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Abstract

Background: Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a food and waterborne pathogen, can be classified into
nine phylogenetically distinct lineages, as determined by single nucleotide polymorphism genotyping. One lineage (clade 8)
was found to be associated with hemolytic uremic syndrome (HUS), which can lead to kidney failure and death in some
cases, particularly young children. Another lineage (clade 2) differs considerably in gene content and is phylogenetically
distinct from clade 8, but caused significantly fewer cases of HUS in a prior study. Little is known, however, about how these
two lineages vary with regard to phenotypic traits important for disease pathogenesis and in the expression of shared
virulence genes.

Methodology/Principal Findings: Here, we quantified the level of adherence to and invasion of MAC-T bovine epithelial
cells, and examined the transcriptomes of 24 EHEC O157:H7 strains with varying Shiga toxin profiles from two common
lineages. Adherence to epithelial cells was .2-fold higher for EHEC O157:H7 strains belonging to clade 8 versus clade 2,
while no difference in invasiveness was observed between the two lineages. Whole-genome 70-mer oligo microarrays,
which probe for 6088 genes from O157:H7 Sakai, O157:H7 EDL 933, pO157, and K12 MG1655, detected significant
differential expression between clades in 604 genes following co-incubation with epithelial cells for 30 min; 186 of the 604
genes had a .1.5 fold change difference. Relative to clade 2, clade 8 strains showed upregulation of major virulence genes,
including 29 of the 41 locus of enterocyte effacement (LEE) pathogenicity island genes, which are critical for adherence, as
well as Shiga toxin genes and pO157 plasmid-encoded virulence genes. Differences in expression of 16 genes that encode
colonization factors, toxins, and regulators were confirmed by qRT-PCR, which revealed a greater magnitude of change than
microarrays.

Conclusions/Significance: These findings demonstrate that the EHEC O157:H7 lineage associated with HUS expresses
higher levels of virulence genes and has an enhanced ability to attach to epithelial cells relative to another common lineage.
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Introduction

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 contributes

to many food and waterborne outbreaks as well as sporadic cases of

enteric disease [1] that manifests as diarrhea, hemorrhagic colitis, or

hemolytic uremic syndrome (HUS). Up to 60 deaths can result due

to EHEC O157:H7 infection each year, which yielded a total cost of

$405 million in 2003 in the U.S. alone [2]. The hallmarks of EHEC

O157:H7 pathogenesis are attaching and effacing (A/E) lesions on

the intestinal mucosa, and Shiga toxin (Stx)-mediated destruction of

microcirculatory blood vessel endothelia. A/E lesions on epithelial

cells present as actin pedestals that abut the intimately attached

bacterium and as effacement of the absorptive microvillar brush

border. This mode of colonization is mediated by the bacterial

adhesin intimin, its translocated receptor (Tir), and several effectors

[3], which are translocated into the host cell by a type three

secretion system (TTSS) encoded by the locus of enterocyte

effacement (LEE) pathogenicity island. The production of Stx

(Stx1, 2 and variants) is coupled with phage lysis and, following

receptor-mediated endocytosis, results in enzymatic inactivation of

the eukaryotic 28S ribosomal subunit and host cell death [4].

While these virulence traits are shared between EHEC

O157:H7 strains, the spectrum of clinical disease is broad, which

may be due, in part, to genetic variation and differences in

bacterial characteristics among strains. A prior single nucleotide

polymorphism (SNP) genotyping study, for example, observed a
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high level of genetic diversity among .500 EHEC O157 strains and

close relatives, which clustered into nine phylogenetically distinct

clades comprising 39 SNP genotypes [5]. Remarkably, individuals

with HUS were significantly more likely to be infected by an

O157:H7 strain belonging to one lineage (clade 8), while a

phylogenetically distinct lineage (clade 7) was associated with less

severe disease [5]. These findings led to the hypothesis that EHEC

O157 lineages vary in their ability to cause clinical illness. Although

the biological basis behind this hypothesis is not known, it has been

suggested that differences in gene content may be important as well

as the presence of specific virulence characteristics, particularly the

Shiga toxins [6,7,8]. Indeed, several studies have linked EHEC

O157:H7 strains producing only Stx2 with severe post-infection

sequelae [6,9,10], while other studies have identified associations

with Stx2c alone [7] or in combination with Stx2 [8,11].

Because of the conserved nature of most EHEC O157:H7

virulence genes, however, it is also possible that variable expression

of genes that are shared between strains can cause differences in the

ability to cause severe disease. A prior study of two divergent EHEC

O157:H7 strains, which were implicated in the 2006 North

American spinach outbreak (clade 8) [5] and the 1996 Sakai,

Japan, outbreak (clade 1) [12], demonstrated that the spinach

outbreak strain had an enhanced ability to colonize epithelial cells

and express virulence genes following cell exposure [13]. These

findings were corroborated by the observed differences in the ability

of both outbreak strains to cause severe disease in germ-free mice,

with the Sakai strain causing minimal histopathological damage

[14]. Another study of bovine-derived EHEC O157:H7 strains

found that the genotype (clade 8) associated with human infections

had upregulation of key virulence genes compared to the genotype

that predominates in bovines (clade 7), which had upregulation of

stress fitness genes [15]. While these studies demonstrated clear

differences in the gene expression profiles among a small sample of

clade 8 strains (n = 4) relative to clades 1 (n = 1) and 7 strains (n = 4)

from two sources, screening a larger sample of strains from

divergent and clinically relevant lineages is necessary to determine

why some lineages cause more severe disease than others.

