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Cisplatin Ototoxicity Blocks Sensory Regeneration in the
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Cisplatin is a chemotherapeutic agent that is widely used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin
therapy and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminogly-
coside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given
the antimitotic properties of cisplatin, we examined whether the avian ear was also capable of regeneration after cisplatin ototoxicity.
Using cell and organ cultures of the chick cochlea and utricle, we found that cisplatin treatment caused apoptosis of both auditory and
vestibular hair cells. Hair cell death in the cochlea occurred in a unique pattern, progressing from the low-frequency (distal) region
toward the high-frequency (proximal) region. We also found that cisplatin caused a dose-dependent reduction in the proliferation of
cultured supporting cells as well as increased apoptosis in those cells. As a result, we observed no recovery of hair cells after ototoxic injury
caused by cisplatin. Finally, we explored the potential for nonmitotic hair cell recovery via activation of Notch pathway signaling.
Treatment with the �-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester failed to promote the
direct transdifferentiation of supporting cells into hair cells in cisplatin-treated utricles. Taken together, our data show that cisplatin
treatment causes maintained changes to inner ear supporting cells and severely impairs the ability of the avian ear to regenerate either via
proliferation or by direct transdifferentiation.

Introduction
Cisplatin is a chemotherapeutic agent that is highly effective in
the treatment of ovarian, testicular, bladder, and head and neck
tumors. Like many antineoplastic drugs, cisplatin can cause a
number of deleterious side effects, such as peripheral neuropathy
and nephrotoxicity. Among the most serious complications of
cisplatin treatment is ototoxicity, which occurs in �30% of
treated individuals and can lead to permanent hearing loss (Nagy
et al., 1999). Numerous studies have demonstrated that cisplatin
leads to the death of hair cells (HCs), which are the sensory re-
ceptor cells of the cochlea and vestibular organs (Rybak, 2007).
Following systemic injection, cisplatin accumulates in the inner
ear fluids and is then taken up by otic epithelial cells. Platinated
DNA has been observed in both hair cells and supporting cells
following cisplatin treatment, leading to the formation of DNA
platinum adducts (van Ruijven et al., 2005). Additional studies
have shown that cisplatin exposure leads to increases in reactive
oxygen species within hair cells (Clerici and Yang, 1996), activa-
tion of ERK1/2 (So et al., 2007), release of certain immune cyto-
kines (Kim et al., 2008), and expression of the vanilloid receptor

TRPV1 (Mukherjea et al., 2008). Nevertheless, present knowl-
edge of the cellular signaling events that are involved in cisplatin
ototoxicity is still rudimentary. In addition, it is not clear whether
hair cells are the primary target of cisplatin or whether other cell
types within the sensory epithelia of the ear are also affected.
Previous anatomical studies, for example, have suggested that
cisplatin treatment induces structural changes in cochlear sup-
porting cells (Ramirez-Camacho et al., 2004).

The present study examined the effects of cisplatin on the
chick cochlea and utricle. The avian ear— unlike its mammalian
counterpart—is able to regenerate sensory hair cells after noise
exposure or aminoglycoside ototoxicity. This regenerative re-
sponse is mediated by epithelial supporting cells, which reenter
the cell cycle after hair cell injury and serve as precursors to re-
placement hair cells (Corwin and Oberholtzer, 1997; Stone and
Cotanche, 2007; Brigande and Heller, 2009). Given the antipro-
liferative effects of cisplatin, we sought to determine whether the
avian ear retained its regenerative ability after cisplatin injury. We
found that cisplatin treatment inhibited cell division and in-
creased cell death in cultures of inner ear supporting cells in a
dose-dependent manner. In organotypic cultures of the chick
cochlea and utricle, we found that cisplatin caused apoptotic hair cell
death, but we observed very limited supporting cell proliferation and
no hair cell regeneration. Further experiments examined the ability
of the �-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-
alanyl]-S-phenylglycine t-butyl ester (DAPT) to promote trans-
differentiation of supporting cells into hair cells after cisplatin
ototoxicity. We found that, although numerous supporting cells
survived cisplatin exposure, treatment with DAPT did not yield
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new hair cells. Our results indicate that cisplatin treatment not
only blocks proliferation in avian supporting cells, but it also
inhibits the ability of those cells to transdifferentiate into replace-
ment hair cells. We conclude that cisplatin injury causes long-
term changes in supporting cells and abolishes the regenerative
ability of the avian inner ear.

Materials and Methods
Animals. Chicken eggs (Charles River Laboratories) were incubated until
hatching, and chicks were housed in heated brooders for approximately
7–14 d posthatch (P7–14). All protocols were approved by Washington
University Institutional Animal Research Committee (Saint Louis, MO).

Cultures of isolated sensory epithelia. Cultures of sensory epithelia from
the chick utricle were prepared following previously described methods
(Warchol, 1995, 1999, 2002). Briefly, chicks were euthanized via CO2

