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Abstract

To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for
exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR
(GPS NMR) is a powerful high-throughput method that provides such an overview. GPS NMR exploits the unique ability of
NMR to simultaneously record signals from individual hydrogen atoms in complex macromolecular systems and of
multivariate analysis to describe spectral variations from these by a few variables for establishment of, and positioning in,
protein-folding state maps. The method is fast, sensitive, and robust, and it works without isotope-labelling. The unique
capabilities of GPS NMR to identify different folding states and to compare different unfolding processes are demonstrated
by mapping of the equilibrium folding space of bovine a-lactalbumin in the presence of the anionic surfactant sodium
dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat.
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Introduction

Life depends on proteins interacting mutually and with other

molecules in complex patterns in time and space. This web of

interactions may be described in terms of interactomes of the

proteins [1,2,3], but biological function is intimately linked to the

structural/dynamic response of the proteins to these interactions. In

this perspective, it is important to establish procedures to explore the

states that encapsulate the conformational space of the proteins.

Here we introduce Global Protein folding State mapping by

multivariate NMR (GPS1 NMR) for fast establishment of, and

navigation in, protein folding-state maps when proteins are

exposed to perturbations, such as changing thermodynamic or

solvent conditions, or molecular interactions. The folding maps

provide a structural overview which complements interactomic

networks, direct structural biologists to states that reflect the

conformational space of proteins, and identify optimal conditions

for studies of protein complexes and assemblies such as membrane

proteins or fibrils.

GPS NMR is based on 1H liquid-state NMR in combination

with multivariate analysis. Simple 1D 1H spectra simultaneously

provide chemical shifts of 1H located all around an organic

molecule, the values of which are sensitive to changes in the local

environment. Thus, virtually any perturbation of the protein can

be detected, and through appropriate data analysis a wealth of

information can be extracted and used to map protein interactions

or folding states. This is important when comparing with other

biophysical techniques, such as circular dichroism or fluorescence

spectroscopy, where only the global fold or a few optically active

probes are used to examine folding and interactions that may

concern other regions than those probed. Multivariate analysis

allows the changes in the local environment of all 1H within a

molecule to be summarized in a way that provides an easily

accessible overview and defines the different states that are

sampled. In contrast to classical analysis of NMR data which

involves time-consuming assignment prior to data evaluation,

unsupervised multivariate analyses such as principal component

analysis (PCA) [4] is extremely fast and can be applied to the data

without manual pre-treatment. Furthermore, it allows analysis of

data at a resolution or sensitivity where classical analysis is useless.

This allows for high-throughput (seconds to minutes per

experiment) and small amounts of sample (mM concentration).

The method also works well for complex mixtures and multiple

processes, and does not rely on isotope labeling. GPS NMR thus

differs markedly from previous combinations of protein NMR with

multivariate analysis involving isotope-labeling and/or advanced

spectral assignment protocols [5,6].

Multivariate analysis facilitates separation of the different

contributions to the variation between spectra by reducing the

dimensionality of a data set while retaining the primary

information. The principal components (PCs) are uncorrelated,

and ordered by the amount of information they contain. Each PC

is described by a ‘‘loading’’ vector, i.e. positive/negative peaks as a

function of chemical shift, and ‘‘scores’’ that describe the relative

contribution of the loading vector to each spectrum. The processes

that occur e.g. as a ligand is added are well described by a few PCs.

Since the number of processes is much lower than the number of

frequencies measured, this applies also in the case of severely
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overlapping resonances. There is thus no need for unique protein

or ligand signals to follow the changes in the different populations.

It is important to note that even if the spectral changes are

described by only a few PCs, the loadings describe the different

spectral changes that occur and the scores describe the different

samples in terms of these changes. Ideally, the only information that

is lost in this procedure is random spectral variations, i.e. noise.

However, if a detailed analysis of the macromolecular structure and

dynamics is needed, the full potential of macromolecular NMR

methods should be focused on the states identified using GPS NMR.

