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OBJECTIVE—Recent genome-wide association studies have
revealed loci associated with glucose and insulin-related traits.
We aimed to characterize 19 such loci using detailed measures of
insulin processing, secretion, and sensitivity to help elucidate
their role in regulation of glucose control, insulin secretion
and/or action.

RESEARCH DESIGN AND METHODS—We investigated as-
sociations of loci identified by the Meta-Analyses of Glucose and
Insulin-related traits Consortium (MAGIC) with circulating pro-
insulin, measures of insulin secretion and sensitivity from oral
glucose tolerance tests (OGTTs), euglycemic clamps, insulin
suppression tests, or frequently sampled intravenous glucose
tolerance tests in nondiabetic humans (n � 29,084).

RESULTS—The glucose-raising allele in MADD was associated
with abnormal insulin processing (a dramatic effect on higher
proinsulin levels, but no association with insulinogenic index) at
extremely persuasive levels of statistical significance (P � 2.1 �
10�71). Defects in insulin processing and insulin secretion were
seen in glucose-raising allele carriers at TCF7L2, SCL30A8,
GIPR, and C2CD4B. Abnormalities in early insulin secretion
were suggested in glucose-raising allele carriers at MTNR1B,
GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no
association with proinsulin or insulin sensitivity). Two loci
previously associated with fasting insulin (GCKR and IGF1)

were associated with OGTT-derived insulin sensitivity indices in
a consistent direction.

CONCLUSIONS—Genetic loci identified through their effect on
hyperglycemia and/or hyperinsulinemia demonstrate consider-
able heterogeneity in associations with measures of insulin
processing, secretion, and sensitivity. Our findings emphasize the
importance of detailed physiological characterization of such
loci for improved understanding of pathways associated with
alterations in glucose homeostasis and eventually type 2
diabetes. Diabetes 59:1266–1275, 2010

A
recent meta-analysis of genome-wide associa-

tion studies of fasting glycemic traits in nondi-
abetic individuals conducted by the Meta-
Analyses of Glucose and Insulin-related traits

Consortium (MAGIC) has reported the discovery of nine
new loci associated with fasting glucose (FG) (in or near
ADCY5, MADD, ADRA2A, CRY2, FADS1, PROX1,
SLC2A2, GLIS3, and C2CD4B) and one locus associated
with fasting insulin levels (IGF1) (1). The same study
showed effects on FG for seven previously published
glucose and/or type 2 diabetes loci G6PC2, MTNR1B,
GCK, DGKB, GCKR, SLC30A8, and TCF7L2. Another
recent MAGIC meta-analysis, published back-to-back with
the aforementioned study, identified two additional novel
loci (GIPR and VPS13C) associated with 2-h glucose after
an oral glucose tolerance test (OGTT) (2). In complemen-
tary case-control analyses, an increased risk of type 2
diabetes was demonstrated at genome-wide significance
for carriers of the glucose-raising risk alleles in or near the
new glycemic loci ADCY5, PROX1, GCK, DGKB, GCKR, as
well as the known type 2 diabetes loci MTNR1B,
SLC30A8, and TCF7L2 (1). This is a powerful demonstra-
tion of how analyses of continuous metabolic traits in
healthy individuals can lead to the discovery of previously
unsuspected type 2 diabetes susceptibility genes. Detailed
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physiological characterization of each locus may help
elucidate their role in regulation of glucose levels, insulin
secretion and/or action, and identify potential pathways
involved in type 2 diabetes pathogenesis.

The insulin-processing pathway follows several canoni-
cal steps in the synthesis and secretion of peptide hor-
mones. Proinsulin is produced in the endoplasmic
reticulum and packaged into secretory vesicles in the
Golgi apparatus. Several proteases cleave proinsulin into
mature insulin and C-peptide. In normoglycemic individu-
als, higher intact proinsulin levels are associated with
elevated glucose levels (3,4), increased insulin secretion,
and insulin resistance. In prospective studies, higher intact
proinsulin has been positively associated with an in-
creased risk of type 2 diabetes (5). Circulating proinsulin
can thus be considered as a measure of �-cell mass or
function, insulin processing, insulin secretion, or a combi-
nation of these.

