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Abstract
Colon and rectum cancer share many risk factors, and are often tabulated together as “colorectal
cancer” in published summaries. However, recent work indicating that exercise, diet, and family
history may have differential impacts on the two cancers encourages analyzing them separately, so
that corresponding public health interventions can be more efficiently targeted. We analyze colon
and rectum cancer data from the Minnesota Cancer Surveillance System from 1998-2002 over the
16-county Twin Cities (Minneapolis-St. Paul) metro and exurban area. The data consist of two
marked point patterns, meaning that any statistical model must account for randomness in the
observed locations, and expected positive association between the two cancer patterns. Our model
extends marked spatial point pattern analysis in the context of a log Guassian Cox process to
accommodate spatially referenced covariates (local poverty rate and location within the metro
area), individual-level risk factors (patient age and cancer stage), and related interactions. We
obtain smoothed maps of marginal log-relative intensity surfaces for colon and rectum cancer, and
uncover significant age and stage differences between the two groups. This encourages more
aggressive colon cancer screening in the inner Twin Cities and their southern and western exurbs,
where our model indicates higher colon cancer relative intensity.
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1. Introduction
1.1. Etiologies of colon and rectum cancer

Traditionally, public health agencies have reported colon and rectum cancers together under
the title “colorectal cancer.” Since the turn of the last century, however, an active debate has
emerged regarding whether these two cancers really have sufficiently similar etiologies to be
aggregated in this way. Some experts have argued that the cancers should be reported and
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monitored separately, so that public health interventions can be more sensibly and efficiently
targeted.

A variety of epidemiological studies have indicated variables that may have a differential
impact on colon and rectum cancer. These variables fall under three broad categories. The
first is exercise. A very recent study by the Physical Activity Guidelines Advisory
Committee (2008) identified 23 publications on this general topic, arising from 12
prospective cohort studies and 8 case-control studies. These studies show a consistent
inverse relation between physical activity and colon cancer risk, with this relation being
statistically significant for at least one physical activity domain and one sex in 9 of the 12
cohort studies and 5 of the 8 case-control studies. More specifically, the median relative risk
(RR) comparing most-versus least-active subjects was 0.7 over all the studies. The advisory
committee stated that this overall finding was unlikely to be the result of confounding, since
the studies for the most part included relevant covariates, such as body mass index (BMI),
smoking, alcohol, diet, screening, menopausal status, and family history of colon cancer. By
contrast, the committee found the studies to indicate no apparent relationship between
physical activity and rectal cancer risk. Specifically, more than half the studies showed no
statistically significant associations, and the median RR over all the studies was 1.0. The fact
that moderate-to-vigorous physical activity (say, 30 to 60 minutes per day) may be
protective against colon cancer but not rectal cancer suggests that these two cancers should
be treated separately in cancer registry reporting and subsequent statistical modeling.

A second broad area that may have a differential impact on the two cancers is diet. Diet has
long been suspected as an etiological factor for colorectal cancer; however, studies of
individual foods and nutrients have often provided inconsistent results, perhaps due to low
statistical power. Flood et al. (2008) address this problem using factor analysis to group
dietary variables into three broad groups, and go on to conclude that lower consumption of
meat and potatoes, and higher consumption of fruit, vegetables, and fat-reduced foods, are
associated with reduced colorectal cancer risk. Wei et al. (2003) use data from two
prospective cohort studies (87,733 women from the Nurses' Health Study and 46,632 men
from Health Professionals Follow-Up Study) to investigate the effect of dietary variables on
colon and rectum cancer separately. In the combined cohort, a variety of variables emerge as
significant predictors of elevated colon cancer risk, including intake of beef, pork or lamb as
a main dish, intake of processed meat, and alcohol consumption. However, none of these
variables emerge as predictors of rectal cancer. Using data from the Iowa Women's Health
Study, Folsom and Hong (2005) showed that magnesium and calcium intake were
independently associated with significantly lower colon cancer risk, but not rectum cancer
risk. The relative risk estimates changed little across baseline subgroups, such as women
who did or did not use hormone replacement therapy, or were or were not diabetic. Using
data from a different study, Flood et al. (2005) conclude that the protective effect of calcium
is present regardless of whether the calcium arises naturally in food, or is delivered through
dietary supplements. Finally, Pedersen, Johansen and Gronbaek (2003) observed a dose-
response relationship between alcohol and rectal cancer in a Danish cohort of 15,491 men
and 13,641 women who did not include wine in their alcohol intake. However, no
association between alcohol and colon cancer was found.

