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Abstract
Transport by processive molecular motors plays an important role in many cell biological
phenomena. In many cases, motors work together to transport cargos in the cell, so it is important
to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we
study effects of nonlinear force–velocity relations and stochastic load sharing on multiple motor
transport. We find that when two or three motors transport the cargo, then the nonlinear and
stochastic effects compensate so that the mechanical properties of the transport are robust.
Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate
of movement against moderate loads is not improved by increasing the small number of motors.
When the motor number is greater than 4, correlations between the motors become negligible, and
the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the
effective diffusion of the cargo driven by the multiple motors under load increases by an order of
magnitude compared to that for the single motor. Finally, our simulations predict that the
stochastic effects are responsible for a significant dispersion of velocities generated by the ‘tug-of-
war’ of the multiple opposing motors.

1. Introduction
Motor proteins are remarkable molecular machines able to transform chemical energy into
movement and force generation [1]. They use linear polar actin and microtubule filaments as
‘tracks’ to transport vesicles and organelles in the cell [2,3], as well as to produce stresses
and deformations, most notably in mitosis [4], cytokinesis [5] and cell motility [6]. Over the
last two decades, the mechanics of many single-molecular motors was understood
quantitatively with the help of both experimental use of optical traps [7] and theoretical
applications of statistical mechanics [8].

These studies uncovered that the mechanical behavior of the individual motors can be
described by force–velocity and force–processivity relations, namely by how fast a motor
moves on average against a mechanical load, and how far would the motor advance before
dissociating from its track. For example, the best studied microtubule-based motor,
Kinesin-1, is processive, able to move freely as fast as ~1 μm s−1 and as far as ~1 μm before
detachment [9]. Against the force, however, this motor slows down [10] and dissociates
sooner [11].

3Author to whom any correspondence should be addressed. mogilner@math.ucdavis.edu.

NIH Public Access
Author Manuscript
Phys Biol. Author manuscript; available in PMC 2010 April 21.

Published in final edited form as:
Phys Biol. ; 7(1): 16012. doi:10.1088/1478-3975/7/1/016012.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Experimental considerations suggest that the cell can achieve moving cargos by great
distances against significant resistance by using multiple motor copies [12]. Indeed, the load
would be distributed among the engaged motors, so each motor can move faster against a
smaller force, and if some motors dissociate, others stay engaged moving the cargo. In vitro
experiments confirm greater processivity and higher stall forces of collective Kinesin-1 [9]
and cytoplasmic Dynein [13] transport. Controlling the motor numbers and forces is very
difficult experimentally, so mathematical modeling is very useful in interpreting the data.

A number of earlier elaborate models of mechanochemical cycles of coupled motors [14–
23] predicted complex, sometimes counter-intuitive, behaviors, such as bidirectional
movements and oscillations, as well as effects of strain- or stress-dependent ATP binding
and hydrolysis, flexibility of the cargo and cargo-motor-links, and spatial distribution of the
motors on the cargo. One recent model [24] was especially instrumental in examining the
collective motor mechanics by using the mean-field approximations, namely, assuming that
all motors share the load equally. Based on this assumption, the authors of [24] computed
effective force–velocity and force–processivity relations for N motors.

However, there are two factors, not considered in [24], that can have a significant impact on
the collective motor behavior. First, because the stalks connecting motor heads and their
cargo-binding domains are flexible and timing of the motors’ steps is largely random, there
are stochastic fluctuations in individual motors’ positions and resulting forces applied to the
motors, as well as related correlations between the coupled motors. Second, only the
simplest force–velocity relation of individual motors, such that the motor velocity decreased
linearly with the hindering load, was considered in [24]. Such a linear force–velocity curve
is usually assumed in theoretical models [25,26] and was in fact observed at moderate loads
for the mitotic kinesin motor Eg5 [27]. Most of the measured force–velocity relations,
though, are nonlinear. Most notably, a super-linear force–velocity curve is firmly established
for Kinesin-1 [10], so that the velocity is less sensitive to the force at low loads and
decreases rapidly with force at loads close to the stall. Mathematically, such a force–velocity
curve is concave up. Similar super-linear force–velocity relations are reported for an actin-
based Myosin-V motor [28]. On the other hand, sub-linear (decreasing rapidly with the force
at low loads and less sensitive to the force at loads close to the stall, which mathematically
has the form of the convex up curve) force–velocity relations are known for polymerizing
microtubules [29] and for Dynein [13,30], with the caveats that the former is a very special
‘one-shot’ motor, and that other data suggest a super-linear relation for the latter [31].