Impaired insulin secretion and hepatic and peripheral
insulin resistance contribute to the pathogenesis of type 2
diabetes (6). Glucose-stimulated insulin secretion can be
assessed using the insulinogenic index, which is derived
from an OGTT and is strongly correlated with more
sophisticated measures of insulin secretion (7). The eugly-
cemic-hyperinsulinemic clamp technique, the insulin sup-
pression test, and the frequently sampled intravenous
glucose tolerance test (FSIGT) provide accurate measures
of insulin sensitivity but are difficult to implement in the
context of large-scale epidemiological studies. Several
indices derived from multiple-point OGTT data correlate
well with clamp-assessed sensitivity and have been sug-
gested as more practical surrogate measures (8–11).

Genetic loci associated with glycemic traits have mod-
est effect sizes (1,2), suggesting that individual studies are
likely to be underpowered to detect associations with
detailed physiologic characteristics. We therefore estab-
lished a consortium of 14 studies with detailed measures
of circulating proinsulin (9 studies), glucose and insulin at
a minimum of three time points during a standard 75-g
OGTT (9 studies), FSIGT (1 study), insulin suppression
test (1 study), and/or euglycemic-hyperinsulinemic clamps
(2 studies). We sought to investigate systematically the
effects of single nucleotide polymorphisms (SNPs) previ-
ously associated with FG, fasting insulin, and/or 2-h glu-
cose in or near the loci listed above on dynamic
physiologic measures of insulin processing, secretion, and
sensitivity in order to provide insights on how these
variants influence glucose levels and, in some cases,
increase type 2 diabetes risk.

RESEARCH DESIGN AND METHODS

Cohort descriptions. The cohorts included in this study contributed a total
of 29,084 unique individuals (supplementary Table 1, available in an online
appendix at http://diabetes.diabetesjournals.org/cgi/content/full/db09-1568/
DC1). All participants were white adults from Europe or the U.S. and free of
diabetes assessed by clinical diagnosis, diabetes treatment, or FG �7 mmol/l.
As in our previous discovery datasets (1,2), we decided to retain individuals
with impaired fasting glucose or impaired glucose tolerance because we
wished to avoid truncating the glucose distribution at such low levels that it
would effectively eliminate individuals with the greatest genetic predisposi-
tion to hyperglycemia, i.e., the most informative segment of the population.
Local research ethic committees approved all 14 studies, and all participants
gave informed consent.
Phenotype descriptions. We studied the following glycemic phenotypes: 1)
circulating levels of fasting intact proinsulin (adjusted for fasting insulin), as
a reflection of insulin processing, insulin secretion, �-cell mass/function, or a
combination thereof (n � 17,402); 2) the insulinogenic index, defined as
[(insulin at 30 min) � (insulin at 0 min)]/[(glucose at 30 min) � (glucose at 0

min)], as a measure of glucose-stimulated insulin secretion (n � 15,399) and
also indicative of �-cell mass/function (12); 3) insulin sensitivity measured
with standard intravenous methods (glucose uptake divided by steady-state
insulin concentration [M/I] derived from euglycemic-hyperinsulinemic clamp
[n � 2,250]) (13), insulin sensitivity index (SI) from FSIGT (n � 575) (14), and
steady-state plasma glucose (SSPG) from the insulin suppression test (n �
370) (15), combined after standardization (Z score transformation, N � 3,195);
and 4) four OGTT-derived measures of insulin sensitivity, namely the Stumvoll
(8), Matsuda (9), Belfiore (10), and Gutt (11) indices (supplementary Table 3)
(n � 15,554–15,999). In secondary analyses, we additionally studied associa-
tions with split proinsulin (n � 3,934) and C-peptide (n � 7,158).