The third broad area where the etiologies of colon and rectal cancer appear to differ is
family history. For those who reported a family history of colon or rectal cancer, Fuchs et al.
(1994) obtained a RR of 1.99 for colon cancer but just 0.86 for rectal cancer, a statistically
significant difference based on a simple chi-square test with one degree of freedom. Wei et
al. (2003) drew the same conclusion, but using a different dataset and a stepwise polytomous
logistic regression procedure.
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1.2. MCSS data and problem description
Our specific problem of interest involves the comparison of the spatial distributions of colon
and rectum cancer patients in the state of Minnesota. These data are collected by the
Minnesota Cancer Surveillance System (MCSS), a program sponsored by the Minnesota
Department of Health. The MCSS includes the residential address of essentially every
person diagnosed with cancer in Minnesota. Here we consider the subset of patients
diagnosed during the period 1998-2002 (an interval chosen partly for its centering around a
U.S. Census year, 2000). Figure 1 shows the 7 counties comprising the Twin Cities metro
area as those encircled by the dark boundary; also shown are 9 adjacent, exurban counties.
Within these 16 counties, we have 6544 individuals for analysis. Figure 1 plots the
approximate locations of the cancers after the addition of a random “jitter” to protect patient
confidentiality (explaining why some of the cases appear to lie outside of the spatial
domain). The physiological adjacency of the colon and the rectum suggests positive
dependence in these point patterns; persons with rectum cancer beyond stage 1 (i.e., regional
or distant) are at risk for colon cancer due to metastasis. Moreover, the two cancers likely
share unmodeled spatially-varying risk factors (such as local health care quality or
availability), also implying positive dependence. This may help health care providers or
public health policy makers to identify regions of excessive risk requiring intervention (say,
a direct mail campaign encouraging more aggressive screening) or other weak links in the
health care system.

The causes of colon and rectum cancer are unknown. Age is the primary risk factor, with
disease incidence increasing significantly after the age of 50. As already mentioned, family
medical history may also be helpful in predicting colon and rectum cancer risk, along with
several lifestyle factors such as alcohol use, smoking, diet, and exercise. Unfortunately we
do not have access to this information for individuals in the MCSS, but the lifestyle factors
could reasonably be expected to cluster spatially due to corresponding sociodemographic
clustering. We also have census tract-level poverty rates, which should be correlated with
these risk factors.

A full analysis of the data in Figure 1 would account for the randomness in the observed
locations, their spatial correlation, important covariates (including population density), and
any other hierarchical structure in the data (such as the tendency of model residuals to
cluster spatially). The output of such an analysis would include maps of the fitted adjusted
log-intensity surface, point and interval estimates for important main effects and interactions
(e.g., location-age), and perhaps maps of fitted spatial residual surfaces, to help identify
spatial covariates still missing from the model.

1.3. Statistical modeling of spatial point patterns
In spatial disease mapping settings, the primary goals are typically to investigate the
connections between the disease and (possibly geographically-indexed) covariates, to
characterize the spatial variation of the disease occurrence, and to identify areas having
elevated disease risk. In such cases, the data are often aggregated to counts within specified
areal regions (counties, zip codes, etc.). Indeed, most published statistical analyses to date of
data of this type use so-called areal or lattice models; see, for example, Banerjee, Carlin and
Gelfand [(2004), Chapter 3 and Section 5.4] for a review. However, if precise geocoded
locations of disease cases are available, it is more appealing to study the resulting spatial
point pattern using spatial point process modeling. However, such methods are conceptually
and computationally more challenging, and are implemented in fewer widely available
statistical software programs. Indeed, even when actual geocoded locations are available, a
standard computational strategy is to partition the study region and model the counts in each
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cell of the partition as conditionally independent Poisson observations, obtaining the
standard areal model but with an arbitrary partition.

Under a nonhomogeneous Poisson process, the likelihood for the intensity surface
generating the locations given the observed locations is well known [see, e.g., Beneš et al.
(2002); Diggle (2003); Møller and Waagepetersen (2003)]. We begin with this likelihood,
but introduce the following features. First, we accommodate covariate information in a
novel way. We envision certain covariates as conditional, that is, we seek to compare point
patterns given levels of these covariates. For us, these are cancer type covariates which
“mark” the point pattern. We view other patient level characteristics (or risk factors) such as
age as nuisance variables for which we wish to adjust. We then model point patterns jointly
over geographic space and nuisance covariate space, enabling the notions of both
conditional and marginal intensity associated with geographic space. Hence, we obtain an
intensity adjusted for these covariates, rather than an intensity which ignores them by not
including them in the model. Moreover, we also have purely spatial covariates, some of
which are available at areal unit level (say, county-level features), while others may be
available at point level (say, distance from a location to the nearest cancer screening
facility). Employing spatial information at both scales precludes aggregation of points to
counts.

Additionally, we anticipate dependence between the intensity surfaces associated with the
two cancers, since, for example, an excess of colon cancer in a portion of the study region
may suggest correspondingly high levels of rectum cancer. We capture this dependence
using multivariate process realizations for the intensities. Last, working with the above point
level likelihood, as well as fairly large numbers of points (e.g., order 103), necessitates
approximation to implement the model-fitting.

