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Nuclear receptor Rev-erbα (NR1D1), previously considered to be an orphan nuclear receptor, is a receptor
for heme, which promotes transcriptional repression via recruitment of the NCoR-HDAC3 corepressor complex.
Rev-erbα gene regulation is circadian, and Rev-erbα comprises a critical negative limb of the core circadian
clock by directly repressing the expression of the positive clock component, Bmal1. Rev-erbα also regulates
the metabolic gene pathway, thus serving as a heme sensor for coordination of circadian and metabolic
pathways.
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Introduction to Rev-erbα
Rev-erbα (NR1D1) was discovered in 1989, and as such
was one of the first orphan nuclear receptors (NRs) to be
described [Lazar et al., 1990b; Miyajima et al., 1989].
Rev-erbα is now recognized to be the first member of an
interesting NR subfamily that includes the highly related
Rev-erbβ [Bonnelye et al., 1994; Dumas et al., 1994;
Retnakaran et al., 1994], as well as the ROR subfamily
of orphan receptors (ROR) [Giguere et al., 1994]. A
Rev-erbα homologue, called E75, is present in Drosophila
[Segraves and Hogness, 1990]. The 3’-end of mouse
Rev-erbα gene overlaps with that of mouse TRα2 gene
[Lazar et al., 1990b; Miyajima et al., 1989]. It has been
suggested that the presence of Rev-erbα transcripts may
influence the alternative splicing of TRα by an antisense
mechanism [Lazar et al., 1990a; Munroe and Lazar,
1991]. In mammals, Rev-erbα expression is highly
regulated in both its tissue distribution and developmental
profile. Indeed, knockout of Rev-erbα without perturbation
of the TRα gene leads to a modest phenotype of
reproductive abnormalities and delayed cerebellar
development in mice [Chomez et al., 2000]. More
importantly, Rev-erbα knockout mice show changes in
their circadian rhythm of activity, which is characterized
by a shorter period length and greater light-induced phase
responsiveness than that of control mice [Preitner et al.,
2002].

Rev-erbα is a potent repressor of gene
transcription
Many NRs activate gene expression in the presence of
a natural or pharmaceutical ligand, whose binding leads
to a receptor conformation that allows tight interaction
with transcriptional coactivators [McKenna and O'Malley,
2002]. In the absence of ligand, several NRs repress
transcription, via recruitment of corepressors that
specifically recognize the unliganded state [Hu and Lazar,
2000; Privalsky, 2004]. Binding of ligand thus induces a

conformational switch from the repressed to an activated
state [Glass and Rosenfeld, 2000]. The major
ligand-dependent conformational change is a movement
of a C-terminal helix, called H12, towards the hydrophobic
core of the NR, making contact with and stabilizing the
ligand binding [Wurtz et al., 1996]. H12 is required for
coactivator binding [Halachmi et al., 1994], and forms
part of the coactivator binding surface of the NR [Feng
et al., 1998; Shiau et al., 1998]. The remainder of the
coactivator binding surface overlaps with the region of
the NR that is bound by corepressor [Hu and Lazar, 1999;
Marimuthu et al., 2002; Nagy et al., 1999; Perissi et al.,
1999; Xu et al., 2002]. Indeed, whereas deletion of H12
abolishes coactivator binding, it markedly increases
corepressor binding to TR, RAR, and RXR [Schulman et
al., 1996; Zhang et al., 1999].This is particularly relevant
to Rev-erbα, which is unique among NRs in that it
completely lacks H12 and is a potent and constitutive
transcriptional repressor [Harding and Lazar, 1995].

The role of the NCoR/HDAC3 complex
in repression by Rev-erbα
Rev-erbα interacts strongly with Nuclear Receptor
CoRepressor (NCoR) [Zamir et al., 1996], which it binds
preferentially over Silencing Mediator for Retinoid and
Thyroid Receptors (SMRT) when bound to target DNA
[Hu et al., 2001; Zamir et al., 1997a]. Knockdown of NCoR
attenuates repression by Rev-erbα [Ishizuka and Lazar,
2003]. The class I histone deacetylase (HDAC), HDAC3,
interacts stably and quantitatively with endogenous NCoR
[Guenther et al., 2000; Li et al., 2000; Zhang et al., 2002].
The catalytic activity of HDAC3 actually requires
interaction with NCoR or SMRT [Guenther et al., 2001;
Zhang et al., 2002], and the HDAC3 activity of cellular
N-CoR complexes is lost after knockdown of HDAC3,
suggesting that HDAC3 is the major HDAC associated
with N-CoR [Ishizuka and Lazar, 2005]. HDAC3 is
required for the repressive activity of Rev-erbα [Ishizuka
and Lazar, 2003], and is recruited by Rev-erbα to
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endogenous target genes whose activity is de-repressed
in the absence of HDAC3 [Yin and Lazar, 2005].The role
of other HDACs in Rev-erbα function is unclear at this
time.

