕ represent latitude and longitude of the surface with 0≤θ≤π and 0≤ϕ<2π. It is
noted that the Jacobian of the coordinate transformation between the Cartesian and spherical
coordinates is a function only of variable θ,

(2.2)

Eq. (1.1) can then be re-written as a two-dimensional integral as follows:

(2.3)

The grid collocation points along the longitudinal and latitudinal directions are selected as

(2.4)

and (N+1)2 is the total number of collocation points, and N is chosen to be an even integer.

A standard finite dimensional orthogonal basis over a spherical surface is the (N+1)2

spherical harmonics,

(2.5)

for −n≤m≤n and 0≤n≤N, where  are the associate Legendre functions of degree n and
order m, and i the imaginary unit. The associate Legendre polynomials can be defined by the
Rodrigue’s formula

(2.6)

where Pn(x) is the ordinary Legendre polynomial of degree n.

For a given basis, a function defined on the surface of the sphere can be approximated by a
linear combination of the basis functions as

(2.7)
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in which  are constant coefficients, and the total number of the basis functions is (N+1)2.
If the function μ(θ,ϕ) is infinitely differentiable, then it can be proved that the approximation
is spectrally convergent [17].

Although Galerkin-type methods have been studied more thoroughly, we will adopt a
collocation method for its ease of implementation and simpler filling of the discretization
matrix. With the (N+1)2 collocation points in (2.4), the spectral collocation method for the
single layer surface integral equation yields the following linear system for the unknowns

,

(2.8)

with j,l=0,⋯,N, where the collocation coefficients are

(2.9)

After numerically approximating the integrals of coefficients with quadratures over the
spheroid surface, the linear algebraic systemcan be solved through the Gauss elimination
direct solver or other iterative solvers.

3 Fast calculations of the collocation coefficients 
An important issue for the spectral collocation is how to evaluate the collocation matrix
entry  accurately and efficiently. Naively, a 2M-trapezoidal rule in ϕ and an M-Gaussian
quadrature in θ will require (M2) operations for the calculation of each entry. In this section
we will first cast the integral (2.9) analytically with a special function along the latitudinal
direction such that the complexity is reduced to (M). For this purpose, let us write the
distance between the field point and the collocation point as

(3.1)

where a(θ) and b(θ) are defined by

(3.2a)

(3.2b)

Re-arranging integrations in (2.9), we reach
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(3.3)

with

(3.4)

Noticing that the functions of ϕ are 2π-periodic and using the oddness of function sinmϕ, we
have

(3.5)

The remaining step is to compute the integration on the right hand side (see Fig. 1), which
can be done with the following Theorem 3.1. Let us first recall the generalized
hypergeometric function 2F1(α,β;γ;x) defined by

with (α)k=α(α+1)⋯(α+k−1) being the rising factorial, and we have

Theorem 3.1
For b satisfying |b| < 1, we then have

(3.6)

Proof—Due to |b| < 1, we have the Taylor series expansion

(3.7)

We can write the integral as

(3.8)

Since
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(3.9)

The integral becomes

(3.10)

This completes the proof.

Therefore, we obtain from Eqs. (3.3)–(3.6) the following method to compute the collocation
coefficients:

(3.11)

where a,b and J are functions of θ defined in Eq. (3.2) and Eq. (2.2), respectively.

Remark 3.1
The objective of Theorem 3.1 is to express the integral in the form of a series which can be
identified with the hypergeometric special function. The calculation of the series is
convenient due to its geometric convergence and can be done by an efficient algorithm.
Table 1 contains the required truncations of the hypergeometric series for a 10−6 error
tolerance. Even if the parameter b is close to the singularity, for example b ≥ 0.9, the
hypergeometric function can be evaluated by the following linear transformation formulas
[1] (pp. 559):

where ψ(z) is the logarithmic derivative of the Gamma function Γ,

Furthermore, for m = 1,2,⋯, the following linear transformation formulas will be used in the
double layer potential in the next section:
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Remark 3.2
Once the two-dimensional integral is reduced to a one-dimensional one, the singularity of
the potential function is easier to treat. Actually, the induced hypergeometric function is a
logarithmic singularity, which can be separated from the integrand (to be discussed in
Section 5).

4 Double layer potential
Extension to the double layer potential problem is straightforward with some more involved
manipulations. First note that

(4.1)

and, for the surface of the spheroid defined by (1.3), the unit normal direction inward S is

(4.2)

Using the spherical coordinate representations of r and rjl yields

(4.3)

thus,

(4.4)

where a(θ) and b(θ) is the same as in the definition for the single layer potential, and A(θ)
and B(θ) are defined by

(4.5a)

(4.5b)
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Particularly, if the spheroid is a sphere L = R, then a=2A and b=B/A, Eq. (4.4) reduces to a
single layer kernel.