asphyxiation and decapitated. Following removal of the skin and man-
dible, heads were placed in 70% EtOH for 5–10 min to kill surface patho-
gens. The temporal bones were then exposed and utricles were quickly
removed and placed into chilled Medium 199 (M199) with Hanks’ salts
and HEPES buffer. Otoconia were removed with fine forceps, and the
utricles were then incubated for 1 h in thermolysin (500 �g/ml in M199)
at 37°C. Following thermolysin treatment, a 30 gauge needle was used to
remove the sensory epithelium from the underlying basement mem-
brane and stromal tissue. Isolated sheets of sensory epithelia were cut into
small fragments, incubated for 15 min in trypsin (0.05%) at 37°C, and
triturated 10� in M199 with 10% fetal bovine serum (FBS). Dissociated
cells— consisting mostly of supporting cells—were plated onto laminin-
coated culture wells (MatTek). Each well contained cells from approxi-
mately one utricular sensory epithelium suspended in 50 �l of M199 with
Earle’s salts, 2200 mg/L sodium bicarbonate, 0.69 mM L-glutamine, 25
mM HEPES, supplemented with 10% FBS. Cultures were initially incu-
bated overnight at 37°C in a 5% CO2/95% air environment to permit
attachment of the cells onto the laminin substrate. The next day, an
additional 50 �l of medium was added to the cultures for a final volume
of 100 �l. Epithelial cultures were fed fresh medium at 2 day intervals and
used in experiments after 7– 8 d in vitro.

Organotypic cultures of the chick utricle. Organotypic cultures of
utricles were prepared following previously published methods (Matsui
et al., 2002). Chicks were euthanized and utricles were isolated as de-
scribed above. Single utricles were placed in 1 cm MatTek wells that
contained 100 �l of M199 with Earle’s salts and 1% FBS. Cultures were
incubated at 37°C in a 5% CO2/95% air environment and fed fresh me-
dium every 48 h.

Organotypic cultures of the chick cochlea. Cochlear cultures were pre-
pared following previously described methods (Warchol and Corwin,
1996). Chicks were euthanized and cochleae were explanted and placed
in chilled M199 (with Hanks’ salts). The tegmentum vasculosum and
lagena were removed, and the remaining sensory organs were transferred
to 1 cm MatTek wells that contained 100 �l of M199 (with Earle’s salts)
and 1% FBS. Cochleae were incubated at 37°C in a 5% CO2/95% air
environment and fed fresh medium every 48 h.

Ototoxic injury. Crystalline cis-platinum(II) diammine dichloride (cis-
platin; Sigma-Aldrich) was diluted in PBS and stored at �20°C. Dissoci-
ated cultures were treated for 24 h with cisplatin (0.2, 2, or 20 �M).
Organotypic cultures of utricles and cochleae were treated for 24 h with
10 –20 �M cisplatin. Following cisplatin treatment, utricles and cochleae
were thoroughly rinsed in fresh medium and maintained in vitro for 1–7
d. In all experiments, equal numbers of untreated utricles or cochleae
were cultured in parallel and served as negative controls. In addition,
some cultured utricles received ototoxic injury via treatment for 24 h
with 1 mM streptomycin sulfate (Sigma-Aldrich); these specimens served
as positive controls for the studies of supporting cell proliferation and
hair cell regeneration.

Labeling of proliferating cells and inhibition of �-secretase. Cultures were
given bromodeoxyuridine (BrdU; 3 �g/ ml) for either 4 h (dissociated
sensory epithelia) or 3–7 d (cultured cochleae and utricles). In other
experiments, cultured utricles received DAPT (10 or 25 �M in 0.1%
DMSO; Sigma-Aldrich) for 7 d to promote the transdifferentiation of

supporting cells into hair cells (Daudet et al., 2009). Control cultures in
these experiments received 0.1% DMSO.

Immunohistochemistry. All cultures were fixed for 20 min with 4%
paraformaldehyde in 0.1M phosphate buffer. Specimens were then thor-
oughly rinsed with PBS and nonspecific antibody binding was blocked by

Figure 1. Cisplatin causes increased apoptosis and decreased proliferation in cultures of
dissociated supporting cells. A, B, Dissociated cultures of epithelial cells from the chick utricle
were either untreated (A) or treated (B) for 24 h with 20 �M cisplatin. The cultures also received
a 4 h pulse of BrdU immediately before fixation. Increased numbers of pyknotic nuclei (arrows)
and decreased numbers of BrdU-labeled nuclei (green) were observed in cisplatin-treated cul-
tures. C, D, Quantification from these specimens revealed that cisplatin caused a dose-
dependent increase in apoptosis (C) and decrease in proliferation (D). Scale bar: (in B) A, B, 100
�m. *p � 0.05 [F(3,52) � 39.6], compared to 0 �M (control) group.

Figure 2. Cisplatin causes apoptosis of utricular hair cells. A, B, Organotypic cultures of chick
utricles were either untreated (A) or treated (B) with 20 �M cisplatin for 24 h (n � 5/6). They
were then rinsed and maintained in culture for an additional 24 h in drug-free medium. After
fixation, specimens were immunolabeled for HCS-1 (green, hair cells) and activated caspase-3
(red, apoptotic cells). C, D, Quantification of hair cells in both the extrastriolar (C) and striolar (D)
regions revealed cisplatin-induced ototoxicity. Scale bar: (in B) A, B, 50 �m. *p � 0.005.
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incubation for 2 h in PBS with 5% normal horse serum and 0.2% Triton
X-100. Hair cells were identified with the HCS-1 antibody (1:500; a
mouse monoclonal that labels nonmammalian hair cells) (Cyr et al.,
2006) provided by Dr. Jeffery Corwin (University of Virginia, Charlottes-
ville, VA) or with anti-calretinin (1:500, Calbiochem). Supporting cell
nuclei were labeled with a goat polyclonal antibody against Sox2 (1:250;
Santa Cruz Biotechnology) (Oesterle et al., 2008). Cells undergoing ap-
optosis were identified by immunoreactivity for activated caspase-3

(rabbit polyclonal, 1:400; Cell Signaling Tech-
nology). Macrophages in the chick utricle were
labeled with the KUO01 antibody (1:100,
mouse monoclonal; Southern Biotechnology)
(Mast et al., 1998). Immunoreactivity for BrdU
was determined using previously published
protocols (Matsui et al., 2002; Warchol, 2002).
All specimens were maintained in primary an-
tibodies overnight at 4°C. They were then thor-
oughly rinsed in PBS and incubated with Alexa
Fluor 488 donkey anti-mouse, Alexa Fluor 546
donkey anti-rabbit, or Alexa Fluor 546 donkey
anti-goat secondary antibodies (1:500; all In-
vitrogen) for 2 h at room temperature.