In this study, genome-wide expression patterns were analyzed

from 24 clinical strains of clade 8 (n = 12) and clade 2 (n = 12), the

two predominant, but phylogenetically divergent, EHEC O157

lineages associated with clinical infections in Michigan between

2001 and 2006 [5]. Following exposure to epithelial cells, strains

were examined for clade-specific differences in virulence gene

expression and in the ability to colonize the epithelium. Within-

clade differences among strains with varying Stx genotypes were

also investigated. Overall, this study enhances our understanding

of the functional differences between EHEC O157 lineages that

are important for infection and highlights the importance of

studying microbial pathogenesis in a phylogenetic context.

Results

O157:H7 interaction with epithelial cells
Association assays were performed to quantify the ability of clade

8 (n = 12) and clade 2 (n = 12) strains to associate with MAC-T cells.

Following 1 h of incubation, all strains were associated with MAC-

T monolayers; however, clade 8 strains associated with greater

numbers than clade 2 strains (Figure 1, Panel A). Specifically,

clade 8 strains demonstrated a 2.360.2 fold higher association with

MAC-T cells than clade 2 strains (P = 0.0001). This finding was

confirmed by flow cytometric analyses of the six strains of both

clades with the highest association levels (P = 0.00001) (Figure 1,
Panel B). Invasion assays demonstrated no difference (P = 0.22) in

the ability of all 24 strains to invade MAC-T cells regardless of

clade, and furthermore, levels of invasion were an order of

magnitude lower than association levels (Supplemental Figure
S1). Together, these data indicate that adherence of EHEC

O157:H7 clade 8 strains to MAC-T epithelial cells is increased

compared to clade 2 (Supplemental Figure S2).

Gene expression analyses
To determine whether EHEC O157:H7 gene expression profiles

are similar among strains of the same clade or strains with the same

Stx profile, regardless of clade, we analyzed transcriptomes of 24

Figure 1. Association of 24 O157:H7 strains with MAC-T cells [Panel A]. Association levels of each strain were expressed relative to Sakai.
Plotted on the ordinate are association ratios of test strain to Sakai (y-left), as well as CFU/ml plate counts (y-right). The symbols indicate the mean 6

SD of three separate experiments. The dotted line represents the association level of Sakai. Flow-cytometric quantification of association of 12
O157:H7 strains with MAC-T cells [Panel B]. Clade 8 (n = 6) and 2 (n = 6) strains with highest association levels, determined by plate counting,
were ranked in the same order as in panel A, and differences in association were expressed as the ratio of MFI of strain-infected MAC-T cells and the
MFI of Sakai-infected MAC-T cells. Bars represent the mean 6 SD of two separate experiments. The dotted line represents the association level of
Sakai.
doi:10.1371/journal.pone.0010167.g001
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strains classified into four groups based on clade and Stx profile

(Figure 2). In all, 363 genes were differentially expressed (P,0.05)

among the four groups. A dendrogram based on group column

means clustered the groups according to clade (Supplemental
Figure S3), which suggested that strains from the same clade had

similar transcriptional profiles. Pairwise contrast analysis of expres-

sion values between each pair of strain groups indicated that the

number of differentially expressed genes among inter-clade groups

was between 20 and 94 times higher than among intra-clade 2

groups and between 6 and 27 times higher than among intra-clade 8

groups (Figure 3). Four genes, including stx1A, stx1B, a putative

prophage repressor, and an unknown gene present on the Stx1-

prophage (Sakai prophage (Sp)-15) [12], were differentially expressed

within clade 2. Similarly, only 14 genes were differentially expressed

within clade 8. Most of these genes are phage borne and of unknown

function; however, the microarrays lack the 75 ORFs specific for the

2851 Stx2c-harboring phage [16], a component present in 6 of the

clade 8 strains, but in none of the clade 2 strains. Analysis of the

‘Clade:Stx’ interaction effect on gene expression differences among

O157:H7 strains did not indicate that the expression of any gene in

either clade was influenced by the stx profile.

The comparison of transcription profiles between clades 8 and

2, irrespective of Stx profiles, indicated a significant difference in

the expression of 604 genes; 186 had a $1.5 fold change

(Supplemental Table S1), above which the difference in

expression is considered meaningful [17]. A total of 265 of the

604 genes encode hypothetical proteins of unknown function, and

316 of the 604 genes are phage borne. A comparison to the

published EHEC O157:H7 genome sequences identified 53 Sakai

ORFs in clade 8 and four in clade 2, out of the 316, with little or

no homology to the respective genome sequences and were

therefore not evaluated further. Relative differences in gene

expression of 16 O157:H7 virulence determinants (Table 1) were

examined more thoroughly by qRT-PCR. Although none of the

genes tested by qRT-PCR had a .2-fold change via microarrays,

these microarray data are comparable to those generated in a

Figure 2. Microarray hybridization scheme. 24 O157:H7 strains
were divided into 4 groups based on clade (squares) and Stx genes
(triangles). The six strains of each group were considered as individual
biological replicates of the particular group (n = 6). Randomized
hybridizations were performed between groups so that six strains from
one group were randomly matched to six strains from another group,
with dye-swaps. Six hybridizations were performed between any two
groups; for each of the six hybridizations, cDNAs belonging to a different
pair of strains were compared. In total, 36 hybridizations were performed.
doi:10.1371/journal.pone.0010167.g002

Figure 3. Pairwise contrast analysis of differentially expressed
genes between four groups of O157:H7 strains. Each column
represents log2 differences in expression between 2 groups (cladestx). In
parenthesis atop each column is the number of genes indicated to be
significantly differentially expressed between the 2 groups compared.
Color green indicates increased expression in the denominator group.
Genes were sorted by chromosomal positions and the heat map was
generated in R (‘gplots’ package version 2.3.2). Sp – Sakai prophage,
SpLE – Sakai prophage-like element, pO157 – EHEC plasmid, TAI –
Tellurite resistance and adherence conferring island.
doi:10.1371/journal.pone.0010167.g003
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prior study among single O157:H7 strains grown in the presence

and absence of epithelial cells [18]. It is possible, however, that the

degree of intra- and inter-clade variability resulting from our

analysis of 24 different strains may have dampened the effect.

