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Abstract

Patient body-motion and respiratory-motion impacts the image quality of cardiac SPECT and PET
perfusion images. Several algorithms exist in the literature to correct for motion within the iterative
maximume-likelihood reconstruction framework. In this work, three algorithms are derived starting
with Poisson statistics to correct for patient motion. The first one is a motion compensated MLEM
algorithm (MC-MLEM). The next two algorithms called MGEM-1 and MGEM-2 (short for Motion
Gated OSEM, 1 and 2) use the motion states as subsets, in two different ways. Experiments were
performed with NCAT phantoms (with exactly known motion) as the source and attenuation
distributions. Experiments were also performed on an anthropomorphic phantom and a patient study.
The SIMIND Monte Carlo simulation software was used to create SPECT projection images of the
NCAT phantoms. The projection images were then modified to have Poisson noise levels equivalent
to that of clinical acquisition. We investigated application of these algorithms to correction of (1) a
large body-motion of 2 cm in Superior-Inferior (SI) and Anterior-Posterior (AP) directions each and
(2) respiratory motion of 2 cm in Sl and 0.6 cm in AP. We determined the bias with respect to the
NCAT phantom activity for noiseless reconstructions as well as the bias-variance for noisy
reconstructions. The MGEM-1 advanced along the bias-variance curve faster than the MC-MLEM
with iterations. The MGEM-1 also lowered the noiseless bias (with respect to NCAT truth) faster
with iterations, compared to the MC-MLEM algorithms, as expected with subset algorithms. For the
body motion correction with two motion states, after the 9th iteration the bias was close to that of
MC-MLEM at iteration 17, reducing the number of iterations by a factor of 1.89. For the respiratory
motion correction with 9 motion states, based on the noiseless bias, the iteration reduction factor was
approximately 7. For the MGEM-2, however, bias-plot or the bias-variance-plot saturated with
iteration because of successive interpolation error. SPECT data was acquired simulating respiratory
motion of 2 cm amplitude with an anthropomorphic phantom. A patient study acquired with body
motion in a second rest was also acquired. The motion correction was applied to these acquisitions
with the anthropomorphic phantom and the patient study, showing marked improvements of image
quality with the estimated motion correction.

Index Terms

Expectation maximization algorithm; image reconstruction

[. Introduction

Patient body motion and respiratory motion for heavily breathing patients combined with the
“respiratory creep” of the heart impacts the diagnostic accuracy of cardiac PET or SPECT

perfusion images. In this work the focus is on motion correction, assuming the motion is known
or has been estimated. A number of investigators have worked on algorithms to correct patient
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motions for emission tomography [1]-[12]. Some correction methods are post-reconstruction
correction where different states are reconstructed individually, each of them motion corrected
and then added together [3], [4], [9]. Other methods perform correction within the
reconstruction algorithm [1], [2], [6]-[8], [10]. In [1], [2], [7], [8] ordered-subset expectation-
maximization (OSEM) or maximum-likelihood expectation maximization (MLEM) methods
have been used to correct for motion. However the EM derivations for motion correction and
the assumptions made for the derivation are not explicitly shown. In [7], the proposed solution
is shown to numerically increase the log-likelihood of the measurement data. Schumacher et
al. [6] minimize least-squared error with a non-zero constraint to derive their formulation for
motion-correction. In Schumacher’s implementation the motion is associated with the system
matrix and not the object.

In this work we derive three EM motion correction algorithms from first principles assuming
Poisson statistics with all the approximations and assumptions explicitly mentioned. In the first
algorithm which we call Motion-Compensated MLEM (MC-MLEM), we start with the
expectation of a likelihood function to maximize and after assumptions of negligible
interpolation error and linear-transformation of intensities we arrived at the motion correction
MLEM algorithms used in previous work [7], [8]. In doing so we also assume that the motion
is invertible. For the second algorithm which we call motion-gated OSEM (MGEM-1) because
we first envisioned it for use with reconstruction of respiratory-gated motion states or gates,
we use the motion states as subsets in OSEM reconstruction. That is we move the measured
counts (the update factor) for each of the N motion states to a fixed (reference) position to
update the object at that position. Thus during each iteration we step through N subsets,
updating the object N times. In a previous conference record [11], we presented another motion
compensation algorithm, again using motion states as subsets. We call this method MGEM-2
herein to differentiate it from the previous method. In this method we move the object from
one position to the next successively and return it to the first position only at the end of the
complete iteration These three motion compensation methods are compared for bias, bias-
variance characteristics and, where appropriate, the susceptibility to interpolation errors using
NCAT phantom and SIMIND to simulate the SPECT data. We also applied the motion
correction algorithm to a physical anthropomorphic phantom acquisition with motion
simulating a steady 2 cm amplitude respiratory motion, and a clinical patient study with body
motion.