Actin and nucleic acid staining. Some speci-
mens were stained with Alexa Fluor 546- or
Alexa Fluor 488-phalloidin (5 units/ ml; In-
vitrogen), to visualize F-actin. Nuclei in all
specimens were stained with 4�,6-diamidino-
2-phenyindole (DAPI; 2.7 �M; Sigma-Aldrich).
Specimens were then mounted on glass slides in
90% glycerol/10% PBS (cochleae and utricles, or
coverslipped directly in MatTek dishes (isolated
utricular epithelia).

Imaging and quantification of cultures. Spec-
imens were visualized using either Nikon
Eclipse 2000 or Zeiss Axiovert 135 inverted mi-
croscopes (both equipped with epifluorescent
illumination). Confocal images were obtained
with a Bio-Rad Radiance 2000 MP system
using a Nikon Eclipse inverted microscope.
Conventional epifluorescence images were
captured with cooled CCD digital cameras (Q-
Imaging or Photometrics) and stored as TIFF
files. Confocal image stacks were assembled
with Volocity software (PerkinElmer) and pro-
cessed with Adobe Photoshop. Cell counts
were made from the stored images. In cultures
of isolated epithelia, DAPI- and BrdU-labeled
cells were counted from four randomly se-
lected regions per culture of approximately
equal cell density per culture (�200 cells/field
for BrdU; �100 cells/field for pyknotic nuclei).
Proliferation indices (BrdU-labeled nuclei/total
nuclei) and apoptosis indices (pyknotic nuclei/
total nuclei) were then calculated. Quantification
of BrdU-labeled cells and hair cells in whole-
mount utricles was carried out from four or five
randomly selected extrastriolar and striolar
138,195 �m2 regions per specimen, and then
normalized to 10,000 �m2. Quantification of
hair cell stereocilia in cochlear whole mounts was
conducted from seven discrete regions that began
250 �m from the distal tip and were separated by
250 �m intervals. Cells that labeled positively for
BrdU or activated caspase-3 were counted from
sampled regions located 500, 1000, and 1500 �m
from the distal tip of the sensory epithelium. Res-
ident tissue macrophages in streptomycin- and
cisplatin-treated utricles were labeled with the
KUL01 antibody (Mast et al., 1998). Confocal
microscopy was then used to image macrophages

in the sensory epithelia and in underlying stromal tissue. Quantification of
macrophages was made directly from confocal images and resulting values
were normalized to 10,000 �m2.

Statistics. Data were analyzed using an unpaired Student’s t test or
ANOVA with multiple comparisons (Tukey’s test; SPSS). An � of 0.05
was chosen for significance. All data are expressed as either percentage or
mean � SD.

Figure 3. Continued hair cell loss following 24 h of cisplatin treatment. A–C, To further characterize cisplatin ototoxicity and to
assess the potential for hair cell recovery, three groups of utricles were treated for 24 h in control medium (A), 1 mM streptomycin
(B), or 10 �M cisplatin (C). Specimens were then rinsed and cultured for an additional 7 d in drug-free medium. Images show hair
cell survival and/or recovery after 7 d. D, E, Plots show the numbers of hair cells that were present in utricles after 1 (D) and 7 d (E).
Cis, Cisplatin; Strep, streptomycin. Scale bar: (in C) A–C, 100 �m. *p � 0.005 (F(2,116) � 128.5) compared to untreated group;
**p � 0.005 (F(2,107) � 557.8) compared to untreated and streptomycin-treated groups.

Figure 4. Cisplatin treatment inhibits supporting cell proliferation. A–D, Utricles were cultured for 24 h in 10 �M cisplatin, 1 mM