Locus of enterocyte effacement (LEE) island genes
Twenty-nine LEE genes were upregulated in clade 8 relative to

clade 2 (Supplemental Table S1 and Figure 4), with a subtle

decrease in fold change from the LEE4 to the LEE1 operon. Apart

from sepL, transcription was highest in LEE4 genes (1.9260.13-

fold), especially for the espADB polycistron that encodes the

molecular syringe of the TTSS. Expression of LEE5 was slightly

lower (1.7260.13-fold) followed by LEE3 (1.6660.14-fold) and

LEE2 (1.5060.09-fold), which encode the membrane-bound

TTSS components. LEE1 genes, as well as rorf1, grlR and orf29

lacked significant differential expression (P.0.05). To validate the

LEE microarray data, mRNA levels of ler, sepZ, escN, espA, espB, tir,

and eae, which were selected as representatives of each of the LEE

operons, were measured by qRT-PCR (Table 1). Microarrays

also detected significant expression of 13 non-LEE effector genes,

11 of which were upregulated in clade 8 (Table S2); these genes

are located on various prophages that are dispersed throughout

the O157:H7 chromosome and code for proteins exported by the

TTSS [3,19]. Collectively, these data demonstrated upregulation

of the LEE island in clade 8 versus clade 2 strains preceding

attachment to epithelial cells.

Shiga toxin genes
Stx1 genes, stx1A and stx1B, were upregulated in the clade 2

strains that harbor the Stx1-converting phage (Supplemental
Table S1), a result that was expected given that virtually all clade

8 strains examined in a prior study lacked stx1 [5]. By contrast,

clade 8 strains demonstrated increased expression of stx2A and

stx2B compared to clade 2; this result was also confirmed by qRT-

PCR (Table 1). Furthermore, transcription of stx2A and stx2B was

higher in both clades for strains lysogenized exclusively with the

Stx2-converting phage compared to strains with either Stx2 and

Stx2c, or Stx2 and Stx1 phages (Figure 5). The phage borne

antitermination gene q (ECs1203), located upstream of stx2, was

also upregulated in clade 8. While qRT-PCR confirmed the

increased expression of q in clade 8 (Table 1), it also detected 2-

fold higher q transcript levels in strains possessing two Stx phages

relative to strains with only the Stx2-phage. This result likely

reflects sequence similarities among q antiterminators of different

Stx-phages, which could not be resolved by sequence-specific

primers. qRT-PCR results from strains of both clades with only

stx2 confirmed the upregulation of q in clade 8 (Table 1).

Because sequence divergence of q has been associated with

variation in transcription of stx2 [20], a sequence alignment of a

2.5 Kb fragment from the q gene through stx2B was conducted

among the four O157:H7 genome strains. Through this analysis,

four SNPs were identified in the clade 8 genome, while none were

detected in the remaining strains. These four SNPs were found in

the: i) pS tRNA promoter, ii) 2 bp deletion between tRNA-Ile and

the first tRNA-Arg; iii) first tRNA-Arg; and iv) stx2A coding region.

DNA sequences important for stx2 transcription efficiency [21],

Table 1. Relative differences in gene expression between
clades 8 and 2, as detected by microarrays and qRT-PCR.

gene ECsa protein Microarray qRT-PCR

fold
changeb P

fold
changec Ed

espA 4556 translocator, LEE4 2.0 0.022 5.9060.65 2.00

espB 4554 translocator, LEE4 2.0 0.005 3.5561.00 2.02

Tir 4561 receptor, LEE5 1.8 0.008 2.4360.39 1.99

eae 4559 intimin, LEE5 1.6 0.009 2.0760.52 1.98

escN 4568 structural, LEE3 1.5 0.008 2.0660.12 1.96

sepZ 4571 effector, LEE2 1.4 0.075 1.7260.08 2.12

ler 4588 regulator, LEE1 1.3 0.091 1.0960.16 2.07

stx2A 1205 Stx 2 subunit A 1.8 0.001 5.1960.55 2.06

stx2B 1206 Stx 2 subunit B 2.0 0.000 5.3960.16 2.01

qe 1203 Q antiterminator 1.8 0.000 2.9060.13 1.99

hlyA pO157 EHEC hemolysin A 1.5 0.006 5.0460.49 2.04

toxB pO157 Toxin B 1.3 0.001 2.6460.27 1.96

stcE/tagA pO157 StcE
metalloprotease

1.5 0.060 2.3460.06 2.01

grlA 4577 GrlA regulator, LEE 1.5 0.025 3.4560.11 2.02

rpoS 3595 sigma factor 38 21.7 0.009 22.9960.60 2.21

gadX 4396 GadX regulator 21.1 0.042 24.7061.29 2.08

a. E. coli O157:H7 Sakai chromosomal gene numbers [12].
b. Fold change differences between clade 8 (n = 12) and clade 2 (n = 12) strains;
positive values were upregulated in clade 8.
c. mean 6 standard deviation of relative fold change differences in gene
expression between clade 8 (n = 6) and clade 2 (n = 6) strains; positive values
were upregulated in clade 8.
d. mean reaction efficiencies of 12 O157:H7 strains.
e. qRT-PCR fold change in expression of the q antiterminator is based on clade 8
(n = 3) and 2 (n = 3) strains that carry only stx2 genes.
doi:10.1371/journal.pone.0010167.t001

Figure 4. LEE expression differences between clades 8 and 2. For clade 8 to 2 ratios, expression data from the ‘Clade effect’ analysis was used
to generate the heatmap in R (‘gplots’ package version 2.3.2) that was then fitted to a graphic representation of the genetic organization of the LEE
island, adopted from [62]. Color red indicates increased expression in clade 8.
doi:10.1371/journal.pone.0010167.g004
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including the q antiterminator, pR’ stx2 promoter, qut site, tR’1 and

tR’2 terminators, and of the stx2B subunit, were identical in all four

genome strains.