We confirmed the potential utility of the OGTT-derived insulin sensitivity
indices by examining correlations with euglycemic clamp–derived insulin
sensitivity (M/I) in nondiabetic participants in the Uppsala Longitudinal Study
of Adult Men (ULSAM) and the Relationship between Insulin Sensitivity and
Cardiovascular risk (RISC) studies (supplementary Table 4); these ranged
from 0.67 to 0.76 in ULSAM and 0.36 to 0.49 in RISC.
Other quantitative trait measurements. Glucose was measured in whole
blood, plasma or serum, or a combination of these. Whole blood glucose levels
were corrected to plasma glucose using a correction factor of 1.13. Concen-
trations of insulin, proinsulin, and C-peptide were estimated from plasma or
serum as described in supplementary Table 1 for each of the cohorts.
Statistical methods. We tested associations with quantitative glycemic
phenotypes for the lead SNPs reported as most significantly associated within
19 regions identified by the recent MAGIC fasting glucose and insulin, and 2-h
glucose meta-analyses (1,2). Alternative proxy SNPs (showing maximal link-
age disequilibrium [LD] with the index SNP in the European CEU HapMap
sample) were selected for each locus to allow for differences in genotyping
capacities of various platforms (supplementary Table 2). In samples where
initial genotyping of an index SNP failed, a proxy SNP in strong LD with the
original SNP was genotyped whenever possible. Markers that failed Hardy-
Weinberg equilibrium (exact P value �1 � 10�6 or �1 � 10�4 in studies with
genome-wide data, or �0.01 in direct genotyping studies) were excluded from
analyses (supplementary Table 1). Call rates for directly genotyped SNPs
exceeded 90%; information content r2hat �0.3 for MACH-imputed (16) or
proper-info �0.4 for IMPUTE-inferred (17) SNPs were required for SNP
inclusion in analysis. In samples where more than one SNP was genotyped
within the same region and the index SNP was not available, the proxy SNP
with the higher call rate and stronger LD was selected.

In addition to diabetes or nonwhite ethnicity, some studies applied
additional exclusion criteria as detailed in supplementary Table 1. In each
cohort, we used natural log–transformed trait values for fasting proinsulin,
insulinogenic index, Stumvoll, Matsuda, Belfiore, and Gutt insulin sensitivity
indices, fasting split proinsulin and C-peptide, and Z score transformed values
for M/I, Si, and SSPG as the dependent variables in linear regression models
that included terms for age, sex, study site (if applicable), geographical
covariates (if applicable), and age squared (Framingham only) to assess the
association of additively coded genotypes with trait values. Analyses were
performed with and without adjustment for BMI. Analyses of proinsulin and
split proinsulin were additionally adjusted for natural log–transformed fasting
insulin (pmol/l).

Data were available from 14 independent studies, including 3 with directly
genotyped and imputed genome-wide data and 11 with de novo genotyping
data. Association testing was performed using STATA 10.1 (Stata, College
Station, TX) or SAS 9 (SAS Institute, Cary, NC) software for directly
genotyped SNPs and using SNPTEST (17) or MERLIN (18) software that takes
genotype and imputation uncertainty into account, except in the Framingham
Heart Study where both genotyped and imputed SNPs were analyzed using the
lmekin function from the R kinship package (R Foundation for Statistical
Computing, Vienna, Austria, 2007) to account for familial correlation. We
performed inverse variance fixed-effects meta-analyses using METAL (http://
www.sph.umich.edu/csg/abecasis/Metal/index.html) and GWAMA (http://
www.well.ox.ac.uk/gwama/index.shtml) software. Heterogeneity was assessed
using the Q statistics.

We report nominal P values without adjustment for multiple testing given
the high prior probabilities for associations with the examined phenotypes (all
loci have already been associated with at least one glycemic phenotype at
genome-wide levels of statistical significance [P � 5 � 10�8]). However, we
have focused specifically on the results with P values �10�3.