Here we demonstrate GPS NMR for folding-state mapping of the

structural transitions in bovine a-lactalbumin (BLA). BLA is a mixed

a/b Ca2+-binding protein containing 4 disulfide bonds, and has

been an intensively studied model for protein folding [7,8]. It has

been shown that BLA is remarkably sensitive to surfactants [9]. We

follow the unfolding of BLA by surfactants, acid, denaturants and

heat, and show the capabilities of GPS NMR to identify different

folding states and to compare different unfolding processes.

Materials and Methods

Sample preparation
Unless otherwise stated 1.2 mM apo BLA was dissolved in a

20 mM sodium phosphate buffer at pH 7.0 containing 5 mM

EDTA, 10% D2O for frequency lock and 0.25 mM sodium 2,2-

dimethyl-2-silapentane-5-sulfonate, DSS, for chemical shift refer-

ence. The titrations involved 10–20 additions of: SDS (0–42 mM),

C7PC (0–56 mM), DM (0–39 mM), GdmCl (0–3.3 M), TFE (0–

50%) to BLA in the NMR tube. pH titrations were performed on

unbuffered solutions by addition of HCl (pH 8.5–2.2) and NaOH

(pH 1.4–6.2). Spectra of apo BLA were acquired at increasing

temperatures (10–60, 10uC). Generally spectra were acquired at

700.09 MHz. The SDS titration was also performed at

400.13 MHz. An additional SDS titration was performed at

799.30 MHz on a sample containing 12 mM BLA.

NMR experiments
NMR spectra were acquired at 25uC on a Bruker Avance-II 700

(700.09 MHz) or Avance 400 (400.13 MHz) spectrometers using

standard liquid-state probes with z-gradients. For each addition a

WATERGATE spectrum [10] was acquired (32768 points, 128

scans, spectral width 17.96 ppm). Prior to acquisition, the sample

was allowed to equilibrate for 5 min in the spectrometer, followed

by quick shimming. Similarly experiments were recorded as the

temperature was increased from 10 to 60uC in steps of 1uC.

Additional spectra were acquired with 4 scans on a Bruker Avance

800 spectrometer (799.30 MHz), equipped with a cryogenic

probe.

Data analysis
The spectra were processed and binned using iNMR (www.

inmr.net). An exponential line-broadening of 5 Hz was applied

prior to Fourier transformation (50 Hz for the 12 mM sample). All

spectra were referenced to DSS at 0.0 ppm, automatically phased

and baseline corrected. Data reduction was accomplished by

dividing the spectrum into 0.02-ppm (or larger when indicated)

regions over which the signal was integrated to obtain the

intensity. The PCA was performed using Simca-P 12.0 (Umetrics,

Umeå, Sweden).

Results and Discussion

Interactions of apo BLA with surfactants
Apo (Ca2+-free) BLA was titrated with the anionic detergent

sodium dodecyl sulfate (SDS), the zwitterionic di-hexanoyl-

phosphatidyl choline (C7PC), and the neutral decyl maltoside

(DM). The titrations were followed by 1D 1H NMR. The 12 to

6.5 ppm region was used to avoid solvent signals. It was divided

into 0.02 ppm bins, normalized by its total intensity, and analyzed

by PCA.

The two first PCs in the GPS NMR 2D score plot (Fig. 1A)

summarize 75% of the spectral changes for the three titrations.

The SDS titration (Fig. 1A, black) can be described by two straight

lines with a turning point around 5 SDS/BLA and the final state

at 22 SDS/BLA. The straight lines suggest that the corners

represent well-defined states. This is in good agreement with

dialysis [11] and calorimetric [9] measurements The score plot can

be interpreted as a phase/folding diagram where motion along the

Figure 1. GPS NMR overview of the titrations of apo BLA with SDS, C7PC, and DM. GPS NMR 2D score plot (A) for titrations of apo BLA with
SDS (black), C7PC (red), and DM (blue). PC1 and PC2 account for 56 and 19% of the variance between spectra, respectively. (B–E) NMR spectra of
selected states: (B) SDS-induced state obtained above 22 detergents/protein, (C) SDS-induced state at 5 detergents/protein, (D) detergent-free folded
state, and (E) C7PC and DM-induced states obtained at detergent/protein ratios .15.
doi:10.1371/journal.pone.0010262.g001