Regulators
The expression of rpoS, grlA, and gadX, which have been shown

to regulate the LEE island [22], were significantly different

between clades 8 and 2 (Table 1). Upregulation of the sigma

factor 38 (rpoS) in clade 2, with the concurrent down-regulation of

the LEE in clade 2, supports the prior observation that RpoS

negatively influences LEE gene expression [23,24]. Microarrays

demonstrated a statistically significant increase in gadX transcrip-

tion in clade 2, though a much greater increase with a higher

standard deviation was observed using qRT-PCR, suggesting

variation among clade 2 strains (Table 1). The LEE-encoded

positive regulator, grlA, was also upregulated in clade 8 strains.

Apart from its stimulatory effect on LEE, grlA also mediates

expression of non-LEE encoded effectors [25].

Plasmid borne virulence genes
Two adhesion-associated pO157-borne genes, toxB and tagA/

stcE, were upregulated in clade 8 (Table 1). The ToxB protease

was demonstrated to post-transcriptionally stimulate expression of

LEE4 proteins and facilitate adhesion to epithelial cells [26,27].

Although the increase in transcription of tagA/stcE in clade 8 was

only marginally significant (P = 0.06) via microarrays, qRT- PCR

detected more than 2-fold upregulation in clade 8 strains

(Table 1). Differential expression of the etp operon, the plasmid-

encoded type II secretion system that directs the export of StcE,

was not detected. Finally, significant upregulation of hlyA

(Table 1), which encodes the pore-forming RTX (repeats in

toxin) EHEC hemolysin A (EHEC-HlyA), was observed.

Discussion

Prior studies involving transcriptional profiling of E. coli

O157:H7 strains before and after exposure to eukaryotic cells

have increased our knowledge of the molecular events underpin-

ning O157:H7 infection of the host cell [18,28,29]. However,

because of the significant genetic diversity in the extant O157:H7

population [5,30,31], we sought to determine whether strains of

diverse lineages have similar adherence capabilities and responses

to host cell exposure. Indeed, our prior study using a tissue culture

model for O157:H7-epithelial cell challenge under conditions that

mimic the pathogen-host interaction, has demonstrated pheno-

typic and transcriptional differences among the divergent Sakai

(clade 1) and spinach (TW14359; clade 8) outbreak genome strains

[13]. These findings were corroborated by the variation in

histopatholology observed following infection with both strains in

germ-free mice [14]. Here, we applied the same methodology to a

set of 24 clinically relevant O157:H7 strains from two divergent

lineages, and have observed variation in adherence levels to

epithelial cells as well as global gene expression profiles. By

sampling strains that differ in Stx profile, we were also able to

assess the variation associated with different Stx genotypes within

and between O157:H7 clades.

Consistent with previous findings [13], there was no variation in

the degree of epithelial cell invasion between strains of the two

different lineages. Strains belonging to clade 8, however,

demonstrated an increased ability to adhere to epithelial cells,

suggesting that clade 8 strains are better than clade 2 strains at

initiating colonization, the first step in disease pathogenesis.

Alternatively, it is also possible that clade 8 strains begin expressing

genes important for adherence earlier than clade 2 strains.

Conducting a similar study at multiple time points, however, is

required to address the latter possibility. The adherence capacity

of each strain was also determined by Stx profile, as expression of

Stx2 was previously suggested to contribute to adhesion of

O157:H7 to HEp-2 cells [32]. In this study, adherence differences

between strains were not influenced by any particular stx profile,

but rather, were clade-specific, as increased adherence was

observed in clade 8 relative to clade 2 even among strains with

only stx2.

Based on the observed differences in global gene expression

between clades, there are several possible explanations for the

enhanced ability of clade 8 versus clade 2 strains to adhere to

epithelial cells. In fact, a total of 29 LEE genes were differentially

expressed by microarrays as were several pO157 and global

regulator genes involved in attachment to host cells; 16 of these

genes were confirmed by qRT-PCR.

First, overall expression of LEE island genes, which are critical

for the development of A/E lesions and disease pathogenesis [19],

was higher in clade 8. Specifically, relative expression was highest

in genes encoding the needle complex of the TTSS (EspADB) and

in LEE-encoded effector genes. Transcription of LEE1, which

encodes the basal membrane-bound secretion machinery and the

Ler regulator, however, was not significantly upregulated in clade

8. This is an unexpected finding because Ler can directly activate

transcription of grlRA, LEE2, LEE3, LEE5, and LEE4, as

demonstrated with electrophoretic mobility shift assays

[33,34,35] and reporter gene transcriptional fusions [36]. Because

assembly of the TTSS is sequential starting with membrane-bound

components [19], and that O157:H7 polycistronic TTSS mRNAs

are not degraded at the same rate [28], it is possible that

transcription levels were determined at a moment of temporal

overlap between the two clades. In other words, if LEE1

transcription in clade 8 strains was initiated before clade 2 strains,

then LEE1 mRNAs may have degraded earlier, thereby

concealing higher expression levels in clade 8. Alternatively, it is

possible that LEE1 expression levels are similar between the two

clades, but that other LEE operons are differentially expressed due

to activation via alternative mechanisms or pathways. For

Figure 5. Differences in expression of Stx2 genes within and
between clades, as determined by qRT-PCR. Labels on the
ordinate represent cladestx profiles of examined strains. Differences in
expression are plotted as average fold change ratios, with standard
deviations, of clade 8 (n = 6) to clade 2 (n = 6) strains; for within clade
comparison, averages of 3 strains per group are compared.
doi:10.1371/journal.pone.0010167.g005
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example, mutation of grlA in Citrobacter rodentium has been shown to