As in the case of the single layer potential, we need to do an analytical integration to reduce
the complexity of the two dimensional integrals.

For

(4.6)

for |b| < 1, we have the following identities.

Theorem 4.1
If |b| < 1, then

(4.7)

and, furthermore, for m ≥ 1,

(4.8)

The proof is similar to that of Theorem 3.1 by using the Taylor series expansion, thus
omitted.

5 Quadrature for singular functions
Finally, we are ready to evaluate the two dimensional integral in the definition for the
collocation coefficient . Note that the integral of ϕ was done by the analytical formula
above, which leaves us just one-dimensional singular integrals to handle. We rewrite  in
the form of

(5.1)

Note that b(θ) → −1 as θ → θj. For the single layer potential problem we have a logarithmic
singularity due to the following fact that

(5.2)

Similarly, for the double layer potential, we have
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(5.3)

Therefore, the integrals in both the single and double layer potential problems have
logarithmic singularities when b tends to 1 (i.e., when θ approaches to θj), which can then be
treated by a simple singularity substraction technique. Assuming

(5.4)

then we can write I(G) into the following form

(5.5)

Here the second term can be integrated analytically as

(5.6)

As for the first term, because the integrand becomes zero at the point θj, it is an integral
without singularity and can be then approximated accurately by Gaussian quadratures.

6 Numerical examples
6.1 Single and double layer potentials

To test the method, we first consider the Dirichlet problem of the Laplace equation inside a
spheroid,

(6.1)

(6.2)

The solution of this problem can be expressed either as a single layer potential

(6.3)

or as a double layer potential

(6.4)
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The density functions μ(r) and ρ(r) are then determined by letting r′ tend to the surface to
yield the following surface integral equations

(6.5)

and

(6.6)

for the single and double layer potentials, respectively.

To test the performance, we use two analytical solutions of the Laplace equation

(6.7)

and

(6.8)

and the surface S defined by (1.3) with L = 1.5 and R = 1. In Table 2–Table 4, The errors for
different number of basis functions are listed. The (N+1)2 one-dimensional collocation
coefficients are calculated using a 64-th order Gaussian quadrature. Exponential
convergence can be observed from the results, and the single layer problem does have a
smaller error than the double layer one.

6.2 Solving boundary integral formulations for the Poisson equation
In the second example, we consider the following electrostatic problem: a unit point charge
is located at rs inside a spherical cavity Ω modeled as a uniform dielectric medium with
dielectric constant ϵi; the cavity is embedded into a homogeneous medium with dielectric
constant ϵe. The potential satisfies the Poisson equation:

(6.9)

The potential is continuous across spherical boundary and the normal derivative has a jump
related to the ratio of the dielectric constant. Thus, we have boundary conditions:

(6.10)

where Φi and Φe are the potential functions inside and outside the cavity, and r− and r+ are
inner and outer limits, respectively.

This model, being widely used in computing electrostatic contributions of salvation free
energy of biomolecules [15], can be transformed into boundary integral equations by using
the fundamental solution of the Poisson equation,
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(6.11)

Using the Green’s second theorem, we can obtain

(6.12)

(6.13)

When r approaches the surface S=∂Ω, by using limiting properties of double-layer potentials
at boundary, the above two equations reduce to

(6.14)

(6.15)

for r ∈ S, where we have used the two boundary conditions.

We then solve the integral equations by the proposed method for the two unknowns Φi(r)
and ∂Φi(r)/∂n. A unit spherical cavity Ω is used, for which the analytical solution is known
by the Kirkwood series expansion [7,14] in terms of the Legendre polynomials. In the
calculations, we set ϵi = 2, ϵe = 80, and the charge position rs = (0,0,rs) for rs=0.4, 0.6, and
0.8. The one-dimensional collocation coefficients are again calculated using a 64-th order
Gaussian quadrature. We compute the L2 relative errors of the solutions of Φi(r), which are
shown in Fig. 2. It can seen the results rapidly converge to the exact solutions with the
magnitude of the relative error around 10−5, illustrating the spectral convergence of the
proposed algorithm.

7 Conclusions
A new technique was proposed to reduce the complexity of two dimensional surface single
and double layer potential integrals over a spheroid and as a result, a fast spectral collocation
method is obtained for the surface integral equations of potential problems in a spheroid.
Numerical results shows the spectral accuracy and efficiency of the collocation method.
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Figure 1.
Illustration of formula (3.6) for m = 0,⋯,4. The integral is singular at b = ±1.
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Figure 2.
Relative L2 errors for the potential problem of the Poisson equation for charge locations
rs=0.4, 0.6 and 0.8.
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