streptomycin, or normal medium (controls). Following thorough rinsing, they were then maintained in vitro for 7 d in ototoxin-free
medium that also contained BrdU. Images show proliferating cells (green, BrdU) in untreated (A), streptomycin-treated (B), and
cisplatin-treated utricles (C). Some specimens were also immunolabeled for calretinin (D, red), and BrdU-labeled hair cells were
observed in the control and streptomycin-treated specimens (D, arrow). E, F, Quantification of the numbers of BrdU-labeled cells
suggests that cisplatin (Cis) treatment nearly eliminates regenerative proliferation (E). In addition, very few BrdU-labeled hair cells
were present after recovery from cisplatin treatment (F ). Strep, Streptomycin. Scale bars: (in C) A–C, 100 �m; D, 10 �m. *p �
0.005 compared to untreated group; **p � 0.005 (F(2,107) � 314.9) to untreated and streptomycin-treated groups; ***p � 0.005
(F(2,106) � 103.1) compared to streptomycin-treated group only.
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Results
Cisplatin blocks proliferation and causes apoptosis in
dissociated supporting cells
Initial experiments characterized the effects of cisplatin on disso-
ciated cultures prepared from isolated sensory epithelia of the
chick utricle. Previous studies have shown that such cultures are
comprised primarily of supporting cells that proliferate at high
levels (Warchol, 2002). Cultures were treated for 24 h with 0.2,
2.0, or 20.0 �M cisplatin and received BrdU for the final 4 h in
vitro (to label proliferating cells). After fixation, cell nuclei were
also stained with DAPI. Numerous DAPI-labeled pyknotic nuclei
were present in cisplatin-treated cultures, but pyknotic nuclei
were rare in untreated cultures (Fig. 1A,B). Also, the relative
numbers of pyknotic nuclei appeared greater in regions of lower
cell density (i.e., where supporting cell proliferation is the high-
est) (Warchol, 2002), while areas of higher cell density contained
proportionally fewer apoptotic cells (data not shown). Apoptosis
indices (number of pyknotic nuclei/total nuclei) were calculated
from regions of the cultures that contained �100 nuclei/100,000
�m 2; within these regions, we observed a dose-dependent in-
crease in cell death in response to cisplatin treatment (Fig. 1C).
In addition, quantification of BrdU labeling revealed a dose-
dependent decrease in cell division following exposure to cis-
platin (Fig. 1 D). Treatment with 20 �M cisplatin reduced
proliferation levels by almost 30-fold, compared with control
cultures.

Cisplatin kills hair cells in organotypic
cultures of the cochlea and utricle
We next examined the effects of cisplatin on
the survival of vestibular hair cells. Chick
utricles were cultured for 24 h in medium
that contained 20 �M cisplatin. They were
then thoroughly rinsed and maintained for
an additional 24 h in cisplatin-free medium.
After fixation, surviving hair cells were
immunolabeled with the HCS-1 antibody
(Cyr et al., 2006) and apoptotic cells were
labeled by immunoreactivity for activated
caspase-3. Extensive apoptosis was ob-
served in cisplatin-treated cultures but
not in untreated controls (Fig. 2A,B).
Hair cell loss was assessed by quantifying
the numbers of HCS-1-labeled cells in
10,000 �m 2 regions that were located in
both the striolar and extrastriolar por-
tions of cisplatin-treated and control
utricles. One day after cisplatin exposure, hair cell densities were
reduced by 36% in the extrastriolar region and by 43% in the
striolar regions, compared with untreated controls ( p � 0.005)
(Fig. 2C,D).

Continued hair cell death after cisplatin treatment
To determine the impact of cisplatin ototoxicity on hair cell regen-
eration, we next compared hair cell numbers in cultured utricles at 1
versus 7 d after cisplatin treatment. As controls, we also quantified
hair cells in utricles that were maintained in parallel under two dif-
ferent culture conditions. One set of controls consisted of specimens
that received no drug treatment and were cultured for a total of 2 or
8 d. The second set of controls was comprised of utricles that were
treated for 24 h with 1 mM streptomycin and then allowed to recover
in vitro for 1 or 7 d. Previous studies have shown that culture in 1 mM

streptomycin creates an extensive hair cell lesion and that significant

hair cell regeneration is apparent after 7 d of recovery (Matsui et al.,
2000; Warchol and Richardson, 2009). In the untreated utricles, we
observed an �20% reduction in hair cell numbers over the 8 d cul-
ture period (Fig. 3A,D). As expected, hair cell numbers in utricles
examined 1 d after streptomycin treatment were reduced by �90%,
while hair cells in the cisplatin-treated utricles were reduced by
�40% (Fig. 3D). After 7 d, we observed a moderate recovery of hair
cells in the streptomycin-treated specimens, presumably due to
spontaneous regeneration (Fig. 3E). Notably, however, we found no
evidence for hair cell recovery in the cisplatin-treated utricles. In-
stead, hair cell numbers in those specimens had continued to de-
crease to �10% of control values (Fig. 3E).

Cisplatin treatment inhibits supporting cell proliferation
The previous result indicated that hair cell regeneration had oc-
curred after streptomycin injury, but not after cisplatin ototoxicity.

Figure 5. Inhibition of �-secretase does not augment direct transdifferentiation after cis-
platin damage. A, B, Utricles were treated for 24 h with 10 �M cisplatin and then allowed to
recover for 7 d in either normal medium (A) or medium supplemented with 10 �M DAPT (B).
Hair cells were labeled for HCS-1 (green). Similar numbers of hair cells were observed in both
groups of specimens, suggesting that cisplatin ototoxicity blocks the ability of supporting cells
to transdifferentiate into hair cells. C, D, To verify the activity of DAPT, we also cultured utricles
for 24 h in 1 mM streptomycin (Strep) followed by 7 d in either control medium (C) or DAPT-
containing medium (D). After streptomycin injury, treatment with DAPT resulted in a large
increase in hair cell recovery. Scale bar: (in D) A–D, 50 �m.