RESULTS

Based on the results observed for the different traits, we
organized loci displaying similar patterns into groups
based on the presumed mechanism of action in Table 1
(age- and sex-adjusted) and supplementary Table 5 (addi-
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tional BMI adjustment). The influence of BMI adjustment
on genetic associations was generally minor and specifi-
cally noted when relevant.
Loci implicated in abnormal insulin processing. Fail-
ing �-cells are expected to show diminished insulin se-
cretion, while compensatory increases in circulating pro-
insulin denote the �-cell’s attempt to maintain euglycemia
(19). Therefore, genetic differences in fasting proinsulin
levels (adjusted for fasting insulin) without a concomitant
effect on insulinogenic index suggest abnormal insulin
processing. The most striking association occurred be-
tween the FG-raising allele at MADD rs7944584 and higher
fasting proinsulin levels (P � 2.1 � 10�71); its lack of
association with the insulinogenic index suggests an effect
of this locus on insulin processing (supplementary Figs. 1
and 2). Less significant effects of this allele on lower
OGTT-derived insulin sensitivity measures (P � 0.01 �
0.03) were also observed. Consistent with the above,
MADD rs7944584 was strongly associated with higher
fasting split proinsulin (supplementary Table 6), but not
with fasting C-peptide (supplementary Table 7). The 2-h
glucose–raising allele at VPS13C rs17271305 was modestly
associated with lower fasting proinsulin levels (P � 0.02),
but not associated with measures of insulin secretion or
action.
Loci associated with higher proinsulin and lower
insulin secretion. Several genetic variants were associ-
ated with indices of �-cell dysfunction, i.e., higher fasting
proinsulin levels and a lower insulinogenic index, includ-
ing the glucose-raising alleles at TCF7L2 rs7903146 (P �
4.1 � 10�12 and 2.0 � 10�7, respectively), SLC30A8
rs13266634 (P � 2.7 � 10�6 and 0.0012) and GIPR
rs10423928 (P � 6.2 � 10�7 and 2.1 � 10�13). A trend was
also seen for the FG-raising allele at C2CD4B rs11071657
associating with higher fasting proinsulin levels (P �
0.004) and lower insulinogenic index (P � 0.06). At these
loci the relationship between the insulinogenic index and
fasting proinsulin levels was linear for carriers of the
protective allele, whereas carriers of the risk alleles failed
to demonstrate an increase in insulinogenic index in
proportion to rising proinsulin levels (Fig. 1A–D). Except
for an association between the GIPR rs10423928 and
higher insulin sensitivity as assessed by the Belfiore (P �
1.0 � 10�8), Matsuda (P � 0.0008), and Stumvoll (P �
0.003) indices, the other associations of these SNPs with
measures of insulin sensitivity were very modest (P �
0.01 � 0.05) and/or inconsistent. TCF7L2 rs7903146 was
the only locus in this group associated with lower C-
peptide levels (supplementary Table 7). We note that
although the VPS13C and C2CD4B loci are physically
close to each other (101 kb apart), LD between the two
index SNPs is relatively weak (r2 � 0.28 based on CEU
HapMap).
Loci associated with abnormalities in early insulin
secretion. A subset of other variants showed association
between FG-raising alleles and lower insulinogenic index
without an association with fasting proinsulin levels:
MTNR1B rs10830963 (P � 2.3 � 10�19), GCK rs4607517
(P � 2.2 � 10�4), FADS1 rs174550 (P � 0.001), DGKB
rs2191349 (P � 0.006), and PROX1 rs340874 (P � 0.02).
The FG-raising alleles at GCK (P � 8.1 � 10�5) and
MTNR1B (P � 0.006) were also associated with a lower
Gutt index, but not with any of the other insulin sensitivity
measures.

The FG-raising allele at G6PC2 rs560887 was associated
with a higher insulinogenic index (P � 5.0 � 10�5), aT
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finding previously reported by others (20). It was also
weakly associated with lower insulin sensitivity measured
by intravenous techniques in BMI-adjusted analyses (P �
0.02) (supplementary Table 5).
Loci associated with reduced insulin sensitivity. The
FG-raising allele at GCKR rs780094 was associated with
lower insulin sensitivity by the Stumvoll (P � 0.001),
Matsuda (P � 2.9 � 10�5), and Belfiore (P � 0.003)
indices, whereas the fasting insulin–raising allele at IGF1
rs35767 was associated with lower insulin sensitivity by
the Matsuda (P � 0.01), Belfiore (P � 0.02), and Gutt (P �
0.002) indices. GCKR rs780094 was also associated with
increased C-peptide levels (supplementary Table 7).
Loci without obvious effects on insulin processing,
secretion, or sensitivity. Five of the examined loci—
ADCY5 rs11708067, ADRA2A rs10885122, CRY2 rs11605924,
SLC2A2 rs11920090, and GLIS3 rs7034200—did not show
any apparent associations with any of the examined
phenotypes (Table 1). We note that the ADRA2A SNP
rs10885122, previously associated with fasting glucose (1)
and assayed here, is 202 kb away from and uncorrelated
with rs553668 (r2 � 0.003 in CEU HapMap). The A allele at
rs553668 has been recently associated with type 2 diabetes

and reduced insulin secretion in a Scandinavian popula-
tion (21). In our MAGIC meta-analysis of 
14,000 individ-
uals, the A allele at rs553668 is nominally associated with
higher �-cell function by homeostasis model assessment
(P � 0.003) and higher fasting insulin (P � 0.02), but
shows no association with fasting glucose (P � 0.21).