The analysis of spatial point patterns has a reasonably long history in the literature, initially
built using exploratory tools such as distance based methods yielding F functions, G
functions, and, perhaps most commonly, Ripley's K function. All are based upon assessing
departure from complete spatial randomness (CSR), which is interpreted as a homogeneous
Poisson process and for which closed forms for these functions exist. However, no
likelihood is specified, and comparison between point patterns is not possible. Another more
recent approach involves the use of spatial scan statistics, currently popular in large part due
to the SatScan software of Kulldorff (2006). But again, no likelihood is specified so
inference is limited to say detection of “hot spots.”

To achieve the foregoing objectives, we instead adopt a model-based focus, and write the
intensity of the process as λ(s),where s ∈ 𝓓 for some spatial domain 𝓓. For a collection of
observed cancer case locations si,i = 1,…,n, we work with the likelihood

 which takes the form  Often, λ(s) is specified as a
parametric function, for example, using a basis representation or a tiled surface. Adding a
prior distribution on these parameters, say, θ, yields a posterior distribution p(λ(s; θ)|{si})
for making inferences about the intensity surface.

For us, λ(s) is thought of as a log Guassian process (GP) realization, resulting in the familiar
class of Cox processes [Møller and Waagepetersen (2004), page 57]. To specify this prior
distribution, we require μ(s), the mean surface, along with σ2 and φ, the GP covariance
parameters. Below, we express μ(s) in part with a form z′ (s)β, so that the process mean can
depend on spatially referenced covariates z(s).

A common class of estimation methods for inhomogeneous spatial point process models
avoids full likelihood evaluations by formulating estimating equations [Waagepetersen
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(2007); Waagepetersen and Guan (2008)]. Guan and Loh (2007) study the distributional
properties of the estimation procedure of Waagepetersen (2007), and obtain variance
estimates using a thinned block bootstrap procedure. Guan (2006) developed a composite
likelihood method based on the second-order intensity function of the underlying process.
Diggle and Rowlingson (1994) handle bivariate (case-control) point processes via a
conditional likelihood approach to convert the two spatial point process models into an
easier-to-fit nonlinear binary regression model. Similarly, Guan, Waagepetersen and Beale
(2008) estimate correlation functions via either a consistent nonparametric kernel smoothing
estimator, or a parametric conditional likelihood estimator. In all of these approaches,
inference on spatial associations and second-order variations proceeds not from the intensity
surface, but from pairwise correlation functions and transforms thereof [e.g., the g and K
functions in Waagepetersen (2007)]. As such, they do not offer direct attacks on the
intensity surface estimation problem, needed for inference regarding the fitted surface itself,
its rate of change at any point [as needed for spatial boundary analysis or “wombling”; see
Banerjee and Gelfand (2006), and Liang, Banerjee and Carlin (2009)], or model-based
comparison of the surfaces for colon and rectum cancer.

As such, we instead adopt a fully Bayesian approach that yields posterior distributions for
the intensity surface, or even the spatial residual surface after adjusting for regressors that
are allowed to differ for the two cancers. Due to the absence of sufficient covariate (e.g.,
diet) information in our dataset, we introduce spatially varying random effects which we
view as surrogates for these missing covariates. Inference is exact and does not rely upon
possibly inappropriate use of infill or increasing-domain asymptotics. However, our more
comprehensive approach comes with a price. Specifically, note that if λ(s) is modeled as a
random realization of a spatial process, then the likelihood integral is stochastic, precluding
explicit evaluation. Indeed, a variety of computational challenges emerge in working with
the point-level likelihood in this case: the stochastic integration, the large collection of
spatial locations, and a prior specification that is only available through finite dimensional
distributions.

Wolpert and Ickstadt (1998) offered one of the first fully Bayesian approaches for spatially
nonhomogeneous Poisson process data. Beneš et al. (2002) illustrate one possible Bayesian
analysis of a log Guassian Cox process model. While they assume λ(s) constant over grid
cells, they do utilize the notion of the population intensity surface, and obtain fitted disease
maps under a variety of models (constant, Gaussian kernel, etc.) for this surface. However,
they do not consider joint modeling of multiple disease surfaces, nor covariates that are not
location-specific (e.g., the age or cancer stage of a case observed at a particular location).

In this paper we employ novel spatial point process approaches that account for both
location-specific and nonlocation-specific covariates in the context of multiple dependent
point processes to analyze the MCSS dataset. We begin in Section 2 with a brief review of
spatial point process modeling. We then go on to present a set of multivariate spatial point
process models for investigating the effect of both location-specific and nonlocation-specific
covariates, as well as their interactions. Section 3 then gives the results of applying them to
our MCSS dataset. Finally, Section 4 discusses our findings and offers directions for future
research in this area. Computational challenges in fitting our models are addressed in the
supplemental article [Liang, Carlin and Gelfand (2009)].
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2. Hierarchical modeling for spatial point processes
2.1. Modeling with spatial covariates