A GPS for Proteins
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first titration line represents transition from the native state to the

first SDS-induced state and motion along the second line

represents transition from the first to the second SDS-induced

state. The distribution of protein states at a given point on the lines

is characterized by the distance to the two ends.

The spectral changes along PC1 and PC2 are described by the

loadings in Fig. 2. The PC1 loadings (Fig. 2A) show that with

increasing PC1 scores (first SDS association step), the dispersion of

the amide and aromatic regions is lost as marked by decreasing

signals outside and increasing signals inside the random coil

regions [12]. Though effects such as hydrogen-bond formation

also are important for the amide proton chemical shifts, lower

shifts are indicative of a-helix and higher shifts of b-strand [13].

The changes in the dispersion of the amide proton signals (blue

arrows in Fig. 2A) thus indicate loss of both a-helical and b-sheet

secondary structure. There is also a relative signal gain in the

aromatic side chains relative to the amides. Altogether this reveals

a loss of tertiary structure and conformational exchange on the ms-

ms timescale for the amides. The PC2 loadings (Fig. 2B) show that

with increasing PC2 scores (second association step), the amide

signals move towards lower chemical shifts (blue arrow). The

tryptophan amides form one strong signal, indicating a significant

shift in the timescale of chemical exchange. The observation of

these two processes agrees with the unfolding of the tertiary

structure and subsequent a-helix formation seen by fluorescence

and CD spectroscopy [9,11,14]. Complementary information

about the structural changes that occur can be obtained by

inspection of the spectra closest to the ‘‘pure’’ states in the three

corners of the graph (Fig. 3).

The turning point at 5 SDS/BLA (Fig. 1 and 3) agrees well with

the finding that 4 SDS molecules remained bound after several

days of dialysis [11], and the calorimetric observation that

4.4 SDS molecules bind to BLA in the first unfolding transition

[9]. Calorimetric measurements also identified a total of 25 SDS

molecules bound at the end of a second transition[9], which agrees

with the 22 SDS molecules required for the scores to reach a

plateau (Fig. 3).

Apo BLA shows a well-dispersed spectrum with narrow signals

(Fig. 1D) corresponding to a reasonably well-folded protein. Apart

from the lost dispersion, the first SDS-induced state has

significantly broadened signals, especially in the amide region

(Fig. 1C) indicative conformational exchange on the ms-to-ms

timescale. The second SDS-induced state is indeed better

dispersed and has linewidths that are equal to or lower than in

the absence of SDS (Fig. 1B) in accordance with a regain of

structure and/or a significant shift in the timescale of chemical

exchange.

An additional SDS-titration with deuterated EDTA and SDS

was obtained in order to study effects on the aliphatic regions of

the spectra that are otherwise covered by solvent protons (not

shown). The chemical shift dispersion in the aliphatic region is

drastically decreased in the first transition, which confirms the loss

of tertiary structure. The second transition only causes minor

rearrangements for the aliphatic region, confirming that no

tertiary interactions are present in the second SDS-induced state.

None of the SDS-induced states show upfield-shifted aliphatic

signals, indicating that very few tertiary interactions occur in any

of these states (not shown).

The scores of the titrations with C7PC (Fig. 1A, red) and DM

(Fig. 1A, blue) are well described by one line each with directions

similar to the first step in the SDS titration. The neutral and

zwitterionic surfactants do not seem to transform the protein into a

third state, and the spectra for the final states are very similar for

the two surfactants (Fig. 1E), in agreement with previous studies

[9].