DISCUSSION

In this report we investigated the effects of 19 SNPs
previously associated with FG, fasting insulin, and/or 2-h
glucose on multiple physiologic measures of insulin pro-
cessing, secretion, and sensitivity in 14 cohorts with over
29,000 unique participants. For at least 12 of these SNPs,
this is the first report to study their associations with such
comprehensive physiologic measures of insulin and glu-
cose metabolism. Our results demonstrate that these ge-
netic loci influence glycemic regulation by diverse
pathways (supplementary Fig. 3).
Loci implicated in abnormal insulin processing. The
glucose-raising allele at MADD was associated with ele-
vated fasting proinsulin (adjusted for fasting insulin), but
not with insulin secretion. The dramatic effect size on

4
6

8
10

P
re

d
ic

te
d

 in
su

lin
o

g
en

ic
 in

d
ex

0 25 50 75 100
Proinsulin

CC (50%) CT (42%) TT (8%)

RISC

rs7903146_TCF7L2

5
10

15
P

re
d

ic
te

d
 in

su
lin

o
g

en
ic

 in
d

ex

0 25 50 75 100
Proinsulin

TT (8%) CT (42%) CC (50%)

RISC

rs13266634_SLC30A8
2

4
6

8
P

re
d

ic
te

d
 in

su
lin

o
g

en
ic

 in
d

ex

0 25 50 75 100
Proinsulin

TT (62%) AT (33%) AA (5%)

rs10423928_GIPR

4
6

8
10

12
P

re
d

ic
te

d
 in

su
lin

o
g

en
ic

 in
d

ex

0 25 50 75 100
Proinsulin

GG (13%) AG (47%) AA (40%)

rs11635220_C2CD4B

RISC RISC

FIG. 1. Insulin secretion and proinsulin in the RISC study (n � 1,319) by genotype at TCF7L2 rs7903146, SLC30A8 rs13266634, GIPR rs10423928,
and C2CD4B rs11071657. Proinsulin processing can be studied by plotting the relation between early insulin secretion (measured by
insulinogenic index from OGTT) and proinsulin. The three curves in each plot represent the regression lines of the logarithm of estimated insulin
secretion as a linear function of the proinsulin level for all participants, distributed according to the genotypes. In all four plots, the relationship
between the insulinogenic index and proinsulin levels was linear for carriers of the protective allele, whereas carriers of the risk alleles failed
to demonstrate an increase in insulinogenic index in proportion to rising proinsulin levels, indicating the active secretion of insulin precursors
in lieu of mature insulin.
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fasting proinsulin levels (two- to 10-fold that of other loci)
seems out of proportion with its modest elevation of FG
and an otherwise unremarkable impact on other glycemic
measures, suggesting that this locus is associated with an
isolated insulin processing defect without a major impair-
ment of insulin secretory capacity. It is therefore not
surprising that despite the effects of this locus on FG and
fasting proinsulin levels, it has a negligible influence on
type 2 diabetes risk (1). MADD encodes a death domain–
containing adaptor protein, which interacts with the death
domain of tumor necrosis factor-� receptor 1 and propa-
gates apoptotic signals (22); however, if functional vari-
ants in MADD were involved in mechanisms leading to
�-cell damage, one would expect to have seen a concom-
itant deterioration of �-cell function. The isolated proin-
sulin association raises the possibility that other genes in
the region may contain a causal variant (in LD with
rs7944584), which is functionally responsible for the ob-
served insulin processing defect. Nearby genes include
PACSIN3, which encodes a protein involved in vesicle
formation, transport, and endocytosis whose transcript is
relatively abundant in the human pancreas (23); ARF-
GAP2, which has been implicated in vesicular trafficking
between the Golgi and the endoplasmic reticulum (24);
and SLC39A13, which encodes a zinc transporter (25).
Loci associated with higher proinsulin and lower
insulin secretion. The glucose-raising variants at
TCF7L2, SLC30A8, GIPR, and C2CD4B were all associ-
ated with increased fasting proinsulin levels and de-
creased insulinogenic index. The relationship between the
insulinogenic index and fasting proinsulin was linear for
carriers of the protective allele at TCF7L2 and SLC30A8,
whereas carriers of the risk alleles failed to demonstrate
an increase in insulinogenic index in proportion to rising
proinsulin levels, indicating an active secretion of insulin
precursors in lieu of mature insulin. This has several
potential explanations: 1) reduced �-cell mass through
either diminished proliferation or enhanced apoptosis
resulting in increased �-cell stress in the face of increased
insulin demand; 2) an impairment in the molecular pro-
cessing from proinsulin to insulin; or 3) defective vesicle
trafficking. In sum, all these possibilities could manifest
themselves by the exocytosis of more preprotein products
and lower secretion of insulin in response to glucose.