We begin with a brief review of the basics of log Guassian Cox process modeling. Consider

a set of random locations which we denote by  where disease occurrence is observed
over a spatial domain D. We model this random set of locations using a nonhomogeneous
Poisson process with intensity function λ(s) for all s ∈ D. Let z(s) be a vector of location-
specific covariates corresponding to a disease case observed at s. For us, a key component of
z(s) is the indicator of whether the case is in the metro area or not. However, in other
contexts, we could envision information such as elevation, climate, exposure to pollutants,
and so on to be relevant. We model λ(s) = r(s)π(s), where r(s) is the population density
surface at location s. In practice, we may create such a surface using GIS tools and census
data, or we may just work with areal unit population counts, letting r(s) = n(A)/|A| if s ∈ A,
where n(A) is the number of persons residing in A and |A| is the area of A. The error
introduced by this admittedly crude estimate may be mitigated somewhat by resorting to the
non-Bayesian estimating equation alternatives discussed in Section 1.3. Specifically, in this
framework one could model the two point processes separately [Waagepetersen (2007)] or
jointly [by an extension of Guan (2006)].

Returning to our framework, r(s) serves as an offset and π(s) is interpreted as a population
adjusted (or relative) intensity, which we model on the log scale as

(1)

where w(s) is a zero-centered stochastic process, and β is an unknown vector of regression
coefficients. If w(s) is taken to be a Gaussian process, then the original point process is
called a log Gaussian Cox process [LGCP; Møller and Waagepetersen (2004), page 72]. The
likelihood associated with β and wD = {w(s):s ∈ D} given S takes the form

(2)

Operating formally, a prior on wD along with a prior on β completes the Bayesian
specification. Inference proceeds from the posterior which, again formally, is p(β, wD|S) ∝
L(β, wD; S)p(β)p(wD). Of course, the Gaussian process is only defined through its finite
dimensional distributions so that, practically, this posterior is viewed in terms of a finite
collection of locations. This motivates discrete approximation of the stochastic integral as
we discuss below. One discrete approximation partitions D into a collection of sets (say, Ai, i
= 1, 2, … ,m) and creates a Poisson likelihood for the counts given λ(Ai). That is, it models
log π(Ai), thus precluding use of point level covariate information. Moreover, since π(Ai) =
∫Ai π(s) ≠ = exp(∫Ai (z(s)′β + w(s)) ds, it is inappropriate to utilize the latter, simpler
integration. Indeed, ignoring this inequality can introduce ecological fallacy issues; see, for
example, Wakefield and Salway (2001) for a discussion.

We pursue an alternative discrete approximation which still enables us to work at the point
level. Suppose we replace ∫Dλ(s) with some choice of numerical integration. For the
moment, we allow analytic possibilities as well as Monte Carlo versions, since in either

case, we will end up replacing wD with a finite set, say, . Then we
revise (2) to
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(3)

Now, we only need to work with an (n + T)-dimensional random variable to handle the w's,
hence, their prior is just an (n + T)-dimensional multivariate normal distribution. Note that,
in (3), we will require that z(s) be available at each tj; that is, we require the component z(s)
surfaces over D. These surfaces are not viewed as random and may be interpolated or tiled,
according to the nature of the information for the particular spatial covariate; we assume
only that we can assign a value of z for each s ∈ D.

2.2. Introducing nonspatial covariate information
So far we have indicated how to incorporate covariates that are spatially referenced into the
modeling. In our setting, we seek to introduce nonspatial covariates which we think of as
being of two types (though the distinction will depend upon the application). One type of
covariate provides the “marks” leading to a marked point process model. For us, this
covariate is cancer type (colon vs. rectum), and we are interested in whether the two cancer
intensity patterns differ.

The second type of covariate we view as an “auxiliary” variable that provides additional
information associated with intensity. For us, age and cancer stage are examples of such
covariates. Clearly patient age is associated with cancer intensity, but the strength of this
association may differ across cancers. We wish to adjust intensity to reflect patient age,
analogous to the age standardization used in aggregated areal data settings.

In general, we view these latter covariates as continuous2 and introduce a second argument
into the definition of the intensity, yielding a surface in s and v over the product space D × ν
(i.e., geographic space by covariate space). We then generalize (1) to

(4)

where the Kronecker product v ⊗ z(s) denotes the set of all the first order multiplicative
interaction terms between z(s) and v. When a particular interaction term is not of interest,
the corresponding coefficient in γ is set to zero. This expression envisions a conceptual
intensity value at each (s, v) combination. The interaction terms between spatial and
nonspatial covariates provide the ability to adjust the spatial intensity by individual risk
factors. If we fix ν in (4), we can view λ(s, v) = r(s)π(s, v) as a “conditional” intensity at
level v. If we integrate over v (see below), we obtain the (cumulative) marginal intensity
λ(s) associated with π(s, v).