Titration curves along PC1 for SDS, C7PC, and DM as a

function of the number of surfactant molecules per protein are

shown in Fig. 3. Note the biphasic appearance of the titration

curve of SDS. While the anionic SDS induces changes below

CMC, the neutral DM and zwitterionic C7PC only induce

detectable changes above CMC, in agreement with previous

observations [9].

Multiple perturbations
To explore the wealth of folds sampled by BLA and to position

the SDS-induced states in a more general conformational

Figure 2. GPS NMR loading plots for the titrations of apo BLA
with SDS, C7PC, and DM. Loadings are shown for PC1 (A) and PC2
(B). The thick red lines show typical random coil chemical shifts for from
left to right: tryptophan sidechain amide, backbone amides, and
aromatic sidechains [12]. Blue arrows indicate changes in the backbone
amide region.
doi:10.1371/journal.pone.0010262.g002

Figure 3. GPS NMR scores as a function of added SDS, C7PC, or
DM. PC1 scores for SDS (black), C7PC (red), and DM (blue) versus
detergent concentration. The dashed lines indicate the CMCs of the
surfactants in absence of protein [9].
doi:10.1371/journal.pone.0010262.g003

A GPS for Proteins
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landscape, we expand our GPS NMR mapping with other types of

perturbations. These include additions of acid and base, the

denaturant guanidinium chloride (GdmCl), the organic solvent

trifluorethanol (TFE), and heating (thermal denaturation) to 60uC.

These perturbations were analyzed together with the SDS-induced

ones in a single PCA. The GPS NMR 3D score plot in Fig. 4A

accounts for 67% of the variations between all spectra. GPS NMR

reveals numerous partially folded BLA states, the formation of

which can be tracked in Fig. 4A. Addition of acid (Fig. 4A, red)

induces the classical molten globule A-state at pH 2.6 [15]. The

kink in the curve around pH 4.5, close to the isoelectric point,

indicates the presence of another state at this pH. Addition of

GdmCl (Fig. 4A, blue) produces a partially folded state at 1.6 M

and a set of unfolded states starting at 2.2 M [16]. Heating

(Fig. 4A, green) to 60uC gradually moves the protein away from

the folded state but in a different direction.

GPS NMR allows similarities between structural transitions to

be assessed. Addition of 1.6 M GdmCl moves the spectra along a

path similar to the first step in the SDS titration (Fig. 4A). The

spectra at 5 SDS/BLA and 1.6 M GdmCl are compared in

Fig. 4B. Addition of TFE brings the protein along a path that,

despite divergences in the second half of the titrations, is very

similar to that induced by SDS. The two states end up quite close

to each other. The similar effects of SDS and TFE are noteworthy

considering their similar effects in various protein systems, where

they both induce b-strand formation at lower concentrations and

a-helix formation at higher [17,18,19,20,21].

Similarly structured parts in the A-state and the GdmCl-

induced partially folded state are indicated by similar hydrogen

exchange patterns [22]. Here, however, addition of acid and

Gdm-Cl take the protein along different paths (Fig. 4). The

different paths are reflected by the three major spectral differences

between the A-state and those of the SDS- and GdmCl-induced

states (Fig. 4B): two sharp signals below 9 ppm indicate that there

are regions in the A-state that are governed by a different

structural/dynamic regime than in the other two states. An intense

signal at 7.6 ppm, and a slight down-field shift of the spectral

envelope can be explained by changes in protonation and pH

effects.

Addition of TFE at pH 2 brings the protein from the A-state to

a position not far from the final state induced by TFE and SDS at

neutral pH (Fig. 4A), in agreement with observed similarities in

TOCSY spectra [14]. The similarities of final states induced by

addition of TFE to BLA in neutral and acidic solutions suggest that

the effect of pH is limited in the presence of 50% TFE. The acid-

unfolded A-state and the TFE-induced state have been found to be

similar in many ways [15,23].