TCF7L2 encodes a nuclear receptor for �-catenin in-
volved in the Wnt signaling pathway; the association of
SNP rs7903146 in this gene with type 2 diabetes is now
well established as the strongest common genetic deter-
minant of type 2 diabetes yet described. Here we confirm
the previously reported associations of this variant with
measures of impaired insulin secretion and with fasting
proinsulin levels (rev. in 26). Current evidence suggests
that TCF7L2 causes an impairment in insulin secretion by
affecting insulin granule exocytosis and �-cell responsive-
ness to incretins (perhaps by downregulation of glucagon-
like peptide 1 receptors); incretin resistance may in turn
diminish �-cell mass. Our data support any of the above
mechanisms.

GIPR encodes the receptor for glucose-dependent insu-
linotropic polypeptide (GIP, also known as gastric inhibi-
tory polypeptide), another incretin hormone. Interaction
of GIP with its receptor on the �-cells increases cAMP
levels and intracellular calcium, which enhances exocyto-
sis of insulin-containing granules, mostly during the later
response to oral glucose (20–120 min) (27). Individuals
with type 2 diabetes and their relatives have an impaired

insulinotropic effect of GIP (28), perhaps due to defective
or reduced number of GIP receptors in �-cells (29). A
common variant in GIPR was associated with 2-h glucose
in a prior MAGIC meta-analysis (2), as well as a lower
insulinogenic index and a lower ratio of insulin to glucose
area under the curve during an OGTT; in this study we
have replicated the insulinogenic index result and shown
an association of the same allele with higher fasting
proinsulin levels. The effect of this variant on reducing
both early and late insulin secretion may explain the
perceived improvement in insulin sensitivity by OGTT-
derived measures, which is driven by lower insulin levels
throughout the OGTT. These observations are fully con-
sistent with the known mechanisms described above.

SLC30A8 encodes the zinc transporter, ZnT8, which
co-localizes with insulin in the �-cell and is important in
the storage and maturation of insulin within cytoplasmic
granules (30). ZnT8-null mice have impaired glucose tol-
erance and decreased insulin secretion in vivo (31). Fur-
thermore, mice carrying a Slc30a8 exon three deletion had
lower plasma insulin levels, and islets from these mice
showed decreased zinc content and lower glucose–stimu-
lated insulin secretion (32). Here we confirm previous
reports that carriers of the risk genotype at SLC30A8
exhibit abnormalities in insulin secretion (33) and in-
creased circulating proinsulin (34). Thus, variants in both
TCF7L2 and SLC30A8 affect FG, proinsulin levels, and
insulin secretion and, in doing so, increase type 2 diabetes
risk.

We provided biologic mechanisms to explain the asso-
ciations we observed between variation in these loci and
abnormal insulin processing or elevated proinsulin levels.
However, many different biologic conditions can result in
abnormal insulin processing and regulation of proinsulin
levels. Therefore, in the absence of experiments to directly
test these mechanisms, we view these associations as
hypothesis-generating for future studies to formally test
these mechanisms.
Loci associated with abnormalities in early insulin
secretion. Genetic defects in pathways primarily involved
in insulin secretion are expected to cause higher glucose
levels. Of all examined loci, the glucose-raising alleles of
SNPs at MTNR1B, FADS1 and DGKB, and GCK showed an
association with lower insulinogenic index, but no signif-
icant association with fasting proinsulin or insulin sensi-
tivity. Thus, these loci seem to influence insulin secretory
capacity without affecting insulin processing or inducing
significant �-cell stress, which would result in higher
circulating proinsulin.