Determinants of genes that are targets
for Rev-erbα repression
Like other NRs, the Rev-erbα DBD consists of two
zinc-ordered modules creating a helix-turn-helix structure
that recognizes the specific hexameric sequence
"AGGTCA" [Umesono and Evans, 1989]. Rev-erbα binds
DNA as a monomer, but only to extended half-sites in
which an A/T-rich sequence is 5' to the AGGTCA [Harding
and Lazar, 1995]. ROR, a constitutively active orphan
NR, has a very similar DBD that binds DNA as a monomer
to almost identical DNA sequences, called ROR elements
(ROREs) [Giguere et al., 1995]. Structural analysis
revealed that the C-terminal extension of the Rev-erbα
DBD interacts with the A/T-rich 5' extension of the
AGGTCA half-site that is required for high affinity binding
[Zhao et al., 1998].

Many NRs bind to direct repeats of the "AGGTCA" site
as a heterodimer with RXR [Mangelsdorf and Evans,
1995], and the spacing of the AGGTAC "half-sites" is a
critical determinant of binding affinity and specificity
[Umesono et al., 1991]. Unlike many other orphan NRs,
Rev-erbα does not heterodimerize with RXR. Rev-erbα
does bind specifically as a homodimer to tandem repeats
spaced by two base pairs ("DR2"), but only when the 5'
half-site of the DR2 is flanked by the A/T-rich sequence
favored by the monomer; this is referred to as a Rev-DR2
[Harding and Lazar, 1995]. Unlike RXR heterodimers, the
Rev-erbα homodimer is not stable in the absence of DNA,
but does bind cooperatively to the DR2 [Harding and
Lazar, 1995].

Rev-erbα is a potent repressor on the cooperatively bound
Rev-DR2 [Harding and Lazar, 1995; Zamir et al., 1997b].
In addition, two Rev-erbα monomers bound independently
to relatively widely spaced ROREs can also recruit NCoR
to repress transcription [Harding and Lazar, 1995; Zamir
et al., 1997b]. However, a single Rev-erbα molecule
bound to a lone RORE cannot recruit NCoR [Zamir et al.,
1997b]. This is because the stoichiometry of productive
NCoR binding is two Rev-erbα molecules to one of NCoR
[Zamir et al., 1997b], which is also true for other NRs
such as TR [Cohen et al., 1998; Jeannin et al., 1998;
Zamir et al., 1997b]. Although monomeric Rev-erbα
cannot actively repress transcription, it can nevertheless
function as a repressor by competing with constitutively
active ROR for ROREs [Forman et al., 1994; Harding and
Lazar, 1995; Retnakaran et al., 1994].

Modulation of the repressive activity of
Rev-erbα
For other corepressor-binding NRs, repressive activity is
regulated by ligand binding, which destabilizes the binding
of the corepressor complex in addition to stabilizing
NR-coactivator complexes. Remarkably, Rev-erbα binding

to NCoR is actually stabilized by molecular heme, while
depletion of intracellular heme abolishes the interaction
between Rev-erbα and N-CoR protein. In 2007, two
groups independently found that heme binds directly to
Rev-erbα with a 1:1 stoichiometry, and that this binding
is specific, saturable, reversible, and functional
[Raghuram et al., 2007;Yin et al., 2007], thereby fitting
the criteria for an NR ligand.Thus, Rev-erbα is no longer
an “orphan” receptor. In addition to its endogenous ligand,
a recent study indicates that, like other NRs, Rev-erbα
can be targeted by other small molecules that have the
potential to be used for therapeutic purposes [Meng et
al., 2008]. It should be noted that the highly related
Rev-erbβ can also bind heme, and the structure and
function of heme-bound Rev-erbβ is sensitive to the
presence of nitric oxide (NO) [Marvin et al., 2009;
Reinking et al., 2005]. At this time, it is not clear if
Rev-erbα transcriptional activity is regulated by NO
[Raghuram et al., 2007;Yin et al., 2007]. In addition, it
should be pointed out that the sensing of heme
concentration by Rev-erbα contrasts with the
stoichiometric role of heme in regulating the circadian
neuronal PAS-domain protein 2 (NPAS2), whose
heme-dependent binding of carbon monoxide results in
an inhibition of DNA-binding activity [Dioum et al., 2002].