Figure 6. Cisplatin preferentially damages hair cells in the distal (low frequency) region of the chick cochlea. A, B, Cochleae were
cultured for 24 h in either normal medium (A) or medium that contained 20 �M cisplatin (B). Following fixation, specimens were
labeled with phalloidin (green), to reveal stereocilium bundles. Low magnification images of the distal, middle, and proximal
regions showed that the initial hair cell damage occurred at the distal end of the cochlea (B, left). In contrast, little damage was
noted in the proximal region (B, right). Scale bar: (in B) A, B, 100 �m.
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Prior studies of regeneration in the avian vestibular organs have
shown that most replacement hair cells are produced by the division
of supporting cells (e.g., Weisleder and Rubel, 1993; Matsui et al.,
2000). Since cisplatin is known to target mitotic cells, we next exam-
ined cell proliferation after cisplatin treatment. Cultured utricles re-
ceived 1 mM streptomycin, 10 �M cisplatin, or no treatment
(controls) for 24 h. They were then thoroughly rinsed and main-
tained in culture for an additional 7 d. The mitotic tracer BrdU was
present in the culture medium for the entire 7 d period to label every
cell that entered S phase during this recovery time (Fig. 4A–C).
Quantification of BrdU-labeled cells revealed moderate prolifera-
tion in control cultures and high proliferation levels in the
streptomycin-treated cultures (Fig. 4E). However, very few BrdU-
labeled cells were observed in the cisplatin-treated specimens. We
also colabeled these specimens with calretinin to determine the
relative numbers of dividing cells that differentiated as hair cells.
Consistent with previous studies (e.g., Matsui et al., 2000), many
BrdU-labeled hair cells were observed in the streptomycin-treated
utricles (Fig. 4D), but we observed almost no BrdU-positive hair
cells in the cisplatin-treated specimens (Fig. 4F).

Supporting cells cannot transdifferentiate after
cisplatin ototoxicity
Hair cell regeneration can occur either through the renewed pro-
liferation of supporting cells or by the nonmitotic transdifferen-

tiation of those cells into new hair cells (Baird et al., 1996; Adler et
al., 1997; Roberson et al., 2004). In addition, hair cell differenti-
ation is regulated by Notch pathway signaling and can be en-
hanced by pharmacological inhibition of �-secretase (Woods et
al., 2004). Treatment with the �-secretase inhibitor DAPT has
been shown to promote transdifferentiation and hair cell recov-
ery in the chick cochlea after aminoglycoside ototoxicity (Daudet
et al., 2009). To determine whether such transdifferentiation
could also occur after cisplatin treatment, we treated cultured
utricles for 24 h with 10 �M cisplatin and then allowed them to
recover in vitro for 7 d in either 10 �M (n � 10) or 25 �M (n � 10)
DAPT. Equal numbers of control specimens were maintained in
parallel but did not receive DAPT. Following fixation, hair cells in
all specimens were immunolabeled with HCS-1. No increase in
hair cell numbers was seen in DAPT-treated utricles (7.6 � 2.7
HCs/10,000 �m 2) compared to controls (8.2 � 2.4 HCs/10,000
�m 2) (Fig. 5). In fact, utricles that received 25 �M DAPT con-
tained fewer hair cells (1.2 � 1.18 HCs/10,000 �m 2) than con-
trols (7.7 � 3.1 HC/10,000 �m 2). Finally, as positive controls we
also examined the effects of DAPT during regeneration from

streptomycin ototoxicity. Utricles (n �
16) were placed in culture and treated for
24 h with 1 mM streptomycin. The speci-
mens were then thoroughly rinsed and
maintained in vitro for 7 d. During this
recovery time, half of the utricles were also
treated with 10 �M DAPT. Following fixa-
tion, hair cells were labeled with the HCS-1
antibody and quantified from randomly se-
lected portions of the extrastriolar regions of
each utricle (n � 22 samples/treatment
group). Untreated utricles contained 63.2 �
23.6 hair cells/10,000 �m 2, while those
treated with DAPT contained 295.6 �
80.4 hair cells/10,000 �m 2 ( p � 0.0001; t
test). This nearly fivefold increase in the
recovery of vestibular hair cells in re-
sponse to DAPT treatment is consistent

with results obtained from studies of regeneration in the chick
cochlea (Daudet et al., 2009).

Cisplatin treatment causes a unique pattern of hair cell injury
in the avian cochlea
Having established that cisplatin is toxic to hair cells in the chick
utricle and that it also blocks the regeneration of utricular hair
cells, we next examined the effects of cisplatin on the chick co-
chlea. In preliminary experiments, we observed that hair cells in
the chick cochlea were slightly less sensitive to cisplatin toxicity
than were their utricular counterparts (data not shown). As a
result, our experiments with cultured cochleae used a slightly
higher dose of cisplatin. We first cultured cochleae for 24 h in 20
�M cisplatin and then labeled hair cell stereocilium bundles with
phalloidin (Fig. 6). Marked disruption and loss of stereocilia bun-
dles were observed at the distal end (low-frequency region) of the
cochlea. Surprisingly, however, hair cell injury appeared less se-
vere in the middle and proximal regions of the cochlea (Fig. 6B).
We then quantified the time course of cisplatin-induced injury to
cochlear hair cells. Cochleae were treated with cisplatin for 24 h
and then maintained in culture for an additional 0, 24, or 72 h.
After fixation, hair cell strereocilia were counted from 10,000
�m 2 regions spaced at 250 �m intervals, beginning at the distal
tip of the sensory epithelium. Cisplatin treatment caused a pro-
gressive loss of stereocilia, which began in the distal region and

Figure 7. Spatial progression of cisplatin damage in the chick cochlea. Cultured cochleae
were treated for 24 h in 20 �M cisplatin and then allowed to recover in vitro for 0, 24, or 72 h.
Following fixation, stereocilium bundles were labeled with phalloidin and quantified at 250
�m intervals along the length of the cochlea, beginning at the distal tip and proceeding prox-
imally. Surviving stereocilium bundles at each location are expressed as percentage of bundles
present in control cochlea (i.e., cultured for identical times, but without cisplatin treatment).