We started to take these factors into account in our recent paper [32], where a very specific
Kinesin-1-like force–velocity relation and non-monotonic dissociation rate as a function of
load were considered for small number of motors. Here, we systematically examine the
force-dependent velocity and run length of N motors characterized by the nonlinear force–
velocity curves. To take into account the uneven load sharing and correlations, we use the
Monte Carlo stochastic simulations. In what follows, we describe the mean-field model of
[24] for the nonlinear relations and the stochastic model. Then, we report the results of
analytical solutions of the mean-field model and simulations of the stochastic model. In
short, we find that the nonlinear and stochastic effects combine into surprisingly robust,
‘linearized’ collective behavior of the small number of motors, and that the mean-field
approximation is valid for more than four motors, in which case simple scaling of the force–
velocity and force–processivity relations emerges. We also report the significant increase in
the effective diffusivity of the collective transport and ‘velocity-smearing’ due to the
stochastic effects in the tug-of-war between multiple opposing motors. Details of the
simulations are given in the appendix.
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2. Mathematical model of the collective motor transport
2.1. Model of the single motor

All ever observed force–velocity relations can be well approximated by the following
mathematical expression [33]:

(1)

where ν is the load-free gliding rate of the motor, F is the load force and Fs is the stall force.
If the motor moves in steps of the length d, then the motor can be described effectively with
the load-dependent rate of stepping:

(2)

Following [24], in the model we use Kramers’s theory formula for the force-dependent rate
of motor detachment:

(3)

where ε is the load-free dissociation rate, and Fd is the characteristic force of detachment.
This simplest force dependence of the motor dissociation rate is used in tens of recent
models, i.e. [34].

Equations (1) and (3) for ω = 1 describe the linear force–velocity relation and exponentially
decaying run length that has been used in the published mean-field model [24]. Here we
examine the collective transport for other values of parameter ω. For ω < 1, equation (1)
describes a sub-linear motor characterized by the convex up force–velocity curve, while ω >
1 corresponds to a super-linear motor with the concave up force–velocity relation. The sub-
linear motor velocity decreases rapidly at small forces and becomes force insensitive at
loads close to the stall, while the super-linear motor velocity is insensitive to the small loads
and decreases rapidly at greater loads.

2.2. Mean-field model
According to the mean-field model [24], a cargo particle is transported cooperatively by N
molecular motors along a filament. The model is based on the assumptions that the motors
share the load equally, so that the force F/i is applied to each of i engaged motors. The state
of the system is characterized by the number i of engaged motors pulling on the cargo. In
this state, the cargo has the velocity

(4)

and the number of engaged motors increases with the rate

(5)
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and decreases with the rate

(6)

where π is the attachment rate per motor, and N is the total motor number on the cargo.

We use the stationary solutions of the master equation obtained in [24] expressing the
probability for the system to have i engaged motors in terms of the motor parameters,

(7)

to find analytically the average velocity of the cargo,

(8)

and the average run length before detachment of the cargo,

(9)

In order to compare our results with the mean-field model [24], we use the same parameter
values: ν = 1 μm s−1, ε = 1 s−1, π = 5 s−1, Fs = 6 pN and Fd = 3 pN, unless otherwise stated.
A number of rate values and assumptions of the mean-field model (velocity at zero load is
independent of the motor number; association rate is proportional to the motor number) were
confirmed experimentally in [35].

2.3. Stochastic model
To model the multiple motor transport, we place N motors on the cargo, so that each motor
head is attached to a single spot by a link (figure 1). According to recent measurements [36],
the link between the motor domain and the bead is highly nonlinear: when stretched beyond
the rest length, it behaves as a relatively stiff linear spring characterized by the spring
constant ~0.3 pN nm−1. However, its effective compressional rigidity is very low, ~0.05 pN
nm−1, i.e. the link buckles almost without resistance when compressed [36]. Thus, we model
each link as a linear spring exerting restoring force when stretched beyond the rest length
and not generating any force if the distance between the bead attachment point and the
motor head is less than the rest length. The model is one dimensional, so all distances are
measured along the motors’ track. In the simulations, we use the appropriate values of
linkage stiffness 0.32 pN nm−1 measured for single kinesin-1 motors in vitro [11,36] and
rest length 0.11 μm [11]. Each dissociated motor binds to the track with the constant on-rate,
and each engaged motor detaches with the rate given by equation (3) dependent on the
instantaneous force applied to this motor by the elastic link. Each motor makes a forward
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step with the force-dependent rate (equation (2)). (Probabilities of binding, unbinding and
stepping events are computed by multiplying the respective rate by the time step.) The
instantaneous position of the cargo is calculated at each step from the requirement that the
total force on the cargo from the load and all elastic links is equal to zero.

The Monte Carlo simulations of such a single motor correctly reproduce the deterministic
force–velocity and force–processivity curves for all tried nonlinearity parameter values (ω =
0.25, 0.50, 1.00, 2.00 and 4.00). We ran the stochastic simulations for two to four motors.
Initially, all motor heads were attached to the track and placed at the origin, and each
simulation ended when all motors dissociated from the track. The simulations were run
repeatedly for various values of the load force applied to the cargo, until reliable statistics of
the average velocities and run lengths were gathered. We emphasize that in this model the
motors share the load stochastically, unevenly, unlike in the mean-field approximation: a
‘leading’ motor experiences the greatest hindering load, while the motor ‘lagging behind’
has a possibility of being pulled forward. We assume that under the influence of the forward
load, the motor steps forward as if it was unloaded, but the forward load has the same
quantitative effect on detachment as that at the backward load. (The force value in the
exponent of Kramers’s formula is the magnitude of the load applied to the motor.) Details of
the simulations are described in the appendix. Also, we demonstrate in the appendix that the
detailed mechanochemical cycle of individual motors is not crucial for the collective motor
behavior on the scale of microns and seconds.