A. Binning the Data Into Motion States

Shepp and Vardi [13] and Lange and Carson [14] have previously derived MLEM iterative
reconstruction for emission tomography. In the update equation derived object motion was not
explicitly taken into account. If there is motion of the object, such as patient body motion or
respiratory motion, we typically have to start at an earlier stage of measurement, from the
acquired list-mode data and quantize the motion into different states to form a set of projection
states for the object. Within each state, the counts are assumed to be motionless. The motion
between the states can be estimated by various methods, such as post-reconstruction or using
the projection data themselves. The purpose of this work is to derive and evaluate different
ways of reconstructing the data from these measurements. Hence we assume that the list-mode
data has already been binned to different states and the motions between the states are known
exactly. The starting point is therefore a set of projection data (for all the angles acquired), for

each of the N motion states, Yf, b =0, ..., N—1. Here jis the index for j-th detector. The
objective is to bring all the measured counts together to reconstruct at a reference position. In
what follows, for simplicity, we index the reference state as b = 0. This reference state in

actuality can be chosen to be any one of the states from 1 ... N. It is understood that the indices
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b can be mapped in any one-to-one order to the actual states. If, for example we have 9 states,
we can choose the middle State 5 as the reference state, and a typical mapping choice would
be to have index states b = (0,1,2, ..., 8) correspond to actual states State = (5,6,7,8,9,1,2,3,4).

Notation—Some of the common definitions and notations used to derive the three methods
are explained below. In what follows M is a transformation of spatial index and Q is a motion
operator operating on the intensities. This operator interpolates intensities of the object onto

the new grid after transformation. Mg(i) transforms the index i to go from reference pose 0 to
pose b. The transformation M is assumed to be invertible. That is M is defined as,

4
M{(M)(i)=i=MJ(M{(i)). It is also understood by that i,=M)(i) is a short hand notation
indicating that the motion transformation M operates on the spatial index (X, y, z) and then the

result is lexicographically ordered to i,',.

The operator Q is the intensity mapping due to the motion and is defined as,
(O G)=f(MEG)). Similarly, (00 £)(i)=f(M{i)). Sometimes for notational simplicity we
might write the operator as, Q4[ £(i)]. It is understood that Q5[ £(i)1=(Q5 /).

We associate the unobserved complete data variables, Zf’j with the object at different positions.

Zf’j is the count of the photons received during pose (or state) b, at detector j, that come from
activity in i-th voxel (at pose b). Note that the measurement projections at each state are the
sum of the random variable along the j-th projection-ray.

We define Wf’j to be the random variables (RVs) obtained when we apply the motion operator
on Z,[j to correspond to the activity mapped back to reference position. Thus, we have,

b_c07by —7b
Wii=(Q,Z )ij—ZM?(iLj.

B. Motion Compensated MLEM Algorithm (MC-MLEM)

The expected value of the random variable Z,lj at the i-th voxel, (as seen by detector j) for the
b-th state is the value of the object at the b-th transformed state, multiplied by the probability

Cij. In other words, CijE(Zf’j)=cfj(Q8f)(i)=Cijf(Mg(i))Where Cij is the time-interval times the
probability that the i-th emission reaches the j-th detector and f(i) is the activity at the i-th
location for the 0-th (reference) state. As defined in previous section, Qg is the motion
operator going from zero-th state to state b, which essentially interpolates the intensities of the
object on the new grid after transformation. We formulate the expected values of the RVs

b
ij-=(Q22)i ; corresponding to the activity transformed back to state 0. Z;, are Poisson RV,
being different noise-realizations of the object across different states and can be assumed

independent acrossb, i, and j. The RVs Wf’j are weighted sum of Poisson variables and in general
not Poisson distributed. However, under the assumption that the interpolation error is small,
we assume that the motion operator is mainly a rearrangement of the object in space and then
would preserves the Poisson nature of the RVs in going from Z to W. In order to reconstruct
the object, we wish to maximize the expection of the sum of all the RVs, across all the states,