Sensitivity, resolution, and robustness of the analysis
Data were with few exceptions phased and baseline corrected

automatically. The data used above were acquired using 1.2 mM

BLA with 128 scans in 5 min. To test the sensitivity of the analysis

we performed PCA on the data from the SDS titration with

artificially decreased signal-to-noise ratio. Both reduction in the

sensitivity by up to a factor of 200 and acquisition of data with 4

scans in 15 s on 12 mM BLA at 800 MHz using a cryogenic probe

(Fig. 5) results in at least two significant PCs and a well-defined

turning point. To explore the need for spectral resolution, we

performed PCA on the SDS data using larger bins. Bin widths up

to 0.1 ppm resulted in virtually identical results, and bin widths up

to 1.2 ppm (4 data points) resulted in at least two significant PCs

and the turning point around 5 SDS/BLA (Fig. 5). Negligible

effects of magnetic field strength are indicated by virtually identical

scores for SDS titrations performed at 400 and 700 MHz (Fig. 4A).

Sensitivity and resolution are critical for any experimental method,

but the analysis in Fig. 5 clearly demonstrates that GPS mapping

of BLA may be established at radically more forgiving conditions

for spectral sensitivity and resolution than typical for NMR

applications. The red spectrum in Fig. 5A represents data

recorded at a concentration of 12 mM BLA using 1/32 of the

Figure 4. GPS NMR overview of apo BLA perturbed by addition of SDS, GdmCl, or TFE, by changes in pH, or heating. GPS NMR 3D
score plot (A) for titrations of apo BLA with SDS (0–56 mM; black), pH (pH 7.0–2.0; red), GdmCl (0–3 M; blue), TFE (0–50%; orange), TFE at pH 2.0 (0–
50%; pink), and heating (283–333 K; green). SDS titrations at 700 and 400 are included. The lighter lines show projections on the PC1-PC3 plane. The
scores of pure apo BLA and the A-state are indicated by a red dot and an italic A, respectively. Colored numbers indicate turning/end-points of the
various titrations. (B, C) Overlays of NMR spectra of partially folded states (B) induced by 5 SDS molecules/protein (black), 1.6 M GdmCl (blue), and
addition of acid to pH 2 (red), and (C) by 22 SDS/BLA (black), 50% TFE (orange), and 50% TFE at pH 2 (pink).
doi:10.1371/journal.pone.0010262.g004
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experimental time (4 scans for each of the 13 spectra) used for the

black higher concentration spectrum (1.2 mM) used in Fig. 1. Data

analysis of spectra with this remarkably low sensitivity provides a

GPS NMR score plot as illustrated in Fig. 5B, clearly reflecting the

same three-stage (two-line) folding process of BLA upon titration

with SDS. The blue horizontal lines (Fig. 5A), representing the

1.2 mM data integrated into 4 bins of width 1.2 ppm also leads to a

three-stage (two-line) GPS NMR folding map. In combination these

two plots reveals that GPS NMR works at concentrations far below

what would be required for analysis involving spectral assignment

and protein NMR in general, and demonstrates that even low-

resolution spectra (or spectra displaying a high degree of spectral

overlap) offers the potential for GPS mapping, such as very large or

dilute systems, systems undergoing chemical exchange, and spectra

acquired using solid-state or low-field NMR [24].

An additional strength of GPS NMR is that isotope labels are

not needed, so that protein from (or in) the natural source can be

used. This is a great advantage for systems for which recombinant

expression is laborious, costly, or leads to proteins with altered

properties compared to the authentic protein, which is the case for

BLA [14,25].

GPS NMR is sensitive to the distribution of intensity along the

chemical shift axis, which depends on the distribution of structural

characteristics and the relative dynamic features. Unless prior data

treatment is used to extract a moving signal in terms of its position

alone (cf. Ref. [6]), PCA does not allow us to follow signals as they

move, i.e. change chemical shift. In fact, the presence of a strong

moving signal results in a large number of PCs with scores that

vary with the experiment number like standing waves of increasing

order (Fig. 6). It is therefore very important to examine the scores

and loadings for each PC before interpreting the individual PC as

a structural change. In practical terms, two options exist in the

interpretation of PC from spectra dominated by moving signals: (i)

Make the bin width larger (cf. Fig. 5) so that most movements will

occur inside the bins, or (ii) discard regions of the spectra where

the movements occur.