Now, introducing marks k = 1, 2, …, K, a general additive form for the log relative intensity
is

(5)

We can immediately interpret the terms on the right side of (5). The global mark effect is
captured with the β0k. Therefore, there is no intercept in z(s) and we have mark-varying
coefficients for the spatially-referenced covariates, reflecting the possibility that these

2In the case of a discrete valued covariate, any integrals over v in our development are replaced by sums.
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covariates can differentially affect the intensity surfaces of the marks. Similarly, we have
mark-varying coefficients for the nuisance variables. We also have mark-varying
coefficients for the interaction terms, reflecting possibly different effects of the nonspatial
covariates over spatial domains. Finally, we allow the spatial random effects to vary with
mark, that is, a different Gaussian process realization for each k. Dependence in the wk(s)
surfaces may be expected (say, increased intensity at s for one marked outcome encourages
increased intensity for another at that s), suggesting the need for a multivariate Gaussian
process over the wk. Both separable and nonseparable forms for the associated cross-
covariance function are conveniently specified through coregionalization [Gelfand et al.
(2004);Banerjee, Carlin and Gelfand (2004), Sections 7.1 and 7.2].

Reduced models of (5) are immediately available, including, for example, wk(s) = w(s), βk =
β, and αk = α. Another interesting reduced model obtains by setting γk = 0, leading to

(6)

This separable form enables us to directly study the effect of the marks on spatial intensity.
Specifically, the intensity associated with (5) is

(7)

We see a factorization into nonspatial nuisance and spatial covariate terms. Presuming the
former is integrable over v, the latter, up to a constant, is the “marginal spatial intensity.”

Integration of λk(s, v), based upon (5), can be computed analytically in most cases. When v
is categorical, the likelihood integral involves only integration over the spatial domain D.
When v is continuous, simple algebra shows

Suppose, for instance, that there is only one component in z(s) and one component in v
having range (vl, vu). Provided αk + z(s)γk ≠ 0, the marginal intensity λk(s) is then

Turning to the revised likelihood associated with (5), let {ski, vki), i = 1, 2, … ,nk} be the
locations and nuisance covariates associated with the nk points having mark k. The
likelihood becomes

(8)

Using the calculations above, the double integral becomes
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provided that the set {s:αk + z(s)γk = 0} has Lebesgue measure zero. Hence, the difficulty in
the likelihood evaluation is the same as in (2) and can be treated in the manner described in
conjunction with (3). In this regard, note that we bound the components of v in order to
integrate explicitly over v. We do not have a stochastic integration with regard to V as we
have over D. Of course, sensitivity to the chosen bounds should be investigated.

Last, in the case of k = 2 marks, a common alternative model specification is logistic
regression, which views the mark as the response given the locations and covariates. This is
conditioning in the opposite order from our model, which views the locations and covariates
as random given the marks. In our dataset it seems more natural to compare point patterns
for the two different types of cancer, rather than view cancer type as some sort of binary
“response” to covariate information.

3. Results
We now present the results of our analysis of the MCSS colon and rectum cancer data.
Previous studies suggest that covariates related to a patient's socioeconomic status (SES)
may be related to the patient's risk factors through its impact on diet, health care quality, or
propensity to seek care. While our dataset lacks any individual-level SES measures, from
census data we have several related tract-level variables: percentage of farm population,
percentage of rural population, percentage of people with less than high school education,
percentage of minority population, and poverty rate. A preliminary population-adjusted
nonspatial Poisson regression analysis of our data on these covariates revealed only poverty
rate and the metro indicator as significant predictors.

In our initial model, we consider two location-specific covariates: z1(s), the metro area
indicator, and z2(s), the poverty rate in the census tract containing s. We also employ two
nonlocation-specific covariates: v1, cancer stage [set to 1 if the cancer is diagnosed “late”
(regional or distant stage) and 0 otherwise], and v2, the patient's age at diagnosis. The
population density r(s) we use for standardization is available at 2000 census tract level,
meaning that we assume population density is constant across any tract. The integral of the
intensity is approximated by a Monte Carlo sum using a predictive process approximation
[Banerjee et al. (2008)]; see the supplemental article by Liang, Carlin and Gelfand (2009)
for full details.

The left and middle columns of Figure 2 show maps of the raw mean non-spatially varying
covariates (age and proportion diagnosed late), while the right column maps a crude
estimate of relative intensity for colon cancer (top row) and rectum cancer (bottom row).
Notice these summaries are presented at tract level, even though we have exact (or nearly
exact) spatial coordinates here. In the first two columns, tracts containing no cases are
simply shaded according to the overall observed mean values for each disease, which are
69.9 and -64.8 for age and 0.618 and 0.555 for proportion diagnosed late for colon and
rectum cancer, respectively.

None of these four maps show strong spatial patterns, though we do see several areas with
higher than average age, late diagnosis fraction, or both. The right column maps the logs of
the numbers of cases divided by total number of residents in each tract. These crude maps of
the tract-level log relative intensity (unadjusted for any spatial or nonspatial covariates)
show somewhat stronger spatial patterns and higher overall rates of colon cancer. The
rectum cancer map features an interesting collection of low outlying values in several outer-
ring suburban census tracts.