3. Results
3.1. Nonlinear effects in the mean-field approximation

We used the formulas of the mean-field theory [24] and nonlinear force–velocity relations to
obtain the force dependence of the average collective motor velocity and run length given by
equations (8) and (9), respectively. The results are shown in figure 2. The run length
exponentially increases with the number of motors and exponentially decreases with the
external load. As expected, the multiple motor system performance improves with
increasing parameter ω: the super-linear motors have the greater run length and velocity at
any given load than linear motors, and those, in turn, perform better than the sub-linear
motors, simply because the time to unbinding is independent of the velocity and therefore of
parameter ω, so the increased/decreased run length simply reflects the fact that motors with
ω > 1/ω < 1 are faster/slower.

Note that the collective force–velocity properties of the super-linear motors are improved
more significantly for greater loads. Also, ‘kinks’ (points where the velocity is not a smooth
function of the force) in the nonlinear force–velocity curves appear at the stall forces for one
and two motors, and can be explained as follows. For example, for two motors, if the total
load is less than Fs, then each motor moves continuously against either half or total load,
depending on whether one or both motors are engaged. On the other hand, if the total load is
greater than Fs, then either both engaged motors move continuously against half load, or, if
one of the motors dissociates, the remaining motor is stalled completely.

3.2. Stochastic effects lead to worse performance and ‘linearization’ of the force–velocity
relations

Simulations of the stochastic model, in which the individual motors are characterized by the
same parameters as those in the mean-field model, illustrate that the stochastic effects
worsen the performance of a small number of motors. The results plotted in figure 3
demonstrate that both run lengths and velocities of two or three motors are lower than those
predicted by the mean-field theory for any given force and for any nonlinearity (parameter
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ω). Same is true for groups of four or more motors (data not shown). The stochastic model
predicts especially great drop in the run length in the high load regime. We also find that for
any given parameter ω, having more (three instead of two) motors on the cargo does not
help much to increase the processivity in the higher load limit or velocity for any load. It is
as if just one motor takes on most of the load, and additional motors help very little.
Interestingly, two or three motors make velocity even lower than that of one motor for low
loads, but higher at greater loads. This causes ‘linearization’ effect for the small motor
number: the resulting collective force–velocity relation is closer to the linear one despite
varying nonlinearity in the individual motor properties.

The reason for the poor performance of the multiple motor system under high load in the
stochastic model has its origin in the stochastic load sharing, as illustrated in figure 4.
Indeed, when one of the motors advances leaving other motors behind, this leading motor
takes on a disproportionate high load and detaches with a greater rate than the other motors.
This increases the load on the remaining motors and, more importantly, the load causes the
cargo to rapidly retract at the moment of the leading motor dissociation, stretching the
remaining motor links supporting this new excessive load. The combined effect of the
increased detachment rate of links’ stretching of the remaining engaged motors and of the
backward cargo excursions reduces the overall run length and average velocity of the cargo.

These arguments are illustrated by figure 4(B) showing separation between the two motors
driving the cargo, which is greater for the super-linear motors because one of these motors
can more easily advance without slowing down against moderate force. For the sub-linear
motors, the separation between motor heads cannot grow too much because if one of them
moves ahead of another, the leading motor is slowed down significantly. The super-linear
motors step against a greater average load (figure 4(A)), so they detach faster, which in turn
increases the frequency of the backward excursions (figure 4(A)). Note that the motors
rarely share the load equally, but rather step either against almost zero load (lagging behind
a motor), or almost maximal load (leading motor) (figure 4(C)). Note also that each of the
two super-linear motors moves against the average force equal to the half-total load, while
the sub-linear motors advance against a lower than half total load (figure 4(A)): in the sub-
linear case, mostly the rearward motor advances, while the forward motor stays put
‘subsidizing’ the rearward motor ‘catching up’.

Interestingly, the average backward excursion length is roughly constant, independent of the
nonlinearity (value of ω) (figure 4(A)). The reason is that when the motors are super-linear,
the spatial separation between them is significant, and when the trailing motor detaches, the
cargo does not move much, still supported by the leading motor. When the leading motor
detaches, the cargo makes a long backward travel. When the motors are sub-linear, they are
not separated to a great extent, so when either leading or trailing motor detaches; the
remaining motor link stretches to a moderate extent. Thus, the super-linear motors detach
more frequently, but the long backward cargo excursions are less frequent than that for the
sub-linear motors; in the latter case, these excursions are also shorter.