The normalization to total intensity is important to eliminate

trivial separations due variations in amount of sample or other

experimental parameters. Different normalization schemes includ-

ing separate treatment of different regions, and/or including other

spectral regions were tested. In all cases the general trends in this

analysis agree.

Comparison to other methods
Time-resolved folding and unfolding of a-lactalbumin

[22,26,27,28,29] and other proteins [30] have been studied by

conventional 1D and 2D NMR. Data from these studies were

evaluated by integrating individual peaks and fitting time constants

locally or globally. When using PCA, the PCs are linear

combinations of the different processes and the time constants

can be calculated from the time-dependence of the scores of the

different PCs. As discussed above, there is a significant increase in

S/N, which allows shortening of the experimental time and/or a

decrease in the amount of sample used. This may be an important

improvement when studying more complex reactions. The data

analysis in GPS NMR is also fast. Analysis of a new system takes a

few hours irrespective of the number of spectra used.

Future directions
The method can be further enhanced by inclusion of T1, T2, or

diffusion edited experiments to put more weight on dynamic

aspects, or STD [31], exchange-transferred NOE [32], or similar

experiments to probe for interactions. The use of a cryogenic flow

or microprobe system in combination with automatic mixing of a

large number of samples would allow a full map of the folding

space of proteins. The results of this could give important

information about the states spanned in the (soluble part of the)

promiscuous life of proteins in their natural environment as well as

screening a molecule of study for optimal solution conditions.

Conclusions
GPS NMR mapping allows the systematic study of the states

sampled by a protein exposed to different perturbations by the

application of simple 1D NMR spectra in combination with

Figure 5. GPS NMR score plots from spectra with very low signal-to-noise or very low resolution. (A) Spectra of apo BLA: 1.2 mM
acquired with 128 scans described using 275 data points (0.02 ppm; thin black line), 1.2 mM acquired with 4 scans described using 275 data points
(0.02 ppm; thin red line), or 1.2 mM acquired with 128 scans described using 4 data points (1.2 ppm bins; thick blue lines), and GPS NMR 2D score
plots for the titration of BLA with SDS (B) using the data with decreased concentration and acquisition time and (C) using the data with decreased
resolution. PC1 and PC2 explain 31 and 22%, and 86 and 14% of the variance between spectra, respectively.
doi:10.1371/journal.pone.0010262.g005

Figure 6. The impact of moving signals on the PCA scores. (A) A
signal moving in 6 equidistant steps from left (light gray) to right
(black). (B) The PCA scores for the first 3 components (PC1, black
squares; PC2, red circles; PC3, open blue squares) as a function of
spectrum number. Notice the similarity to standing waves.
doi:10.1371/journal.pone.0010262.g006
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multivariate analysis. The aim has not been to exploit all spectral

information that may be obtained by NMR spectroscopy to

establish atomic-resolution structural information, as has been

demonstrated for decades, but rather to demonstrate the capability

of NMR to be used as a high-throughput method which from

simple 1D spectra and fast data analysis may provide global

information about protein folding. Our study of a-lactalbumin

clearly demonstrates that the method fast and reliably can identify

a number of known thermodynamically stable partially folded

BLA states and the transitions between them. We have shown that

by analysing many spectra simultaneously, the method works at

very low signal-to-noise levels relative to traditional analysis of

NMR spectra, and can treat data with very limited spectral

quality. This opens up the possibility to study proteins at low

concentrations and in complex mixtures such as their native

environments, for analysis of data of different origins such as

different magnetic fields and potentially for the use of less

expensive low-field NMR instrumentation. We envisage that

GPS NMR will become a powerful tool in protein characteriza-

tion, the possibilities of which we have just started to explore.
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