Our results confirm that the glucose-raising allele in
MTNR1B (encoding the melatonin receptor 1B) is associ-
ated with lower insulin secretion after oral or intravenous
glucose challenge (35–37). We did not see a significant
association of MTNR1B with fasting proinsulin levels,
which is in line with the observation in the Tübingen
Family Study (37) but in contrast with the Helsinki Birth
Cohort results (36). MTNR1B is expressed in human islets
and co-localizes with insulin; melatonin inhibits insulin
secretion by rat insulinoma cells (36,37). It is therefore
possible that genetic variation in MTNR1B enhances �-cell
responsiveness to melatonin.

Fatty acid metabolism may also play a role in early
insulin secretion. FADS1 encodes fatty acid desaturase 1,
a key enzyme in the metabolism of unsaturated (�-3 and
�-6) fatty acids. These lipid moieties play a major role in
the stability of cellular membranes, but fatty acid desatu-

E. INGELSSON AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 59, MAY 2010 1271



rases can also convert polyunsaturated fatty acids into cell
signaling metabolites. Polymorphisms in FADS1 that are
strongly correlated with the FG-associated SNP have been
associated with FADS1 mRNA expression levels in the
liver (1) and differences in cell membrane or circulating
fatty acid profiles (38,39). The type of fatty acids influ-
ences glucose-stimulated insulin secretion in incubated
pancreatic islet (40) and in perfused pancreas (41). Insulin
secretion differs in response to oral challenges varying in
their fatty acid composition (42,43). Thus, a plausible
mechanism by which insulin secretory function is reduced
without the need to postulate reduced �-cell mass or
survival can also be envisioned for this locus.

DGKB encodes for diacylglycerol kinase �, which is a
member of a family of intracellular lipid kinases that
phosphorylate diacylglycerols. Within the �-cell, diacylg-
lycerols are implicated in the intracellular pathways of
parasympathetic stimulation of insulin secretion, which is
activated by meal intake through the vagus nerve (44). If a
DGKB variant influences the �-cell response to neural
stimulation via a second messenger pathway, it can also
do so without affecting �-cell integrity and thus show no
association with fasting proinsulin levels.

GCK encodes glucokinase, which phosphorylates glu-
cose to glucose-6-phosphate and is thus the rate-limiting
enzyme for glucose sensing in �-cells. Loss-of-function
mutations in GCK are responsible for maturity-onset dia-
betes of the young (MODY) 2, a syndrome characterized
by mild fasting hyperglycemia and glucose intolerance due
to reduced sensitivity of insulin secretion to changes in
glycemia, resulting in an impaired secretory response (45).
Non-MODY GCK variants have been associated with FG
levels in multiple cohorts (46), an association that reached
genome-wide significance in MAGIC (35).

The G6PC2 FG–raising allele was associated with a
higher insulinogenic index. This is consistent with obser-
vations in obese children, where another SNP in the same
locus was associated with both increased FG and higher
insulinogenic index (47), and in Mexican Americans,
where the FG-raising allele was also associated with
increased FG and OGTT 30-min insulin change (48).
G6PC2 encodes glucose-6-phosphatase, catalytic 2, which
catalyzes glucose-6-phosphate dephosphorylation, thereby
opposing the action of GCK in the �-cell. The observation
that risk allele carriers have a higher FG and yet a higher
insulinogenic index is in contrast with the results obtained
for GCK and may explain why this variant shows a
flat-to-slightly protective effect on type 2 diabetes (1).
Thus, a simple elevation of the glucostatic set point does
not provide a fully satisfactory explanation. An alternative
is that balance between GCK and G6PC2 activities may be
affected by genetic variation resulting in changes in pulsa-
tile insulin secretion, which could interfere with normal
insulin signaling between the pancreas and insulin-sensi-
tive tissues. This hypothesis is supported by two lines of
evidence. First, GCK and G6PC2 regulate the rate-limiting
step of glycolysis, and oscillations in glycolysis have been
shown to be correlated with oscillations in insulin secre-
tion in vitro (49,50). Second, recent animal studies show-
ing that disruption of pulsatile insulin secretion results in
a loss of efficiency in insulin action at the liver, leading to
modest hepatic insulin resistance and increased hepatic
glucose output (51). These changes would then cause the
observed compensatory rise in insulin secretion.
Loci associated with insulin resistance. FG-raising
alleles at GCKR and IGF1 have previously been shown to