reduce expression of both LEE2 and LEE5 genes [25], while, in

O157:H7, the GrlA regulator can be activated via the QseA

transcriptional factor acting through an unknown intermediate

[35]. In the latter pathway, it was also demonstrated that GrlA can

then directly activate LEE2 and LEE4 genes [25,35].

Another explanation for the differential expression of LEE

island genes may involve the RpoS transcription factor, as rpoS was

upregulated in clade 2. The contribution of RpoS to LEE

expression, however, is conflicting, as both the activation [37] and

repression of LEE [23] by RpoS have been reported. Our results

support the finding that RpoS negatively influences LEE

expression, which was demonstrated to occur via a regulatory

cascade involving the repression of ler activators pchABC, by an

unidentified factor [23]. Additionally, upregulation of gadX in

clade 2, which was shown to inhibit LEE expression through

downregulation of the plasmid-encoded Per regulator in entero-

pathogenic E. coli [38], may also be important. Interestingly, none

of the other factors previously implicated in the transcriptional

control of LEE [22], including H-NS, Pch, SdiA, QseA, ClpXP,

IHF, and BipA, had significant differential expression between

clades. Although this may be ascribed to the transient stability of

regulator mRNA or inter-clade variation, additional studies are

required to fully understand the complex regulatory circuits that

govern LEE transcription among distinct clades. Whether

differences between clades are attributable to SNPs, for example,

which increase promoter efficiency or involve unidentified factors,

is not known.

Upregulation of the pO157 plasmid genes, toxB and tagA/stcE,

which were previously shown to be important for bacterial

attachment, was also observed. ToxB is a partial homologue of

lymphostatin (LifA), which is common among A/E Enterobacter-

iaciae and is associated with the inhibition of lymphocyte activation

through inhibition of IL-2 interleukin activation [39]. Mutation of

lifA in C. rodentium abolishes colonic inflammation in mice and

leads to a significant reduction of colonization [40]. In O157:H7,

ToxB is required for complete adherence, as a toxB mutation

results in decreased adhesion to Caco-2 cells and reduced secretion

of LEE-encoded factors, including EspA, EspB, EspD and Tir

[26,27]. Similarly, deletion of tagA/stcE results in decreased

adhesion of O157:H7 to HEp-2 cells [41]. The TagA/StcE zinc

metallo-protease is hypothesized to promote adherence by

cleaving proteins in the glycocalyx and mucin layers atop the

intestinal epithelium, thereby allowing O157:H7 to come into

close contact with the intestinal mucosa [41]. While differential

expression of stcE was insignificant in the microarray analysis,

qRT-PCR detected a significant difference in stcE transcript levels

between clades. Also, the qRT-PCR efficiencies indicate that

sequence divergence among O157:H7 strains did not bias qRT-

PCR results for the genes examined.

Perhaps the most important finding is the .5-fold increase in

clade 8 transcription of Stx2, the key virulence determinant in the

development of HUS [4,42]. While it is unclear how a .5-fold

increase in transcription specifically relates to disease, our prior

study [13] comparing Stx2 transcription within TW14359 and

Sakai before and after MAC-T exposure, demonstrated no

difference in the levels of stx2A and stx2B expression by qRT-

PCR. Therefore, we hypothesize that a .5-fold increase in

transcription following MAC-T exposure among one group of

phylogenetically similar strains relative to another group is

biologically significant. This hypothesis does not, however,

confirm that the prior epidemiological association identified

between clade 8 strains and HUS [5] was due to variable Stx2

production. Consequently, comparing basal expression levels of

stx2A and stx2B to levels expressed following exposure to other

epithelial cell lines warrants further study.

Variable expression and production of Stx2 between divergent

O157:H7 strains has been previously reported [13,43,44],

although those bacterial components that contribute to increased

expression are not fully understood. Stx2 transcription is

dependent on prophage induction, which is principally initiated

through the bacterial DNA damage response (SOS) pathway [45].

In this study, we did not observe differential expression of any SOS

regulon genes. Therefore, it is unlikely that the activation of the q

antiterminator and the subsequent upregulation of stx2 expression

in clade 8 is solely attributed to SOS-mediated amplification of

lysogenic induction in clade 8 strains. Analysis of phage DNA

sequences upstream of stx2 in four O157:H7 genome strains of

clades 1, 2, 3, and 8, demonstrated that sequence variation is not

likely to play a role in the differential transcription of Stx2; no

SNPs were identified in phage DNA regions known to influence

RNA polymerase efficiency and stx2 transcription [21]. This lack

of variation was also noted in a previous study [46], as sequences

were identical among several Stx-phages in the l phage operator

genes (OL and OR) that flank the cI repressor and are directly

involved in the regulation of prophage induction. Other

possibilities for the SOS-independent activation of Stx2 transcrip-

tion include a high level of spontaneous phage induction in certain

lineages or induction by unknown bacterial factors [43], a

possibility that could not be addressed in the current study.