3.3. Robust collective motor behavior
We have investigated the effect of the motor link stiffness on cargo transport in the
stochastic model. The simulations demonstrated (data not shown) that neither run length, nor
velocity is sensitive to the elasticity of the links between the motors and cargo, with one
exception: the groups of stiffer motors stall at slightly higher forces. This conclusion is
different from that in [32], where it was suggested that stiffer links make the collective
transport more effective. This effect was due to ‘strain-gating’: for example, in the case of
two motors, if the motors start from the same location, one of the motors steps against the
half-load, and then takes on the greater load share helping the second motor to step against
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the less than half-load. This leads to a more effective transport, but only when the link
stiffness is high enough for the leading motor to take on a significantly greater load.
However, this mechanism only works if the leading motor does not detach too frequently. In
[32], a non-monotonic force dependence of the dissociation rate was used, so that the
detachment became infrequent at stall. We use the dissociation rate exponentially increasing
with the load, which cancels the strain-gating effect. This result emphasizes the significance
of the force dependence of the dissociation rate, which is not accurately measured. We have
also investigated the effect of the detachment force, Fd, on the cargo transport in the
stochastic model. Not surprisingly, motors with higher detachment force perform better, as
they detach less frequently at the same loads, and more attached motors transport the cargo
faster (fewer backward excursions) and to longer distances.

The mean-field model [24] can be applied to the in vivo transport when the cargo
experiences the viscous load. The cargo of radius r, driven by i engaged motors through a
medium with viscosity η, moves with velocity vi and experiences the viscous resistance γνi,
where γ is the viscous drag given by the Stokes formula: γ = 6πηr. To account for the
viscous drag on the cargo transport, parameter F in equation (4) has to be replaced by γνi.
This results in a linear velocity equation for ω = 1:

(10)

the solution of which has the form

(11)

In addition, one has to replace the parameter F in equation (6) by the expression γνi:

(12)

Note that equation (11) predicts that when viscous load becomes significant, the cargo
velocity is proportional to the number of motors, which was observed [37]. One can now use
equations (11) and (12) to calculate the average run length and velocity of the cargo as
functions of the viscosity. In the nonlinear case, after replacing the parameter F in equations
(4) and (6) by the expression γνi, we obtain the generalization of equation (10):

(13)

For ω ≠ 1 equation (13) has multiple roots; however, only one root lies in the physical range
(0 ≤ νi ≤ ν). Using solutions of equations (12) and (13) for a given parameter set (ω, r and
η), we calculated the average run length and velocity as functions of the viscosity η.
Respective velocity plots are shown in figure 5(A). Both velocities and run lengths (the latter
are not shown) for any given ω remain almost unaffected by increasing viscosity up to ~0.01
Pa×s. At higher viscosity, both velocities and run lengths start decreasing with increasing
viscosity. The velocities are insensitive to the motor number or to the nonlinearity up to
viscosity ~1 Pa×s, though more super-linear motors perform slightly better.
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We used the stochastic model to predict average run lengths and velocities in the presence of
the viscous load (simulation details are discussed in the appendix). The results, obtained
from the stochastic model in the presence of viscous drag (figure 5(B)), are qualitatively
similar to those in the mean-field approximation. However, interestingly, multiple motors
now move slower than a single motor even at low viscosity: when the viscous load is
relatively small, the motors move almost with their unloaded velocity, and so sometime the
forward motor advances too far and becomes loaded by the rearward motor. This causes two
motors to move slower than a single motor under a small load.

3.4. Two to four motors are significantly correlated, while five and more motors become
uncorrelated

We saw that stochastic fluctuations for the small number of motors are essential, as the
results of the stochastic simulations deviate significantly from the conclusions of the mean-
field theory. We observed that for a greater number of motors, the differences between the
simulations and mean-field formulas decrease. To quantify this effect, we first generated
time series of forces experienced by motors transporting the cargo against the constant total
load. One such plot for two motors with applied total load of 4 pN at ω = 0.25 is shown in
figure 6(A). This plot shows that the motors are highly mechanically anti-correlated. We
then examined such time series for various motor numbers and nonlinearities by computing
the average correlation (normalized covariance function) between the force time series
(computation details are given in the appendix). We observed that the correlation depends
only on the total number of motors N for small values of ω and is almost independent of
applied load. For large values of ω, the correlation increases with the applied load.
Importantly, however, for all values of ω, the correlations between the motors decrease with
the motor number (see figure 6(B) for ω = 0.25). Figure 6(B) shows that two to four motors
are strongly anti-correlated (negative values mean anti-correlation; values close to −1 mean
strong anti-correlation, close to 0 mean weak correlation). The correlations weaken as the
motor number increases and become insignificant if N > 4. Therefore, the transport by more
than four motors can be modeled by using the mean-field approximation. Note that the
average cross-motor-correlation coefficient decreases approximately as 1/N (figure 6(B)).
The simple reason is that a random rapid displacement of any one motor generates the
change of load almost equally shared by other (N − 1) motors, and so intuitively, the
influence of force fluctuations in one motor on another scales as ~1/N.

3.5. Scaling in the limit of the great motor number
We have calculated the force–processivity and force–velocity relations for tens of motors
using the mean-field approximation. The results are shown in figure 7. The following
asymptotic (large N) scaling behavior is clear from these plots. There is the analytical result
for the average run length exponential dependence on N at zero load [24]:

(14)

This conclusion, of course, is valid for any ω. From figure 7(A), we observe that the multiple
motor run lengths are exponentially decreasing with force:

(15)

for any ω (i.e. they are independent of the nature of single motor force–velocity curves).
Here, coefficient α exponentially increases with N, while the simulations show that the
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coefficient β is not very sensitive to either ω, or N. The critical force (defined as the load at
which the motors make on average but one step before the cargo detaches) increases linearly
with N and is not sensitive to ω (figure 7(A)).