W:Z,,ij-. The expected value of RVs W}, are given by

by_ 0Dy e ag0r AP rN_ D rs b _
EW)=E(Q2);p ~ ¢ ,-f (M, (My@D)=ai; /D) \were, i ~¢/jand, i,/,zMQ(i).
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Since we want to reconstruct the object at the reference position (position of State 0), we
maximize the conditional expectation of the W, given the previous estimate of object (at
reference state) and the measurements across all the states. Since W is approximately Poisson
distributed, the conditional expectation we maximize is given by

E[n(h(W, DI, 1= 3" > =l )+ LY Ina /' ()+R]

b jeSpiel; (1)
where

LE=ELW2IY, ' I=EL(Q)2), V", 7]
using what we know of the original random variables, Z. Then we make a further approximation

b . A0 b\yb 7n
I~ OB, il @

This interchange between the expectation and the motion operator is possible when the motion
operator is linear (weighted sum). It is not valid if the motion operator involves non-linear
mapping of the variables.

But we know thatE[ZibﬂYb’J?"]=CijJ?”(Mg(f))Y,l?/z,-cijﬁ(Mg(i)). Then it follows from (2) that

FHMY(@))ei; Y
> ey i) |

12

b . NO
Lij ~ Ql)

We can make one further approximation which is possible provided we ignore interpolation
errors and end-effects of movement of parts of the object out of region of interest and other
parts to within the region of interest. Considering the affine-transformation of two objects, if
we ignore interpolation and other numerical errors, it is approximately equivalent to rotate/
translate/scale/and-or/shear each of two objects by same amount, and then add (or multiply)
them together, as to add (or multiply) them together first and then rotate/translate/scale/shear
them. Therefore

T (Mb@)ci; vt

Zcijﬁ(Mg(i))

4

b~ OO
L~ Q,

- . C,"Y’.’

~ )0 | —=L—|.
Zcijf”(Mg(i))
I | (3)
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Taking the derivative of (1) wrt f"*1, and realizing Q operates on index i and not j, and again
extracting the motion operator under the assumptions mentioned above, we can further
approximate, and obtain

20| 25
Z ‘jf’(M’ (@)

JESH

)= 11G)

ZQS[ZCU]
b JESH

(4

Notational differences apart, (4) is equivalent to the form that was used by Li et al. in [7] and
Feng in [8] as solutions.

Note as expected in (4) before comparing with the measurement at b-th state, Yf, the estimate
f1 (at the pose of the reference state) has to be transformed forward to the position of the b-th
state, and then forward projected. Then the back-projection of the ratio of the acquired
projection to the estimated projections is transformed back to Oth state and multiplied to update
the previous estimate of the object at the Oth state (after normalizing with the transformed
weight matrix).

C. Motion Gated OSEM Algorithm 1 (MGEM-1)

In this second approach instead of maximizing the conditional expectation of the total of the
complete data variables across all the states, we maximize the expectation of the random
variables at each step, conditional to the data obtained at the previous step. For notational
purpose, we introduce a super-index now to correspond to states. And we introduce a sub-index
(0) to under-line the fact that the object is always reconstructed to the reference position. Thus

for the n-th iteration, fob‘” is the reconstructed object in the b-th state. To consider the case
within a single iteration we temporarily drop the n-index.
We assume with the approximations outlined in the previous section, that the random variables

W ;are independent and Poisson. The sum of independent Poisson distributed RV's are Poisson,
hence the complete data log-likelihood function is given by

In(h(W”, f7))
=23l- P(W”)+W”ln1~(w”) In(W21)]

=35 [~ 0+ WEIn(@? 20 ~ In(WE D
j i€l; (5a)

We want to find the conditional expected value of the log-likelihood function of ( W{’»J”l fg’ +1)

given we have the reconstruction for the previous state, /7, and the measurements for this state,
Yb*1 and then maximize that expected value. In order to accomplish this, we first re-write the
(5a) for b+1, and then take the conditional expectation, as follows:
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E[ln(h(W[lj+l ]?[)+l)|Yb+l fb] ZZ[_ f)j+l’7}+l(1)+Pl)+lln(al)+l’77+1(l)) R]