Figure 8. Cisplatin induces apoptosis in the chick cochlea. A, B, Cochleae were cultured for 24 h in either normal medium (A) or
medium supplemented with 20 �M cisplatin (B). Specimens were immunolabeled for HCS-1 (green, hair cells) and activated
caspase-3 (red, apoptotic cells). Following cisplatin treatment, we observed numerous cells with immunoreactivity for activated
caspase-3 (B, red). Such apoptotic cells were quantified from 10,000 �m 2 regions that were located 500, 1000, and 1500 �m from
the distal tip. C, Plot shows quantitative data for untreated and cisplatin-treated cultures. Scale bar (in B) A, B, 50 �m. *p � 0.05.
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spread proximally (Fig. 7). To further confirm the distal-to-
proximal pattern of cisplatin ototoxicity, we also examined the
spatial distribution of apoptosis after cisplatin treatment. Co-
chleae (n � 9) were cultured for 24 h with 20 �M cisplatin and
then fixed and processed for immunohistochemical labeling with
HCS-1 (to identify hair cells) and an antibody against activated
caspase-3 (to identify apoptotic cells). An equal number of co-
chleae were cultured in parallel but did not receive cisplatin; these
specimens served as controls. The numbers of apoptotic cells in
both cisplatin-treated and control cochleae were quantified from
10,000 �m 2 regions located at 500, 1000, and 1500 �m from the
distal tip. We observed a pronounced increase in immunoreac-
tivity for activated caspase-3 in cochleae that were treated with
cisplatin (Fig. 8). Notably, the greatest number of apoptotic cells
was observed near the distal tip (cisplatin-treated utricles,
27.95 � 8.48 cells/10,000 �m 2 at 500 �m from the distal end;
19.65 � 8.49 at 1000 �m; 6.35 � 5.56 at 1500 �m) (Fig. 8C).

Additional experiments examined the proliferation of co-
chlear supporting cells after cisplatin ototoxicity. Cochleae were
treated for 24 h in 20 �m cisplatin and then maintained for an
additional 4 d in cisplatin-free medium that also contained BrdU.
One set of control cochleae was cultured for an identical time
period but was first treated for 24 h with 1 mM streptomycin,
while additional control cochleae received no drug treatments.
After fixation and immunohistochemical processing, BrdU-
labeled cells were counted in 10,000 �m 2 regions that were lo-
cated 500, 1000, and 1500 �m from the distal tip of the sensory
epithelium. The effects of cisplatin treatment on cochlear sup-
porting cells were very similar to those observed in the utricle.
Numerous BrdU-labeled cells were present in the streptomycin-

treated cochleae, and a moderate number of proliferative cells
were observed in untreated controls (Fig. 9C). In contrast, we
observed almost no BrdU incorporation in the specimens that
had been treated with cisplatin.

Impaired clearance of hair cell debris and reduction in
resident macrophages following cisplatin treatment
After aminoglycoside ototoxicity, the remains of apoptotic hair
cells are either extruded from the sensory epithelium or phago-
cytosed by surrounding supporting cells or tissue macrophages
(Li et al., 1995; Warchol, 1997, 1999; Abrashkin et al., 2006).
Examination of the sensory epithelium of cisplatin-treated
utricles revealed the presence of large quantities of hair cell de-
bris, suggesting that the clearance of apoptotic cells had been
impaired (Fig. 10). In light of this observation, we next examined
the activity of resident macrophages after cisplatin ototoxicity.
Cultured utricles were treated for 24 h in 10 �M cisplatin and then
maintained for an additional 0, 24, or 48 h in cisplatin-free me-
dium. Control specimens were treated with 1 mM streptomycin
and maintained for identical recovery times. After fixation, mac-
rophages were labeled with the KUL01 antibody (Mast et al.,
1998). As reported previously (Warchol, 1999), large numbers of
macrophages were present in the aminoglycoside-treated speci-
mens (Fig. 11, top). In contrast, very few macrophages were ob-
served in the cisplatin-treated utricles (Fig. 11, bottom). After
48 h recovery, the density of immunolabeled macrophages
from both streptomycin- and cisplatin-treated utricles was
quantified. Streptomycin-treated utricles contained 22.5 �
13.7 macrophages/50,000 �m 2, while cisplatin-treated speci-
mens contained 5.0 � 4.2 macrophages/50,000 �m 2 (n � 12
samples/group; p � 0.001).

Figure 9. Cisplatin exposure reduces cell proliferation in the chick cochlea. Cultured cochleae
were treated for 24 h in either 1 mM streptomycin (A) or 20 �M cisplatin (B). Specimens were
then rinsed and maintained for 96 h in medium that contained BrdU. Numerous BrdU-positive
nuclei were present in the streptomycin-treated (Strep) specimens (A, C), but very few such cells
were observed in the cisplatin-treated (Cis) cultures (B, C) [p � 0.0001, F(2,16) � 23.2]. . Scale
bar (in B) A, B, 100 �m.