The force–velocity curves for the great motor number reveal interesting scaling (figures
7(B)–(D)). It can be understood from the following simple analysis: when the motors are
almost uncorrelated, they indeed share the load almost equally. Then the force–velocity

relation has the form , where the average number of working motors n has to

be calculated from the nonlinear algebraic equation . Approximate
asymptotic solution of this equation in the not very interesting case when Fs < Fd shows that
almost all motors remain attached up to the stall, and the effective force–velocity curve is

only slightly lower than the simple prediction , n = Nπ/(π + ε), up to the stall.
In the case when Fs > Fd, numerical solution of these algebraic equations demonstrates at
load force F less than cNFd, where c ≈ 0.7–0.3 for ε/π = 0.3–0.9; the effective force–velocity
relation for many motors can also be approximated with the same formula. However, if F >
cN Fd, then n → 0, almost all motors detach, and the velocity of the cargo plunges almost to
zero. This simple semi-analytical scaling is easily seen in the plots of figures 7(B)–(D)
obtained numerically from the complex formulas of the mean-field theory.

3.6. Significant increase with the load of the diffusivity of the cargo driven by multiple
motors

Much useful information is contained in the statistical fluctuations about the mean velocity
of the motors’ cargo. One quantity that can be monitored as the cargo progresses is the
variance of the cargos displacement about its mean. It is easy to show that this variance
grows linearly with time; the proportionality coefficient is equal to twice the effective
diffusion coefficient, Deff [38], which in turn can be expressed by the formula Deff = Rdν/2,
where R is the quantity called the randomness parameter in the case of a single motor [39].
This parameter is equal to 1 in the case of the simple hypothetic molecular motor, ‘Poisson
stepper’ [39] that makes constant spatial steps at random times distributed exponentially. In
certain sense, the more complex the motors mechanochemical cycle is, the higher its
randomness parameter [39]. (Strictly speaking, the parameter R in the case of multiple
motors, though a very useful quantity, cannot be called the ‘randomness parameter’.)

To the best of our knowledge, the parameter R was never estimated for the multiple motors.
We recorded the rate of growth of variance of two and three coupled motors at various loads
and calculated the respective parameters R. The results are shown in figure 8: as expected,
the parameter R of one motor, which is the Poisson stepper in our case, is equal to 1. This is
true also for multiple unloaded motors, because in this case the motors carry the cargo
almost independently. However, the diffusivity increases dramatically with the load; the
effect is an order of magnitude. The reason is the frequent rearward excursions when one of
the motors detaches; such excursions increase and become more frequent at higher loads.
This effect is more pronounced for the sub-linear motors, and is also less for three than for
two motors, because the latter take on greater load each and detach more frequently
springing back more. This prediction can be used in principle to determine the number of
motors carrying the cargo.

3.7. Stochastic effects in the tug-of-war between multiple opposing motors
The tug-of-war between multiple motors of opposing polarity was investigated in the
framework of the mean field theory in [40]. In the symmetric case (four motors with the
same free velocities and stall forces), the authors of [40] found that when the motors are
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‘weak’ (small stall to detachment force ratio), then the cargo is almost always stalled. On the
other hand, when the motors are ‘strong’ (great stall to detachment force ratio), either one
type of motors ‘wins’ or another, and the cargo alternates between two directions of
movement with the free motor speed. In the intermediate cases, the cargo is either stalled or
moves in any direction with nearly free motor speed. We simulated the stochastic model
with the same parameters as those used to produce figure 3 in [40]. We found that the
nonlinearity parameter had little effect on the cargo’s speed histogram. However, the
stochastic effects are very strong: figure 9(A) illustrates that though there is indeed a
significant probability of the stalled cargo, the non-zero velocities of the cargo are greatly
dispersed: all non-zero velocities from 0 to the plus/minus free motor speed are almost
equally probable, and the significant non-zero velocity peaks predicted by the mean field
theory are almost completely smeared out by the stochastic effect (our figure 9(A) is to be
compared with figure 3(A3,B3,C3) in [40]. Note that our figure 9(A) shows data for a
different number of motors).

Similarly, in the asymmetric case, when one motor type is stronger than the other, and the
numbers of the opposing motors are equal, multiple peaks in the velocity distribution are
predicted by the mean-field theory [40]. In contrast, we found that, again, these peaks are
obliterated by the stochastic movements, and the velocity is widely distributed around these
peaks (our figure 9(B) is to be compared with figure 4(A3,B3,C3) in [40]. Note that our
figure 9(B) shows data for a different number of motors).