be associated with insulin resistance by homeostasis
model assessment (1). In the present study, we confirm
this observation using dynamic indices not restricted to
glucose and insulin measured in the fasting state. Both
GCKR and IGF1 are strongly expressed in the liver, and
could thus contribute to development of hepatic insulin
resistance. GCKR encodes glucokinase regulatory protein,
which inhibits glucokinase in the liver; the index SNP is in
strong LD with the missense variant P446L, whose FG-
raising allele inhibits glucokinase activity in the presence
of physiological concentrations of fructose-6 phosphate
(52), thus leading to increased hepatic glucose production.
IGF1 encodes the insulin-like growth factor I (IGF-I),
which has significant structural homology with insulin.
Circulating IGF-I can bind to insulin receptors and stimu-
late glucose transport in fat and muscle while decreasing
hepatic glucose output, thus lowering blood glucose while
suppressing insulin secretion (53). However the role of
IGF-I, and especially polymorphisms in or near IGF1, in
glucose homeostasis and insulin sensitivity is not well
understood.

Despite state-of-the art methods and the large sample
size to date, we found little evidence of the examined SNPs
being convincingly associated with insulin sensitivity. This
could reflect a smaller sample size for the intravenous
insulin sensitivity analyses (n � 3,195) than for the anal-
yses of insulin secretion, and hence lower statistical
power. It is well established that measures of �-cell
function show stronger heritability than measures of insu-
lin action, the latter being subject to large day-to-day
variation. And while insulin sensitivity measures are cor-
related, differences among them do exist that increase
heterogeneity and reduce power (54). Although the corre-
lation between intravenous and OGTT-derived measures
of insulin resistance is high (supplementary Table 4), the
discrepancy in results among these measures may reflect
differences in the genetic contribution to the correlation
(55). In addition, biological reasons may explain the lack
of associations with insulin sensitivity, including trait
heterogeneity (i.e., constructed by multiple components
with presumably different genetic determinants, such as
hepatic glucose output and peripheral glucose uptake) or
the SNP selection since these SNPs were chosen from
analyses of FG, fasting insulin, and 2-h glucose, traits that
might be more strongly associated with insulin processing
and secretion than with peripheral insulin sensitivity.
Regardless, these results suggest that care must be ex-
erted when comparing association results that use differ-
ing measures of insulin sensitivity and highlight that their
underlying genetic physiology requires further study.
Limitations. Because our studies are conducted in free-
living humans, our mechanistic inferences are limited by
the measures derived from human subjects in vivo and the
assumptions contained therein. In the absence of appro-
priate cellular or animal models, we cannot offer conclu-
sive proof of mechanism at the molecular level.
Furthermore, a strong association with one specific mea-
sure does not preclude a weaker association with a
different measure, and therefore a complex interplay be-
tween various processes involved in insulin secretion and
action may be operational. Glucose itself (even in the
nondiabetic range studied here) may affect the variables
under consideration; however, because these variants
were discovered by their association with glucose levels, it
did not seem advisable to remove the contribution of
glucose to the traits under study by statistical adjustment.
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Finally, we emphasize that the SNPs genotyped here are
simply associated with the traits under consideration and
thus may be correlated with but not represent the causal
variants, nor lie in the biologically relevant genes.
Conclusion. We have undertaken a detailed physiologic
characterization of 19 genetic loci recently identified
through associations with FG or insulin and/or 2-h glucose
and demonstrate considerable heterogeneity in the asso-
ciations of these loci with measures of insulin processing,
secretion, and sensitivity. Our findings emphasize the
importance of detailed physiological characterization of
such loci for improved understanding of mechanisms by
which newly discovered loci might influence glucose phys-
iology and type 2 diabetes risk.
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