Table 1 breaks down the data by stage and metro/nonmetro area. We see that 38% of colon
cancer cases were diagnosed at an early stage, while 44.5% of rectum cancer cases were. In
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total, colon cancer is nearly three times as prevalent as rectum cancer in both the metro and
nonmetro areas. A fact not revealed by the table is that there are 72 individuals who
contribute both a colon and a rectum tumor. Since this is only around 1% of the total of 6544
individuals, we do not explicitly model this particular kind of dependence, but rather “lump
it in” with the bivariate dependence modeled by ρ.

Figure 3 shows tract-level maps of population density, r(s), and our two location-specific
covariates, z1(s) and z2(s). Not surprisingly, the central metro areas are the most populated.
The poverty rate is fairly uniform except for high rates in a concentrated portion of the
central metro.

We now fit our model, using independent Inverse Gamma(2, 0.5) priors for  and , and a
Unif(-0.999, 0.999) prior for ρ. The scale of the spatial decay parameter ø is determined by
the distance function employed. In this application, we started with a Unif(130, 390) prior
for ø, so that the effective range lies between one-fourth and three-fourths of the maximal
distance between any two knots. As expected, φ is only weakly identified, so a fairly
informative prior is needed for satisfactory MCMC behavior. For simplicity, we simply fix
the range parameter at ø = 195, so that the effective range is roughly half of the maximal
distance. A random-walk Metropolis-Hastings algorithm is used to draw posterior samples.

Table 2 compares the effective model size and DIC score of three models. It can be seen that
the no-random effect model (GLM) is unacceptably bad, and the model with a single set of
spatial residuals is not much worse than the bivariate residual model. This suggests that the
two sets of residuals are fairly similar, and that ρ is close to 1.

Table 3 shows parameter estimates from some of our models. We parameterize so that the
top rows concern the fixed effects for colon cancers, β1, but the second set of rows give the
differential effect in the rectum cancer group, β ≡ β2 - β1. Thus, any 95% Bayesian
confidence intervals that exclude 0 in this part of the table suggest a variable that has a
significantly different impact on the two cancers.

In general, the effects of the non-spatial covariates are fairly similar across the models
considered. We find that in the metro area there are relatively fewer cases of both colon and
rectum cancer. This is consistent with statewide patterns of colorectal cancer occurrence in
Minnesota, where higher age-adjusted rates are often found in nonmetro areas. However,
there is no significant change in this relationship in the rectum group relative to the colon
group. An interesting and somewhat counterintuitive finding is that poor areas seem to have
relatively fewer cases. This appears consistent with the aforementioned finding of Wei et al.
(2003) that colon cancer is associated with foods often consumed by relatively more affluent
people (beef, pork, or lamb as a main dish, and other processed meat). However, unlike
these authors, we find no significant difference in this relationship for rectum cancer.

Turning to the nonlocation-specific covariates, age is significantly associated with
increasing colon cancer, but a somewhat surprising relative decrease in rectum cancer. This
difference (-0.18) is statistically significant, but not large enough in magnitude to make the
overall age effect in the rectum group negative. A look at the data bears this out, with rectum
cancers arising in a somewhat younger population; our preliminary Poisson regression also
concurs, though here the relative decrease in the rectum group is not significant. Late
detection provides another interesting difference between the colon and rectum groups:
while there are significantly more cases diagnosed late than early, the effect of late diagnosis
is significantly smaller in the rectum group (point estimate -0.26). Thus, public health
interventions to encourage screening and early detection of colorectal cancer will have
significantly greater impact on prevention for colon than for rectum. The metro-age
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interaction shows that the effect of age on colon cancer is significantly less pronounced in
the metro area; a smaller “age adjustment” to the colon cancer intensity process is needed in
the metro area. This effect is largely absent for rectum cancer, but this difference is not quite
statistically significant. Finally, the estimate of ρ is very close to 1, indicating very similar
spatial residual patterns. This is perhaps a surprisingly strong association, but believable
given that these are residual surfaces, which account (at least conceptually) for important
missing covariates, which could be spatial (e.g., local screening percentage, other
sociodemographic factors) or nonspatial (e.g., the physiological adjacency of the colon and
the rectum).

Our Bayesian viewpoint allows us to make probabilistic statements both against and in favor
of various null hypotheses of interest. For example, suppose we take 20% as the minimum
difference in relative intensity required to conclude a practically meaningful difference
between the colon and rectum cancer groups. For predictor i, this amounts to a test of H0 :Δi
∈ [log(0.8), log(1.2) versus Ha : Δi ∉ [log(0.8), log(1.2). The posteriors summarized in the
second group of rows in Table 3 enable us to compute posterior odds ratios OR = P(Ha|S)/P
(H0|S) for any predictor of interest. In our dataset, the two predictors of greatest substantive
interest yield different results. Living in the metro area produces OR = 0.12, or odds of just
over 8:1 in favor of no real difference in the colon and rectum However, for late detection
we obtain OR = 2.81, or nearly 3:1 odds in favor of a practically meaningful difference (in
this case, a relative intensity reduction in the rectum group). Again, this suggests a public
health program encouraging more aggressive cancer screening would be sensibly targeted to
those living in regions with higher colon cancer relative intensity, since this should lead to a
more meaningful reduction in cancer prevalence.