Regulation of Rev-erbα protein stability
The cellular levels of Rev-erbα are also major
determinants of whether Rev-erbα target genes will be
repressed in a given cell. We have recently identified a
pathway whereby Rev-erbα protein levels are regulated
by GSK3β-dependent phosphorylation, which prevents
the rapid proteasomal degradation of Rev-erbα [Yin et
al., 2006]. Phosphorylation stabilizes Rev-erbα protein
until serum-induced phosphorylation of serine 9 (ser9-p)
inhibits GSK3β enzymatic activity [Cohen and Frame,
2001; Frame and Cohen, 2001; Frame et al., 2001],
leading to Rev-erbα ubiquitination and degradation via
the 26S proteasome. Phosphorylation-directed proteolysis
often involves a class of E3 ubiquitin ligases called SCF
(Skp1-Cullin1-F box) complexes [Petroski and Deshaies,
2005]; however, the E3 ligase(s) responsible for Rev-erbα
degradation is(are) not known at this time. Note that the
GSK3β-dependent stabilization of Rev-erbα is opposite
of this more usual scenario, whereby phosphorylated
GSK3β substrates are specifically targeted to proteasomal
degradation [Doble and Woodgett, 2003].

Role of Rev-erbα in circadian biology
Genetic and biochemical analysis revealed that 24 h
circadian rhythms are present throughout the animal
kingdom [Panda et al., 2002]. In mammals, circadian
rhythm is a fundamental regulatory factor for many
aspects of behavior and physiology, including sleep/wake
cycles, blood pressure, body temperature and
metabolism. Disruption in circadian rhythms leads to
increased incidence of many diseases, such as cancer,
metabolic disease, and mental illness [Gachon et al.,
2004]. Cellular rhythms are generated and maintained
through interconnected transcriptional feedback of clock
genes. The cycle starts when two PAS-HLH proteins,
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BMAL1 and CLOCK, heterodimerize to activate a number
of circadian genes including Per and Cry, which feedback
and negatively regulate the activity of Bmal1/Clock
[Takahashi et al., 2008].

Rev-erbα is also transcriptionally activated by
BMAL1/CLOCK, initiating a second negative feedback
loop that represses the transcription of the Bmal1 gene.
This function of Rev-erbα is mediated by recruitment of
the NCoR/HDAC3 complex to tandem Rev-erbα binding
sites in the Bmal1 gene promoter [Yin and Lazar, 2005].
By repressing Bmal1 gene expression, Rev-erbα thereby
represents an important link between the positive and
negative loops of the circadian clock. Indeed, mice lacking
Rev-erbα manifest a distinctive pattern of circadian rhythm
[Preitner et al., 2002]. Under constant darkness, Rev-erbα
null animals exhibit a significantly shorter circadian period
length and an aberrant phase-shifting response to light
stimuli. Although it has been thought that such circadian
phenotype is due to loss of Rev-erbα-dependent Bmal1
gene regulation, the exact mechanism remains unclear.
The GSK3β-mediated phosphorylation of Rev-erbα is
also involved in initiation and synchronization of the cell
autonomous circadian clock [Yin et al., 2006]. It is of
interest that lithium, a widely used and effective treatment
of bipolar disorder that also has effects on circadian
rhythm, is a potent GSK3β inhibitor that induces Rev-erbα
protein degradation and upregulation of Rev-erbα gene
targets including Bmal1 [Pardee et al., 2009;Yin et al.,
2006]. Indeed, inhibition of GSK3β by either small
chemical inhibitor or siRNA knockdown consistently
causes a strong short circadian period phenotype, a
similar circadian behavior in Rev-erbα null mice [Hirota
et al., 2008].