4. Discussion
In this paper, we investigated the nonlinear and stochastic effects on the collective motor
transport. We show that in the mean-field approximation, the super-linear force–velocity
relation improves the multiple motors’ performance, while the sub-linear relation makes it
worse. However, when the stochastic load sharing is taken into account, we see that the
‘leading’ motor takes on a disproportionately great load and detaches frequently causing
retractions of the cargo. This effect significantly worsens the super-linear motors’
performance at low loads. Thus, we make the following predictions to be tested in future
experiments: due to the combination of the nonlinear and stochastic effects, the collective
force–velocity curve for two or three motors becomes almost linear, and the rate of
movement against moderate loads is not, in fact, accelerated by increasing the small number
of motors. The run length, on the other hand, increases exponentially with the motor
number. An additional, potentially useful, future application of our model is using a
comparison between the predicted relations and data to infer the number of motors: this
technique was used in [35] by applying the formula of the mean-field theory, which is not
quantitatively accurate for the small motor number.

We observe that the collective motor behavior is insensitive to the compliance of the motor
stalks in the physiological range. Furthermore, we determine that the velocity of the small
number of coupled motors is insensitive to viscous loads if the effective viscosity of the
cytoplasm is less than ~1 Pa×s. At higher viscosity, the velocity decreases linearly with the
viscosity; respective relation is not sensitive to the exact form of the force–velocity curve
and the motor number. We also argue that details of the exact mechanochemical cycle are
not crucial for the average collective motor performance (see the appendix). In summary,
our simulations predict a very robust collective motor behavior.

The model predicts that two to four coupled motors are significantly anti-correlated, so the
stochastic effects for the small number of motors are significant. We find that five or more
coupled motors correlate weakly, share the load almost evenly, and the mean-field
approximation describes the collective motor behavior accurately. For a great number of
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motors, the mean-field theory makes two predictions. First, the run length increases
exponentially with the motor number (this conclusion was first reached in [24]) and
decreases exponentially with the load. Multiple motor force–processivity relations are
insensitive to the nonlinearities of the individual motor force–velocity relation. Second,
there are two regimes in the multiple motor force–velocity relations if Fd < Fs. At a
significant load, proportional to the total number of motors F > cN Fd, c ~ 1, the average
cargo velocity decreases rapidly. At smaller loads, the collective velocity scales in a very
simple way with the motor number.

We calculated the effective diffusivity and randomness parameter characterizing the rate of
growth of the displacement variance of the cargo with time and found that the diffusivity
increases drastically, by the order of magnitude for two and three motors due to significant
rearward excursions of the cargo upon detachment of one of the motors. For large loads, the
diffusivity depends on the motor number, so in principle, this prediction can be used to infer
the number of motors carrying the cargo if the variance of the displacement and the force–
velocity relation are measured. Furthermore, we investigated the tug-of-war between the
opposing multiple motors, and found that the nonlinearity does not affect the results, but the
stochastic effects cause wide dispersion of the cargo velocity and smearing out of the
multiple peaks predicted by the mean field theory. One interesting practical application of
this prediction is that qualitative information about the number of opposing motors can be
inferred in principle from the measurements of the cargos velocity distribution (such
distributions for competing opposite bipolar kinesin and ncd motors were measured, for
example, in [41]).

One of the interesting conclusions we can make from the model results is that if the
‘objective’ of the cell is to keep the velocity of the cargo unaffected by a significant load,
then more than three super-linear motors have to transport the cargo. Most of the
quantitative model predictions will have to wait to be tested in future experiments. Only a
very preliminary attempt to measure effective force–velocity curves for two and three
motors is made [42]. Just very general rules of the collective motor transport are tested
experimentally by now: additive stall forces and drastically increased with the motor number
travel distances are established in vitro for Kinesin-1 [9] and Dynein [13]. Note that recently
the unexpected experimental finding was reported [43]: while two motors produce longer
average run lengths than single kinesins, the system effectively behaves as though a single-
motor attachment state dominates motility. The authors of this study proposed that negative
motor interference derived from asynchronous motor stepping can explain this effect. Our
model does not reproduce this observation, indicating perhaps the presence of more complex
elastic properties of the motor link and mechanochemical coupling of the motor cycle with
the link mechanics.

In the future, the most immediate problems that the modeling of the collective motor
transport will have to address are as follows. First, by comparing the increasingly available
data with computational screening of the model parameter space, we need to obtain the
dissociation rate dependence on the load for individual motors, as well as to understand
better the motor behavior at super-stall forces and at forces pulling the motor forward.
Second, there are very puzzling differences between collective motor in vitro and in vivo
behaviors: in vivo, a reduced motor number causes slight increases of the travel velocities,
while the travel distances are not reduced [44], which is in stark contrast to the simple
theoretical predictions and observed in vitro behavior. We believe that insight gained from
modeling studies will be crucial for correct interpretation of future experimental results.
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Appendix

A.1. Simulation of the single motor
We use the Monte Carlo procedure [32,38] to update the state (position and engaged or
detached state) in increments of the time step Δt. The time step Δt is chosen to be
sufficiently smaller than the fastest characteristic time (in our case, detachment of the last
attached motor under a high load). We used Δt = 10−5 s that conforms with this requirement.
The computational procedure is as follows.

1. Initial condition: at t = 0, x = 0, where x is the position of the motor on the track.

2. Updating procedure: repeat the following steps up to tmax in increments of Δt.

i. If t > tmax go to step 3.

ii. Detachment: calculate Poff = ε(F)* Δt. First try detachment with the
probability Poff. If the detachment occurs, go to step 3, else go to step (iii).

iii. Stepping: if the motor remains attached after step (ii), stepping occurs with
probability Pstep = kstep(F)* Δt. After stepping, x is changed to x + d where
d = 8 nm.