Future work should therefore focus on comparing Stx2 expression

levels, at multiple time points between isogenic hosts transduced

with Stx2 phages from different O157:H7 clades. It is also

important to note that stx2 transcription was upregulated in strains

of both clades 8 and 2 containing only the Stx2-phage, compared

to strains that contain two Stx phages. This result is consistent with

findings from a prior study [47], as the incorporation of two Stx2-

phages into the K12 chromosome demonstrated a decrease in Stx2

production compared to K12 strains transduced with only one

Stx2 prophage. This reduction was hypothesized to be mediated

by the CI repressor of Stx-phages acting in trans, which can

ultimately lead to reduced pathogenicity of the host strain [47].

Nevertheless, stx2 expression was still significantly higher in clade 8

when strains with only stx2 were compared among both clades.

This study also identified genes with no hypothesized role in

bacterial attachment to be upregulated in clade 8 strains. One

noteworthy example is the plasmid-borne hlyA. Antibodies to

EHEC-HlyA have been detected in sera from convalescent HUS

patients [48], and a cytotoxic effect of this pore-forming toxin on

human endothelial cells has been demonstrated [49]. These

observations suggest that EHEC-HlyA contributes to severe

disease by destruction of the microcirculatory endothelium [49],

the primary tissue affected in HUS [42]. Increased expression of

hlyA could be attributed to GrlA, which was shown to stimulate

transcription of hlyA [50] and was also upregulated in clade 8.

Together with increased expression of Stx2, the key agent of

endothelial cell damage, upregulation of EHEC-HlyA may partly

explain the epidemiological association between clade 8 and HUS

identified in a prior study [5].

In short, the data presented here confirm that subpopulations of

O157:H7 are not only genetically diverse, but also have distinct

phenotypic traits and transcriptional profiles following exposure to

host cells. The increased expression of genes important for

attachment among clade 8 versus clade 2 strains explains, in part,

the enhanced ability of clade 8 strains to adhere to epithelial cells at

a specific time point. One explanation for these observations is the

presence of an unknown master ‘‘switch’’ that is responsible for

activating the expression of virulence determinants. This possibility
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invites speculation that there may be distinct regulators, or

regulatory cascades, of shared virulence genes among O157:H7

lineages. Future investigation, however, is warranted to determine

this as well as assess how time since epithelial cell exposure affects

virulence gene transcription and protein production between clades.

Materials and Methods

Bacterial strains and culture conditions
Twenty-four O157:H7 strains representing clades 8 and 2, as

determined by SNP genotyping in a prior study [5], were evaluated.

Clades 8 and 2 were chosen because they 1) represented the most

prevalent clades; 2) are phylogenetically distinct; and 3) were

implicated in HUS cases, although HUS was significantly more

likely to be caused by clade 8 than clade 2 strains. Strains were also

selected to represent individual SNP genotypes that constitute each

clade as well as the stx combination (Table 2). The O157:H7

RIMD 0509952 (Sakai) strain [12] was used as a reference. Cultures

were successively grown in LB broth, morpholino-propanesulfonic

acid (MOPS) buffered minimal media (0.1% glucose, pH 7.4), and

Dulbecco’s Modified Eagle’s Medium (DMEM) (pH 7.4, without

phenol-red, 0.45% glucose, 0.37% NaHCO3), as described

previously [13]. Log-phase O157:H7 cultures in DMEM, at cell

concentrations of (561)6108 CFU/ml and with a pH range of 7.09

to 7.20, were used in all experiments.

Association and invasion assays
Bovine mammary epithelial cells (MAC-T) were cultivated as

previously described [13]. MAC-T cells, which are commonly

used in studies of adherent and invasive E. coli, were selected

primarily because a prior study demonstrated no difference in the

ability of EHEC O157:H7 strains to adhere to human epithelial

cells (HEp-2) when compared to several primary intestinal

epithelial cell lines of bovine origin [51]. The fluorescent actin

staining (FAS) assay was used as a qualitative test [52] to ensure

that a representative clade 2 strain had the ability to form A/E

lesions on MAC-T cells and colonize in a ‘localized adherence’

pattern (Supplemental Figure S4). A representative clade 8

strain, TW14359, was tested previously [13].

Assays to quantify cell association, which is defined as the

combination of adherence and invasion, were performed in 24-

well plates as described [13]. Briefly, MAC-T cell monolayers were

infected with bacterial cultures at a multiplicity of infection (MOI)

of 500:1. After 1 h of incubation (37 uC, 5% CO2), cells were

washed with PBS, disrupted with 0.1% Triton X-100, plated on

LB agar, incubated overnight (37 uC), and enumerated. For

invasion assays, cells were washed with PBS 1 h post-incubation,

incubated for 2 h with DMEM containing 200 mg/ml of gen-

tamicin to kill extracellular bacteria, plated, incubated overnight,

and enumerated [13]. The number of bacterial cells that had

adhered was determined by taking the difference between the

Table 2. Clade, Shiga toxin gene (stx) profile and source of O157 strains.