J i€l (5b)

where P =E[ W) |YP*, J2G)land R is the conditional expectation of the factorial which, as
in [14], we need not consider further in maximization of this expectation since it does not

depend on /2*!. But

Pb+l_E W17+l|)/[7+l ’77]

7 1 b b
—PI(Q,H, T g 2|

O+ D+ b
~ QM(Elz;, Ljpeed, 5. 50

Again the expectation and the motion operators are interchangeable only if the motion

operation is linear. Taking the derivative of (5b) wrt ’7’“ and following similar approximations

as done in the previous section, we obtain the update equation

’J]

0, ZZ

/‘b(MhH(,”

=120

(5d)

Inthis equation, before comparing with new measurements at the (b + 1) state, Yf’”, the previous

estimate ?0’ has to be transformed to the position of the (b + 1) state and then forward projected.
The back-projection of the ratio is transformed back to Oth state and multiplied to update the
object (after normalizing with the transformed weight matrix). After stepping through all the
states, we can iterate the process.

D. Motion Gated OSEM Algorithm 2 (MGEM-2)

The second version of the MGEM algorithm differs from the first by how the motion states
used as subsets are employed to update the estimate of the source distribution. Here we directly

work with the random variables Zf’j. For notational clarity, we assume that the different states
indexed by b provide information on the transformed versions of the object, f, given by

transformed states, fg, ..., fp, ..., fy—1. This is consistent with previous section’s notation, where
we dealt with fy(i), the object at the reference position. The transformed states are defined by

F=001 foi)l.

The expected value of the random variable Z, ,J, is given by

E(Z))=cij fo(i)=ci; Q[ ))=ci; [ (M{ (D).
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We then reconstruct the object f using intermediate steps of reconstructing the transformed
states f, ..., fy, ..., fy — 1 and use one final transformation to go from the last amplitude state
to the first before iterating the process. Let T,q be the transformation operator to take the b-
th state to the (b + 1)th state. This Tp41(f,) is a transformation of the indices i and interpolation
of the intensities on the transformed grid. Ty is the transformation to go from the N — 1 back
to the 0-th state.

We want to find the conditional expected value of the log-likelihood function of (ZP*2, f,11)
given we have the previous reconstructed stage, f,, and the new measurements, Y°*1, and then
maximize that expected value. Hence,

E[n(AZ"*, fo DY, Jpl= D" > [=cijlon )+ D In(cij a1 (i) = R

J il (6)

where DY =E[Z}'Y"*!, fy(i)] and R is the conditional expectation of the factorial which, as
in [14], we need not consider further in maximization of this expectation since it does not
depend on fy41. But,

Ciij+l(]7;)Y5?+l
ZC,' iThe (/)

IE]j

b+1_ b+1yyb+l 7 _
DI =ELZ7 Y, fyl=

This is explained in two steps. First, our previous estimate f, is at a different location and
therefore needs to be transformed to give the estimate of the volume at the current location.
Hence, the fy, is transformed to the next state’s position by Tp+1(fy) first. Then, as in [14], we
can derive the expected value at the i-th pixel (and j-th detector) by dividing the new

measurement le-’“ into the ratio of the voxel estimate that that location by the summed expected

values along the ray. Thus we get our Df’j” as shown above. Taking the derivative of (6), with
respect to fy41, and rearranging, we would get the update equation as,

Y1_1+ 1

2 cijTp1l fo(D]

ot (O=Tpu1 [ Jo(i)] ~— e
Y3

J (7)

where again, Ty is the transformation from position of state b to b + 1.

After one pass through all the states, we make sure to transform to the first state.

G =T ().

We can iterate this process and introduce an iteration variable k as a superscript.
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Our general update Eqns will be given by
Y1_1+l
Coim— 1
24 Y3 CiTp £, O]
SR D=Tp [ FF)]
2.Ci

J (8)

At the end of this iteration, after going through all the statesb =0 ..., N — 1, we go back to the
zero-th state as

= b=N-1 3
) =Ty ©
Then we go on to the next iteration as
k— k+1. (9a)

Equations (8)—(9)—(9a) together shows our update scheme. A clear advantage of (8) over the
update in (4) is that in using (8), only one transformation of the object is necessary for each
stage while for (4) to obtain the update factor, we need to forward transform the object to
current state from reference state (before forward projection to compare to measurement) and
then after back-project apply an inverse transform to bring it back to reference. Also the
linearity of intensity transforms is not assumed explicitly. However a major drawback of (8)
is in reality the object would be interpolated with each stage and also for each iteration. This
could affect the smoothness of the reconstruction.