Figure 4 shows maps of the fitted log intensity surfaces both without (left column) and with
(right column) the spatial residuals (middle column), for a case at the mean age and
diagnosed at an early stage. Without spatial residuals, the two spatial covariates alone
predict slightly higher prevalence in the nonmetro areas. However, the residuals (which
unlike our spatial covariates are point-level, and are thus summarized using image-contour
maps) indicate further reductions are needed in the near southern, southeastern, and northern
suburbs, as well as the far north exurban area. This leads to the more mottled fitted patterns
in the rightmost column. Note these final two maps in the right column result in spatially
smoothed versions of the corresponding maps in the right column of Figure 2, which we
recall are something like raw log-relative intensity surfaces. While direct comparison is not
really possible since the maps in the right column of Figure 4 are adjusted for both spatial
and nonspatial covariates, the overall similarities further confirm the good fit scores
achieved by our models. From a practical point of view, when combined with the significant
differences in age and late detection between the two cancers found in Table 3, our findings
encourage more aggressive colon cancer screening in the inner Twin Cities and the far
southern and western exurbs, where the upper right panel of Figure 4 indicates higher colon
cancer relative intensity.

4. Discussion
We have offered an analysis of colon and rectum cancer incidence data collected by the
Minnesota Cancer Surveillance System during the period 1998-2002. In so doing we
extended customary spatial point pattern analysis in the context of a log Guassian Cox
process model to accommodate covariates that are spatially referenced, individual-level
cancer type marks, and individual-level risk factors that are not of interest in terms of
marking. Our approach yields easy-to-interpret fixed effects for testing for equality of
epidemiological properties across the two cancers, and fitted maps that can reflect the
impacts of the spatially indexed covariates, spatial residuals, or both. These last maps also
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offer spatially smoothed fitted surfaces reminiscent of those in traditional areal models, but
now adjusted for the nonspatially varying covariates, age and cancer stage.

As with many observational data analyses, our findings raise as many questions as they
answer. The somewhat counterintuitive negative relationship between tract-level poverty
and colorectal cancer shown in Table 3 might be the result of unmodeled confounding
between age and poverty: poor areas could very well be significantly younger (especially in
the metro, which features a higher proportion of immigrants, who tend to be younger). Since
colorectal cancer is so highly associated with age, the apparent beneficial effect of poverty
might just be another manifestation of the protective effect of youth. Similarly, modestly
negative metro-age interaction may be due to more common use of colorectal screening in
the metro area. Such screening methods can reduce colorectal cancer incidence by
identifying pre-malignant lesions (polyps) and removing them; failure to screen a population
might increase both the number of cases and the ages at which the cancers were diagnosed.
Sadly, we currently lack the individual-level income and screening information necessary to
precisely address these questions. Moreover, the MCSS database also does not feature
information on diet, exercise, or family histories of the patients, the three previously-
identified factors most likely to be responsible for any differences between colon and rectum
cancer relative hazards. The data collected by MCSS is determined by legislation, and to
expand it in any way requires a change in Minnesota state law, attempts at which the
Minnesota Department of Health prefers to keep as rare as possible. As a result, future
research regarding epidemiological properties of colon and rectum cancer should perhaps
focus on obtaining approval and funding for a follow-up questionnaire mailed to all MCSS
patients.

Even more fundamentally, an increasing number of authors view the debate over whether
colon and rectum cancers have different etiologies as misplaced, arguing that the real
distinction is not colon versus rectum, but rather proximal (right, or ascending) versus distal
(left, or descending) colon, the latter of which includes the rectum. These authors argue that
colorectal cancer is not a single disease, but two distinct diseases with distinct molecular
profiles. One of these is more commonly found in the distal colon, and derives from
hyperplastic polyps, whose putative successor lesions, serrated adenomas, represent discrete
steps along a pathway to cancer [Huang et al. (2004)]. By contrast, the cancers most
common in the proximal colon arise from an entirely different molecular pathway [O'Brien
et al. (2006)]. Differences in risk factors for these two pathways are not well established but
are nonetheless entirely likely. Relatedly, Glebov et al. (2003) found more than 1000 genes
expressed differentially in adult ascending versus descending colon. Thus, the real
subclassification of interest may not be colon versus rectum or distal colon versus proximal
colon, but rather molecular pathology. Of course, this line of thinking encourages a
reporting of cancers that is well beyond the capabilities of most U.S. public health reporting
(hence intervention) systems, but the idea bears watching.