Figure 10. Maintained presence of hair cell debris in the sensory epithelium of the cisplatin-
treated utricle. Utricles were cultured for 24 h in 10 �M cisplatin and then allowed to recover in
vitro for 1, 5, or 7 d. Frozen sections of these specimens were immunolabeled for HCS-1
(green, hair cells), Sox2 (red), and DAPI (blue). High levels of hair cell debris (arrows) were
still present in the injured sensory epithelia, even after 7 d of recovery. Scale bar: (bottom)
top– bottom, 50 �m.
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Discussion
Sensory hair cells are responsible for the perception of sound and
head movements. Injury to hair cells is a well known side effect of
treatment with aminoglycoside antibiotics and with the chemo-
therapeutic agent cisplatin. Because the mammalian ear has a
very limited capacity for regeneration, ototoxic injury often leads
to permanent deficits in hearing and equilibrium. Notably, how-
ever, the ears of nonmammalian vertebrates are able to quickly
regenerate hair cells after aminoglycoside injury (Brigande and
Heller, 2009; Brignull et al., 2009). This is the first study to
examine the regenerative ability of the nonmammalian ear
after cisplatin ototoxicity. We found that exposure to cisplatin
blocks regenerative proliferation of avian supporting cells and
also prevents those cells from transdifferentiating into re-
placement hair cells. As a result, the avian ear appears to be
incapable of regeneration after cisplatin injury. We conclude
that cisplatin has direct toxic effects on both hair cells and
supporting cells.

Mechanisms of cisplatin oototoxicity
Although the ototoxic effects of cisplatin are well known, the
cellular mechanisms of cisplatin-induced hair cell death are
poorly understood. In contrast, considerable research has focused
on characterization of the antineoplastic effects of cisplatin. Follow-
ing cellular uptake, aquated cisplatin becomes incorporated into
nuclear DNA, leading to the formation of intrastrand cross-links.
These “DNA adducts” are recognized by DNA nucleotide exci-
sion–repair mechanisms (particularly during the G1 to S phase
transition), which then activate cellular apoptotic pathways
(Wang and Lippard, 2005). Although this mechanism is thought
to preferentially target proliferating cells, it is clear that cisplatin
is also toxic to a number of permanently postmitotic cell pheno-
types. For example, systemic treatment with cisplatin leads to the
formation of DNA adducts in sensory neurons of mouse dorsal
root ganglia, and the presence of such adducts is correlated with
the extent of resulting peripheral neuropathy (Dzagnidze et al.,
2007). Given the similarities between neurons and sensory hair
cells, it is likely that the ototoxic effects of cisplatin involve similar
mechanisms. Consistent with this suggestion, cisplatin treatment

leads to immunoreactivity for platinated DNA in cochlear hair
cells before hair cell death (van Ruijven et al., 2005).

Time course of cisplatin-induced hair cell death
Aminoglycoside antibiotics enter hair cells through mechano-
transduction channels (Dai et al., 2006), leading to observ-
able changes in morphology within 1 h (Richardson and Russell,
1991) and cell death within 24 h (Matsui et al., 2004). In contrast,
the results presented here indicate that cisplatin ototoxicity may
occur over a slower time course. Our data demonstrate that mod-
erate concentrations of cisplatin (e.g., 10 –20 �M for 24 h) can kill
the majority of hair cells in the avian cochlea and utricle, but the
apoptotic process requires �3–7 d (Fig. 2). Notably, some prior
in vitro studies have observed hair cell death within 24 h of cis-
platin application, but those studies typically employed much
higher concentrations of cisplatin than those used here (Schmitt
et al., 2009). One interpretation of these data is that there exists a
dose–time relationship for cisplatin ototoxicity so that higher
doses of cisplatin kill hair cells more quickly. Such a relationship
between cisplatin concentration and the latency of injury has
been demonstrated for lateral line hair cells in zebrafish (Oh et al.,
2007). Quantitative measurements conducted in vivo suggest the
cisplatin concentration in inner ear fluids peaks at �10 �M, fol-
lowing systemic injection (Hellberg et al., 2009). For this reason,
we believe that our organotypic culture methods provide a rea-
sonably accurate model of cisplatin ototoxicity. The long latency
of cisplatin-induced hair cell death may also suggest possible dif-
ferences in the cellular mechanisms that underlie aminoglycoside
versus cisplatin ototoxicity. For example, it is not known how
cisplatin enters hair cells, but the levels of cisplatin within tumor
cells appear to be regulated by active uptake and efflux (e.g.,
Wang and Lippard, 2005). If similar transport mechanisms were
to mediate the entry of cisplatin into hair cells, they may occur
more slowly than passive entry through mechanotransduction
channels. Also, the possible incorporation of cisplatin into hair
cell DNA and subsequent recognition of DNA adducts by nucle-
otide excision repair mechanisms might require a longer time
course than the intrinsic (i.e., mitochondrial) apoptotic pathway

Figure 11. Cisplatin depletes resident macrophages in the chick utricle. Chick utricles were cultured in either 1 mM streptomycin (top) or 10 �M cisplatin (bottom) and then allowed to recover for
0, 24, or 48 h. Macrophages (green) were labeled with the KUL01 antibody, and hair cells (red) were immunolabeled for calretinin. Numerous macrophages were present in the streptomycin-treated
specimens, but very few macrophages were observed after cisplatin treatment. Scale bar, 60 �m.

Slattery and Warchol • Cisplatin Blocks Hair Cell Regeneration J. Neurosci., March 3, 2010 • 30(9):3473–3481 • 3479



that is thought to underlie aminoglycoside-induced hair cell
death (Matsui et al., 2004; Cheng et al., 2005).