Strain Number Strain Name Clade stx Location of isolation Datea Clinical presentationb

TW08623 EK15 2 1,2 USA (WA) 2002 Diarrhea

TW10012 F6854 2 1,2 USA (PA) 1998 Unknown

TW04863 93-111 2 1,2 USA (WA) 1993 Diarrhea

TW10045 H2498 2 1,2 USA (CT) 1996 Unknown

TW11308 96M1006 2 1,2 Australia 1996 Bloody diarrhea

TW07961 DA-35 2 1,2 USA (OH) 1998 Unknown

TW11028 MI02-57 2 2 USA (MI) 2002 Bloody diarrhea

TW11029 MI02-1 2 2 USA (MI) 2002 Bloody diarrhea

TW14279 MI05-10 2 2 USA (MI) 2005 Bloody diarrhea

TW11037 MI02-68 2 2 USA (MI) 2002 Bloody diarrhea

TW11110 MI04-43 2 2 USA (MI) 2004 HUS

TW11185 MI01-29 2 2 USA (MI) 2001 Bloody diarrhea

TW14359 MI06-63 8 2,2c USA (MI) 2006 Bloody diarrhea

TW02883 E32511 8 2,2c Unknown 1991 HUS

TW08635 EK27 8 2,2c USA (WA) 2002 HUS

TW07591 1:361 8 2,2c USA (MI) 1997 Diarrhea

TW08030 MT#9 8 2,2c USA(MT) 2000 Bloody diarrhea

TW09189 MI03-72 8 2,2c USA (MI) 2003 Bloody diarrhea

TW11032 MI02-55 8 2 USA (MI) 2002 Diarrhea

TW08609 EK1 8 2 USA (WA) 1999 Diarrhea

TW08610 EK2 8 2 USA (WA) 2001 Diarrhea

TW07937 DA-11 8 2 USA (MA) 1998 Bloody diarrhea

TW09098 MI03-35 8 2 USA (MI) 2003 Bloody diarrhea

TW14313 MI06-31 8 2 USA (MI) 2006 HUS

TW08264 Sakai 1 1,2 Japan 1996 Unknown

a. Year of strain isolation or deposition into the STEC Reference Center at Michigan State University.
b. Unknown refers to missing data; HUS, hemolytic uremic syndrome.
doi:10.1371/journal.pone.0010167.t002
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association and invasion numbers as described previously [51].

O157:H7 strains were assayed in triplicate and the experiment was

repeated three times. The mean CFU/ml of each strain from three

wells (biological replicate) was normalized against the mean CFU/

ml of Sakai (clade 1), which was used as a reference. Normalized

data were analyzed with a mixed ANOVA model where relative

association = strain + replicate (strain) + error. The biological

replicate was nested within the strain effect. Analysis was

conducted using PROC MIXED (SAS version 9.1), and

differences in association, adherence and invasion levels between

clades were expressed as the mean 6 SD of clade 8 relative to

clade 2.

Flow cytometry
Association assays were repeated and quantified using flow

cytometry for the subset of clade 8 (n = 6) and clade 2 (n = 6)

strains that demonstrated the highest association levels based on

standard plate counts. Bacteria were labeled using the VybrantH
CFDA SE (carboxyfluorescein diacetate, succinimidyl ester) Cell

Tracer Kit (Molecular Probes, Eugene, OR) following the

manufacturer’s recommendations. Briefly, 4 ml aliquots of

O157:H7 cultures were centrifuged at 32006g, 4 uC, for 10 min

to pellet cells. Pellets were suspended in 2 ml of fresh DMEM,

cultures were adjusted to a final CFDA SE concentration of

30 mM, and incubated for 20 min in the dark at 37 uC with gentle

shaking. O157:H7 cultures were then centrifuged to remove excess

dye, suspended in 4 ml of fresh DMEM, and incubated for 30 min

to stabilize dye incorporation. After another centrifugation, pellets

were suspended in 4 ml of fresh DMEM and used for association

assays. After a 1 h incubation, wells were washed with PBS and

MAC-T cells were detached by incubating with 0.5 ml of a trypsin

solution (50 mg trypsin and 1 ml of 62 mM EDTA in 99 ml of

PBS) for 10 min. Following addition of 0.5 ml of DMEM to each

well, cell suspensions were centrifuged, and the pellets were

suspended in 300 ml of buffer (0.1% sodium-azide and 1% fetal

bovine serum in PBS) for FACS analysis using the Vantage flow

cytometer (BD Biosciences, San Jose, CA). From each sample,

15,000 viable MAC-T cells were analyzed after setting a live cell

gate based on the forward and side scatter profiles of uninfected

MAC-T cells. Each strain was assayed in duplicate and the

experiment was repeated twice. The mean fluorescence intensity

(MFI) of test strain-infected MAC-T cells was normalized against

the MFI of Sakai-infected MAC-T cells. The normalized MFI

data were analyzed by the Student’s t-test to determine statistically

significant differences in association between clades.

MAC-T challenge experiments, microarray hybridization
and analysis

RNA was harvested from the 24 O157:H7 strains exposed to,

but not attached to, MAC-T monolayers for 30 min, using a

previously described in vitro model of O157:H7 exposure to MAC-

T cells [13]. O157:H7 RNA extraction, cDNA synthesis, and dye-

swap hybridization conditions were described elsewhere [13]; the

microarray platform (Operon E. coli oligo set version 1.0.2) probes

for 5978 ORFs from E. coli O157:H7 Sakai, O157:H7 EDL 933,

and K12 MG1655, and for 110 ORFs from the pO157 plasmid

[13]. Thirty-six dye-swap hybridizations were performed between

four groups with six strains per group, according to a balanced

double loop design [53] depicted in Figure 2. Strains were

grouped based on cladestx profiles and each strain was considered

an independent biological replicate of its group (n = 6). The six

strains from each group were randomly hybridized with six strains

from every other group; each hybridization compared a pair of

strains that differed in either clade or stx profile, or both. The

microarray data have been deposited in NCBI’s Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible

through accession number GSE20397.