Role of Rev-erbα in metabolic regulation
Rev-erbα is most highly expressed in metabolic tissues,
including adipose tissue, liver and muscle [Burke et al.,
1996; Lazar et al., 1989]. Little is known about the
physiological functions of Rev-erbα in adipose tissue,
although Rev-erbα mRNA is induced in two of the most
well-studied models of adipogenesis, 3T3-L1 and
3T3-F442A cells [Chawla and Lazar, 1993].
Overexpression of Rev-erbα has been shown to enhance
adipogenesis [Fontaine et al., 2003], and Rev-erbα is
required for adipogenesis [Wang and Lazar, 2008]. The
biological role of Rev-erbα in muscle is also not well
understood, though it may be involved in muscle fiber
type switching [Pircher et al., 2005].

More is known about the metabolic function of Rev-erbα
in liver [Duez and Staels, 2009; Le Martelot et al., 2009].
Besides its function in regulating core clock genes,
Rev-erbα also regulates time-specific expression of
circadian output genes important for normal hepatic
physiology. Rev-erbα has been shown to repress
expression of apolipoprotein CIII (apoC-III) [Coste and
Rodriguez, 2002; Raspe et al., 2002] and, consistent with
this, mice lacking Rev-erbα have elevated apoC-III levels
and a large increase in serum triglyceride and VLDL levels
[Raspe et al., 2002]. Rev-erbα also represses the
gluconeogenic gene, glucose 6-phosphatase, in

hepatocytes [Yin et al., 2007]. Rev-erbα also regulates
bile acid metabolism via both direct and indirect
mechanisms [Duez et al., 2008; Le Martelot et al., 2009].
More recently, Rev-erbα has been demonstrated to
regulate the expression of mir-122, a highly abundant
liver-specific microRNA [Gatfield et al., 2009], further
supporting a critical role for Rev-erbα in liver.

Rev-erbα also regulates the synthesis of its ligand, heme.
The rate limiting enzyme in heme synthesis, ALAS1, has
a circadian rhythm and is positively regulated by two
circadian transcriptional regulators, the bHLH protein
NPAS2 and the coactivator, PGC-1α [Handschin et al.,
2005; Kaasik and Lee, 2004; Liu et al., 2007].We recently
showed that Rev-erbα directly represses PGC-1α, thus
creating a feedback loop in which heme promotes
Rev-erbα repression of PGC-1α, thereby reducing ALAS1
gene expression and heme biosynthesis. Conversely,
low heme levels reduce Rev-erbα repression, enhancing
PGC-1α stimulation of heme synthesis via transcriptional
activation of the rate limiting enzyme, ALAS1 [Wu et al.,
2009]. Rev-erbα thus serves as a sensor that functions
to maintain intracellular heme levels within a limited range
under normal physiological conditions.

Figure 1.  Rev-erbα coordinates circadian rhythm and metabolic
pathways in a heme-dependent mode. The binding elements of
Rev-erbα, called ROREs, are present in core clock genes and also in
important metabolic genes. Heme, a physiological ligand of Rev-erbα,
promotes recruitment of the NCoR-HDAC3 corepressor complex to
Rev-erbα homodimers bound to target genes and enhances
Rev-erbα-mediated repression of those target genes. Heme binding to
Rev-erbα induces the feedback inhibition of its own biosynthesis.

Summary and conclusions
The biological significance of repression by NRs and their
corepressors is increasingly apparent. Rev-erbα, which
lacks H12 and thus is an obligate repressor, has been a
superb model for understanding the mechanisms of
repression. Moreover, the critical role of Rev-erbα in the
core circadian clock provides a powerful and compelling
validation of the biological importance of active gene
repression and the corepressor complexes. Rev-erbα
also regulates metabolic pathways, and is thus a
molecular link between circadian rhythm and metabolic
physiology. The function of Rev-erbα as a heme sensor
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serves to maintain heme homeostasis, while regulating
metabolic and circadian processes that may be affected
by ambient heme concentrations including the oxidative
metabolism of the cell (Figure 1). Compounds that
modulate Rev-erbα activity thus have the potential to
contribute to or even control the crosstalk between
circadian and metabolic processes, which is of great
significance due to the marked rise in obesity, diabetes,
and sleep disorders that plague advanced societies.
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