Cisplatin treatment blocks regeneration in the avian ear
One of the key observations in the present study is that cisplatin
blocks the proliferation of avian supporting cells. Since those cells
act as progenitors during hair cell regeneration, we also found
that the avian ear appears to be incapable of regeneration after
cisplatin ototoxicity. Given the highly proliferative nature of
avian supporting cells (Warchol 1995; Warchol, 2002), it is likely
that cisplatin interacts with supporting cell DNA in a manner
similar to that observed in tumor cells (Wang and Lippard, 2005).
One limitation of the present work is that we examined cell pro-
liferation for only 7 d after cisplatin treatment. As such, we can-
not conclusively state whether cisplatin treatment leads to a
permanent impairment in the proliferative ability of supporting
cells or whether those cells possess the ability for repair after
cisplatin exposure. It is conceivable, for example, that cisplatin
uptake leads to the formation of DNA adducts in supporting
cells, but such adducts may be removed (via nucleotide excision
repair mechanisms) over a time course of several weeks, leading
to restoration of proliferative ability. In this regard, it is notable
that cisplatin is incorporated into nuclear DNA of peripheral glial
cells after systemic injection, but those cells can repair much of
the resulting DNA injury after 14 d of recovery (Dzagnidze et al.,
2007). Also, our results suggest that the ototoxic effects of cispla-
tin occur over a relatively long time course (3–7 d), and this may
cause a corresponding delay in the onset of regeneration. Never-
theless, we did observe the loss of �30% of utricular hair cells
within 24 h of cisplatin treatment (Fig. 3D). A comparable injury
from aminoglycosides would evoke a proliferative response
within 48 h (Matsui et al., 2000), yet we observed essentially no
regenerative proliferation during the following 7 d (Fig. 4E). This
finding further underscores the differences between regenerative
proliferation after cisplatin versus aminoglycoside ototoxicity.
Finally, it is possible that only a subpopulation of avian support-
ing cells are capable of regenerative proliferation following hair
cell injury (see review by Brignull et al., 2009) and that cisplatin
selectively targets those proliferative cells. A more complete un-
derstanding of cisplatin ototoxicity in the nonmammalian ear
may reveal differences in supporting cell phenotypes that are not
apparent from morphological analysis.

In addition to creating replacement hair cells though renewed
proliferation, supporting cells in the nonmammalian ear can also
produce new hair cells via direct transdifferentiation (Baird et al.,
1996; Adler et al., 1997; Stone and Rubel, 2000; Roberson et al.,
2004). Moreover, this phenotypic change can be greatly en-
hanced by blocking Notch pathway signaling via treatment with
the �-secretase inhibitor DAPT (Daudet et al., 2009). Our results
suggest that exposure to cisplatin interferes with the ability of
supporting cells to transdifferentiate into hair cells, both sponta-
neously and after Notch inhibition. These findings are further
evidence for a direct effect of cisplatin on supporting cells. Addi-
tional research has shown that �-secretase inhibitors can enhance
the toxicity of cisplatin toward certain types of tumor cells
(Aleksic and Feller, 2008). Such results may have relevance for the
development of techniques to induce mammalian inner ear re-
generation. Specifically, the promotion of supporting cell trans-
differentiation—via retroviral transfection or by treatment with
�-secretase inhibitors—is emerging as a promising strategy for
inducing sensory regeneration in the mammalian ear (for review,
see Brigande and Heller, 2009). However, if cisplatin were to also
block the ability of mammalian cells to transdifferentiate, it may

not be possible to use such methods for the treatment of cisplatin
ototoxicity.

Atypical pattern of cisplatin-induced hair cell death in the
avian cochlea
One unexpected finding of the present study is that cisplatin-
induced hair cell damage in the chick cochlea first occurs in the
distal (low-frequency) region of the sensory epithelium and then
progresses proximally over a time course of several days. This
topographic pattern of injury is strikingly different from that
observed in mammals, where cisplatin damage first occurs in the
high-frequency (basal) region and then moves apically (Cardinaal et
al., 2000). A similar distal-to-apical injury pattern is also ob-
served in the cochleae of both mammals (for review, see Rizzi and
Hirose, 2007) and birds (Cheng et al., 2003) after aminoglycoside
treatment. These conflicting observations are difficult to explain,
given our current knowledge of ototoxic signaling. It is possible
that cisplatin enters proximal and distal hair cells at similar rates
but that the resulting apoptotic mechanisms (e.g., formation of
DNA adducts and recognition by DNA repair mechanisms) oc-
cur more quickly in distally located hair cells. On the other hand,
hair cell uptake of cisplatin may occur more quickly in distal
versus proximal hair cells. Both of these suggestions are specula-
tive and will require further study. A more complete understand-
ing of these opposing tonotopic patterns of hair cell death may
lead to fundamental insights into the molecular mechanisms of
cisplatin ototoxicity.

Impaired phagocytosis and reduction in tissue macrophages
after cisplatin ototoxicity
Finally, examination of sensory epithelia after cisplatin treatment
revealed the presence of considerable hair cell debris, even after
7 d of recovery (Fig. 10). Following aminoglycoside injury, apo-
ptotic hair cells are either extruded from the sensory epithelium
or phagocytosed by adjoining cells (Li et al., 1995). In addition,
the avian inner ear contains a resident population of macro-
phages that may also participate in the removal of hair cell debris
(Warchol, 1997; Bhave et al., 1998; Warchol, 1999). Notably, we
found that cisplatin treatment resulted in a significant reduction
in the numbers of tissue macrophages within the chick utricle. It
should be emphasized that the specific roles of macrophages in
the processes of ototoxicity and sensory regeneration are not
known. They could function strictly as scavengers, removing cel-
lular debris to promote epithelial repair. However, recruitment
of macrophages has been shown to play a stimulatory role in
many forms of neural regeneration (e.g., Cui et al., 2009), and it is
conceivable that the toxic action of cisplatin on tissue macro-
phages further contributes to impairment of regeneration after
cisplatin ototoxicity.
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