Subsequent to local Lowess normalization [54], averaging of

replicate probes and log2 transformation [55], the microarray

data were fitted to a 2-factor mixed ANOVA model (intensity =

Array + Dye + Clade + Stx + Clade:Stx + Sample; where the biological

replicate (Sample) and array effects were considered random

effects, while all other effects were considered fixed effects), using

the MAANOVA package (version 0.98–8) [56] in R software

(version 2.2.1). This model allows independent consideration of

the effect of ‘Clade’ (clade divergence) and ‘Stx’ (stx type variation)

parameters on differences in gene expression among O157:H7

strains, as well as their interaction (combined) effect (Clade:Stx).

Overall differences in gene expression between groups were

determined using the Fs test [57], followed by pair-wise contrasts

to determine significant differential expression between each pair

of groups [55]. Subsequently, the Fs statistic was estimated for the

‘Clade’ effect to determine significant differences in gene

expression between clades 8 (n = 12) and 2 (n = 12), regardless

of stx profile. The Fs statistic was also used to estimate the ‘Stx’

effect and the ‘Clade:Stx’ interaction effect to examine the

combined effect of clade and stx type on differences in gene

expression among O157:H7 strains. In other words, this analysis

will determine whether the expression of any given gene among

groups with different stx types is also dependent on clade. An

interaction effect would be observed if expression estimates

between strain groups clade8stx2 and clade2stx2 are different from

expression estimates between strain groups clade8stx2,2c and

clade2stx1,2. For every analysis, 1000 permutations of the data

were performed to generate P values; estimates were considered

significant if the P value was ,0.05 after adjusting for multiple

comparisons [55]. Genes with .1.5 fold change in expression

were considered significant using parameters previously demon-

strated to define significant differential expression [17].

Quantitative Real-Time PCR (qRT-PCR)
Twelve of the 24 strains, including six from clade 8 (three with

stx2, and three with Stx2, 2c) and six from clade 2 (three with stx2,

and three with stx1, 2), were randomly selected for qRT-PCR

analyses to equally represent clade and stx profiles of strains.

MAC-T challenge experiments were repeated with these 12 strains

for additional RNA extractions. cDNA synthesis, qRT-PCR

reaction mix and cDNA amplification conditions were described

previously [13]. Primers sequences and annealing temperatures for

the 16 genes examined are in Supplemental Table S2; the 16S

rrsH gene was used for within sample normalization [55]. Gene

expression for each clade was calculated as an individual data

point (mean 6 SD of six strains), as there was no means to justify

which individual strains were to be compared [58]. The relative

differences in expression were presented as the ratio of clade 8 to

clade 2.

Sequence analysis
Because sequence comparisons among three O157:H7 genomes

have demonstrated differences in phage gene content [5], the

distribution of phage genes was determined by BLASTN [59]

analysis of O157:H7 genomes from strains Sakai (clade1) [12],

EDL 933 (clade 3) [60], TW14359 (clade 8) [61], and TW14588

(clade 2, GenBank Acc. No. ABKY00000000); clade membership

of these strains was determined previously [5]. Phage genes that

were not present in both TW14359 and TW14588 strains were

omitted from the analysis.
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Supporting Information

Figure S1 Invasion of MAC-T cells by 24 O157:H7 strains.

Plotted on the ordinate are invasion ratios of test strain to Sakai (y-

left), as well as CFU/ml plate counts (y-right). Strains were ranked

on the abscissa according to association levels for consistency with

Figure 1. The symbols indicate the mean 6 SD of three separate

experiments. The dotted line represents the invasion level of Sakai.

Found at: doi:10.1371/journal.pone.0010167.s001 (1.87 MB TIF)

Figure S2 Adherence of 24 O157:H7 strains to MAC-T cells.

For each strain, adherence was calculated by subtracting invasion

from association levels (CFU/ml). Plotted on the ordinate are

adherence ratios of test strain to Sakai (y-left), as well as CFU/ml

plate counts (y-right). Strains were ranked on the abscissa

according to association levels for consistency with Figure 1. The

symbols indicate the mean 6 SD of three separate experiments.

The dotted line represents the adherence level of Sakai.

Found at: doi:10.1371/journal.pone.0010167.s002 (1.85 MB TIF)

Figure S3 Genes that were significantly differentially expressed

between 4 groups (clade stx) of O157:H7 strains. Each column

represents one of the 4 groups (clade stx). Genes were sorted by

chromosomal positions and the heat map was generated in R

(‘gplots’ package version 2.3.2). Note that dendrogram, based on

column means, clustered groups according to clade. Sp - Sakai

prophage, SpLE - Sakai prophage-like element, pO157 - EHEC

plasmid.

Found at: doi:10.1371/journal.pone.0010167.s003 (6.98 MB TIF)

Figure S4 Fluorescence micrograph of MAC-T cells co-

incubated with O157:H7 strain 93-111 (clade 2) for 3 h.

Filamentous actin was stained green (Alexa Fluor 488), nucleic

acid was stained red (propidium iodide). Merging the green and

red fluorescence demonstrated complementarity of actin pedestals

and bacterial location. White scale bar represents 10 mm.

Magnification 63x with 3.6x scan zoom for 93-111.

Found at: doi:10.1371/journal.pone.0010167.s004 (7.53 MB TIF)

Table S1 Relative difference in expression of 604 genes between

clades 8 (n = 12) and 2 (n = 12), based on Fs analysis (R/

MAANOVA) of microarray data.

Found at: doi:10.1371/journal.pone.0010167.s005 (0.12 MB

XLS)

Table S2 Primer sequences and annealing temperatures used for

qRT-PCR.

Found at: doi:10.1371/journal.pone.0010167.s006 (0.05 MB

DOC)
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