3. Run length is the current value of x. Velocity is obtained by dividing the current
position x by the current time t.

A.2. Simulation of the multiple motors
We put N motors on cargo, so that the motor heads are attached to the cargo via the links of
the rest length l = 0.11 μm [11]. Each link exerts a restoring force when stretched beyond
their rest length. The links have no compressional rigidity, i.e. they exert no force when
compressed. Initially, we place the bead’s center of mass at the origin and allow all motors
to attach to any discrete binding site on the track within distance l on either side of the bead.
Once the motors are attached, we calculate the initial position of the bead’s center of mass
so that the sum of all elastic forces applied to the bead is equal to zero; in what follows, the
bead’s position is calculated at each step so that the sum of all elastic forces from the motor
links has to be equal to zero.

For each time step, we visit each of the N motors and determine their tentative states
(attached or detached) and positions. During the updating procedure, at each computational
step, each motor’s state is updated once. If the motor is currently unattached, we allow it to
attach with a probability Pon = π * Δt, determined by the ‘on-rate’ π, to any binding site on
the track within distance l on either side from the bead’s center of mass.

If the motor is currently attached, a load Fi felt by the ith motor is obtained by multiplying
the extension of its link Δli by the link’s stiffness k, and there are three possibilities: the
motor can remain stationary, advance, or detach. Probabilities of these three events are
determined from the single motor model based on the current load on the motor: (i) Poff is
calculated using equation (3) irrespective of the direction of the force applied to the motor;
(ii) Pstep is calculated using equation (2) for backward loads Fi ≤ Fs; for backward load
greater than Fs, Pstep = 0; a forward load does not alter the motor cycle, so we substitute Fi =
0 for forward loads in equation (2). If the motor steps, its position xi is changed to xi + d.
When we determine the tentative states and positions of all N motors, we update the states
and positions of all motors simultaneously. Then, the number of engaged motors n and their
locations are recorded and the bead position is updated.
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Viscous load: in the presence of the viscous load, the position of the bead is determined not
by the balancing of the elastic motor forces to zero, but by the viscous force that bead
experiences: if the bead is subjected to the net force f, this causes it to move with velocity
νdrift = f/γ. The net motion of the bead over the time interval 3t is given by the deterministic

drift xdrift = νdrift × Δt. The net force f⃗ on the cargo is given by the formula ,
where fi is the elastic restoring force exerted by the ith motor on the cargo, which magnitude
depends on the extension of the ith link.

Solution of equation (13): the nonlinear algebraic equation (13) was solved with
Mathematica™ using the function Solve.

Calculation of correlations: correlations between the motors’ time series were calculated
using the Maltab™ time-series tool and function corrcoef.

A.3. Model with mechano-chemical cycle
In order to test if the details of a mechano-chemical cycle affect the average mechanical
properties of the collective motor transport, we analyzed the following published kinesin
model [30] in the multiple motor case. The motor cycle is based on the ATP binding to the
motor (M) and subsequent hydrolysis:

(A.1)

Here kon(koff) is the rate constant for binding (unbinding) of ATP, and kcat is the rate
constant for ATP hydrolysis. The mechanical motor step takes place synchronously with the
hydrolysis and release of its products. Stationary solution of the standard Markov chain
equations based on this cycle gives the Michaelis–Menten expression for the deterministic
motor velocity:

(A.2)

Here d is the step size, F is the load and [ATP] is the ATP concentration. kcat(F) and koff are
the load-dependent hydrolysis and ATP-unbinding rates, respectively. By choosing these
load dependences in the form

(A.3)

we get a one-motor force–velocity curve that is very similar to the one given by equation
(1). In these expressions, kB T is the thermal energy, and dl is the characteristic molecular
scale. At saturating ATP concentrations, motor velocity predicted by this model

(A.4)
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becomes identical to that given by equation (1), if dkcat(0) = ν is the unloaded velocity. To
model the load-dependent unbinding of the motor, we assume that it detaches with rate
given by equation (3) from any state.

We ran Monte Carlo simulations of this mechano-chemical model simply by adding the
transitions between the chemical steps of each of the motors attached to the bead to the
mechanical steps described previously (mechanical steps took place synchronously with the
hydrolysis steps). The probability of each of these transitions was computed by multiplying
the respective instantaneous load-dependent rate by the time step duration. The parameter
values used for the simulations were the same as described above; in addition, kon = 2 × 106

M−1 × s−1, koff(0) = 55 s−1, dl = 1.6 nm, T = 300 K, kcat(0) = 125 s−1 and [ATP] = 5 mM.