On the brighter side, recent audits have suggested our MCSS dataset is over 99% complete;
that is, due to state reporting requirements, we are aware of essentially every tumor
discovered by doctors in Minnesota. However, our methods obviously cannot reflect tumors
that are not discovered or otherwise not reported. To the extent that such tumors happen
unevenly across the spatial domain, this could lead to bias in our fitted estimates and maps.
We do not think differential underreporting is a problem across our current, relatively
compact and relatively urban 16-county spatial domain, but datasets that reached further into
more remote regions of the state (especially semi-autonomous Native American tribal lands)
may well suffer from this problem.
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Future work in this area also includes extending our model with more complex interaction
terms and perhaps more than two marks (the MCSS database has information on more than
20 cancers), leading to more challenging model-fitting. Another issue to address is the
imprecision in the (typically rural) addresses within the point pattern. In some cases error
may be simply due to the sensing device (e.g., the GPS unit), while in others it may be due
to the practical limits of geocoding: for some of the cancers in our MCSS data, a significant
proportion of the geocodes may be based on less than a complete and valid street address
(e.g, residence zip + 2, residence zip only, or even the zip of a post office box). A final,
perhaps most interesting path for the future lies in space-time point pattern analysis, in order
to see evolution of cancer intensities over time. In the case of continuous time, we would
now add a time argument to our intensity functions, leading to substantially increased scope
for the modeling (e.g., separable versus nonsep-arable models for the space-time intensity).
If time is instead viewed as discrete, we might instead extend our framework to temporally
dynamic log Guassian Cox process models. Both of these options, while computationally
challenging, could pay significant practical dividends.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Jittered residential locations of colon (light circle) and rectum (dark circle)cancer cases,
Twin Cities metro and exurban counties, 1998-2002.
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Fig. 2.
Minnesota colorectal cancer covariate and response data for colon (top row) and rectum
(bottom row) groups: left, tract-specific map of observed mean age; middle, tract-specific
map of observed proportion of late diagnosis; right, tract-specific observed log-relative
intensity (count divided by population).
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Fig. 3.
Left, population density by tract; middle, metro/nonmetro area; right, poverty rate by tract .
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Fig. 4.
Log-relative intensity surfaces using values at centroid of each census tract at the mean age
and assuming an early diagnosis. The top row is for colon cancer and the bottom for rectum
cancer. The first column is the log-relative intensity surfaces without spatial residuals. The
second column is the spatial residuals and the third is the complete log-relative intensity
surfaces.
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Table 2

Model comparison using effective model size pD and DIC score.

Model pD DIC

GLM (no residuals) 11.8 1194.4

Univariate spatial residuals 72.0 692.4

Bivariate spatial residuals 80.2 688.8

GLM refers to generalized linear model having no random effects
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Table 3

Parameter estimates for the model with metro indicator and poverty rate as the spatial covariates, and stage
and age as individual covariates.

Fitted model

93 knots

BSR USR GLM

Colon intercept -8.76 (-9.12, -8.44) -8.75 (-9.25, -8.40) -8.91 (-8.99, -8.83)

metro -0.23 (-0.49, 0.04) -0.19 (-0.42, 0.06) -0.21 (-0.29, -0.14)

poverty -2.01 (-2.47, -1.55) -1.90 (-2.36, -1.47) -0.26 (-0.61, 0.09)

age 0.36 (0.31, 0.40) 0.36 (0.31, 0.40) 0.32 (0.28, 0.36)

late 0.48 (0.42, 0.54) 0.48 (0.42, 0.54) 0.48 (0.43, 0.54)

metro*age -0.06 (-0.1 1, -0.02) -0.06 (-0.11, -0.02) -0.06 (-0.11, -0.02)

Rectum-colon intercept -0.86 (-1.08, -0.65) -0.84 (-1.00, -0.68) -0.84 (-1.01, -0.69)

metro 0.02 (-0.21, 0.26) -0.07 (-0.22, 0.08) -0.07 (-0.22, 0.09)

poverty 0.14 (-0.70, 0.98) -0.24 (-1.06, 0.52) -0.22 (-1.00, 0.49)

age -0.18 (-0.26, -0.10) -0.18 (-0.26, -0.10) -0.18 (-0.25, -0.11)

late -0.26 (-0.37, -0.15) -0.26 (-0.38, -0.15) -0.26 (-0.37, -0.15)

metro*age 0.06 (-0.03, 0.15) 0.05 (-0.03, 0.15) -0.01 (-0.08, 0.07)

ρ 0.98 (0.95, 0.99) - -

ϕ 195 195 -

σ1
2 0.95 (0.57, 1.48) 0.76 (0.43, 1.33) -

σ2
2 0.75 (0.41, 1.33) -

The estimates for rectum are relative effects to colon cancer.

BSR = bivariate spatial residual model, USR = univariate spatial residual model, GLM = no random effects model
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