Results obtained from the multiple motor simulations using this mechano-chemical model
were not significantly different from those obtained from the purely mechanical model.
There was no difference in the average run-lengths and velocities under low loads. For
significant loads, maximal differences in the average run-lengths were 0.004 μm for two
motors, and 0.006 μm for three motors, respectively. Similarly, maximal differences in the
average velocities under significant loads were 0.02 μm s−1 for two motors, and 0.04 μm s−1

for three motors, respectively.
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Figure 1.
Scheme of the stochastic model: the cargo (bead) has three motors attached to it. The cargo
moves forward with velocity ν and is slowed down by the backward load F. At the depicted
moment, two out of three motors are bound to the track, and the load is distributed unevenly:
the leading motor takes on most of the load and ‘subsidizes’ the advancement of the motor
lagging behind. The unbound motor can bind to the track with probability Pon, while the
bound motors can unbind with probability Poff (great for the leading motor and small for the
rear one).
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Figure 2.
Force–processivity (A) and force–velocity (B) curves (solid lines and symbols) obtained for
multiple motors using the mean-field model for the force–velocity relations characterized by
(a–b1) ω = 2 and (a–b2) ω = 0.5 plotted along with the curves for the linear force–velocity
relation (ω = 1; dotted lines and the same symbols). The parameter values used are ν = 1 μm
s−1, ε = 1 s−1, π = 5 s−1, Fs = 6 pN, Fd = 3 pN.
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Figure 3.
(A–C): Average run lengths (a–c 1–2) and velocities (a–c 3–4) as functions of the load
obtained from the simulations of the stochastic model for ω = 2 (A), ω = 1 (B), ω = 0.5 (C),
for two motors (a–c 1,3) and three motors (a–c 2,4) plotted with symbols and lines.
Respective results obtained from the mean-field model are plotted with lines only. (D)
Average velocities obtained from the stochastic model for (d1) ω = 4, (d2) ω = 2, (d3) ω = 1
and (d4) ω = 0.5. The common parameter values used for both stochastic and mean-field
model are the same as in figure 2. Additional parameters for the stochastic model are link
rest length l = 110 nm and stiffness k = 0.32 pN nm−1.

Kunwar and Mogilner Page 19

Phys Biol. Author manuscript; available in PMC 2010 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
(A) Average force against which the motors step (a1), average backward excursion length
(a2), average frequency of the backward excursions (a3), average separation between motor
heads (a4) as functions of ω for two motors with load 1 pN applied to the cargo. Initial and
final conditions for simulations as in figure 3. Other parameter values are the same as in
figure 3. (B–C) Distribution of average separation between two motors (B) and forces
against which the motors step (C) for two motors with load 1 pN applied to the cargo and for
(b–c1) ω = 4 (b–c2) ω = 2 (b–c3) ω = 1 and (b–c4) ω = 0.5. The parameter values are the
same as in figure 3.
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Figure 5.
Velocity–viscosity curves obtained for multiple motors using the mean-field model (A) and
stochastic model (B) for the cargo of radius r = 0.5 μm for (a–b1)ω = 2 and (a–b2)ω = 0.5.
Parameters for mean-field model are the same as in figure 2 and parameters for stochastic
model are the same as in figure 3.
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Figure 6.
(A) Time series of the forces applied to two motors transporting the cargo against the total
load of 4 pN with ω = 0.25. Other parameter values are the same as in figure 3(D). (B)
Average correlation between pairs of N motors collectively transporting the cargo against
load . The parameter values are the same as in figure 3.
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Figure 7.
(A) Force–processivity curves obtained from the mean-field model for ω = 2. The critical
force (force at which the average run length is 8 nm) as a function of N is shown in the inset.
(B–D) Force–velocity curves obtained from the mean-field model for ω = 4 (B), ω = 1 (C),
ω = 0.25 (D). Parameter values are the same as in figure 2.
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Figure 8.
R as a function of applied load for (A)ω = 0.25 (B)ω = 1 and (C)ω = 4. Parameter values are
the same as in figure 3.
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Figure 9.
(A) Velocity distributions obtained from the stochastic model for the symmetric tug-of-war
of N+ = N− = 2 plus and minus motors with ω = 1. Motility behavior shown in (a2) was
obtained using single motor parameters as in figure 3 that were also used to produce figure
3(B3) in [40]. Different motility behaviors shown in a1 and a3 were obtained by changing
single motor parameters in a2 to (a1) Fs+ = Fs− = 2pN and (a3) Fs+ = Fs− = 4.75 pN and ε+ =
ε− = 0.4 s−1. (B) Velocity distributions obtained from the stochastic model for the
asymmetric tug-of-war of N+ = 2 plus against N− = 2 minus motors with ω = 1. Single motor
parameter values used in (b1) are the same as those used to produce figure 4(A3) in [40]
(Fs− = Fs+ = 1.1 pN, Fd− = 0.75 pN, Fd+ = 0.82 pN, ε− = 0.27 s−1, ε+ = 0.26 s−1, π− = &pi;+
= 1.6 s−1, νF− = 0.65 μm s−1, νF + = 0.55 μm s−1) except νB− = νB+ = 0. The same
parameters have been used in (b2) and (b3) except Fs− = 0.45 pN, ε− = 0.78 s−1 in (b2) and
Fs− = 0.45 pN, ε− = 1.64 s−1 in (b3). vF/vB are the motor’s forward/backward velocities and
+/− signs denote plus/minus motors. Other parameters are the same as in figure 5 except η =
0.001 Pa×s.
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