In what follows we perform experiments on NCAT phantom, an anthropomorphic phantom
and a patient study to compare these motion compensation methods.

[1l. Methods

A. Study of Rigid-Body-Motion Correction Using NCAT Simulated Acquisitions

To simulate body-motion NCAT phantoms were generated for the source and attenuation
distribution in two different motion states with the first displaced from the second with 20 mm
of motion in Z direction and 20 mm motion in Y direction. For each of these NCAT datasets,
SIMIND Monte-Carlo software was used to simulate clinical SPECT acquisition for Tc-99m
sestamibi for 60 angular projections acquired over 180 degrees at steps of 3 degrees. Solely
the primary events simulated by SI-MIND are employed herein. Thus scatter is not included
in the photopeak window and scatter correction is not included in reconstruction. It was
assumed that the acquisition was acquired by a 2-headed SPECT system, thus of the 60 angular
projections, first 30 belonged to one head and next 30 belonged to the second-head. Then these
projections from the two datasets were used selectively to simulate acquisition for the patient

in two rigid-body motion states, with the projection sets, Y?and Y,] The projections for the two
motion states were then merged to create a projection set in which there is no motion in the
first half of the acquisition (angles 1 to 15 and angles 31 to 45) and then 2 cm motion (in Y
and Z) for the second half of the acquisition (angles 16 to 30 and 46 to 60). Random Poisson
noise was added to the projections such that the total count over two states was 7.5 million. 50
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noise samples of the projection states were generated and the object was reconstructed with
the MC-MLEM, MGEM-1 and MGEM-2 for each of the 50 cases, as well as for the noiseless
projections. Reconstruction included attenuation correction and modeling of the distance-
dependent system spatial-resolution [15]. The attenuation map for the first motion state was
employed in reconstruction and it was moved using the known motion between the two states
prior to projection and backprojection for projections acquired from the second motion state.

For the purpose of evaluation of our motion compensation algorithms, we observe how closely
the outputs of the motion compensating algorithms compare with the motionless object, that
is, the original NCAT phantom activity distribution for the first motion state (reference state).
Thus the reconstructions from projections without added Poisson noise were compared voxel-
wise with the NCAT at the reference stage. The bias was calculated as the absolute difference
of the activity of the NCAT phantom from the mean of the reconstructed object over a region
of the heart, normalized by the average of the reference over the region (NCAT). We also
investigated the bias-variance characteristics for reconstructions with the reconstructions of
the 50 noise realizations. The bias was calculated as the absolute difference of the activity of
the NCAT phantom from the ensemble mean (over 50 noise realizations), averaged over a
region of the heart, and normalized with respect to the NCAT mean. The variance was
calculated with respect to the ensemble mean and then averaged over the region of the heart.
Bias-variance plots were calculated as a function of iteration number to compare the no motion
case, the motion-case without correction and the motion correction cases with our 3
reconstruction methods. We also looked into tri-linear interpolation versus Gaussian
interpolation for the different algorithms.

B. Study of Respiratory Motion Correction Using NCAT Simulated Acquisitions

Thirty-six NCAT phantoms were generated to simulate a respiratory-amplitude binned
acquisition for a Tc-99m sestamibi imaging study. In these source distributions and attenuation
maps the respiratory motion of the heart equally dividing 20 mm in Zand 6 mm in Y net motion
of the heart. SIMIND Monte-Carlo projections of each were generated to simulate clinical
SPECT acquisition. Each of 4 projection sets were added at a time to create 9 states out of the
36 states. This was to make sure we have realistic effects of finite motion-quantization. That
is, each of 9 bins would not have exactly stationary counts, but have an average of 4 motion
states. Poisson noise was added such that total count (over all 9 bins) over the torso was 7.5
million. Fifty such noise-instances were considered. Each sample of the object was then
reconstructed using the MC-MLEM, MGEM-1 and MGEM-2 algorithms, choosing the
middle-state as the reference state. Reconstruction included attenuation correction and
modeling system spatial resolution as before.

Considering (4), we observe that the update factor has a summation over the states b in the
numerator and the denominator. For respiratory motion considered here, the states are
comprised of all the angles. For the noisy cases, the projection set for each state would have
1/9 the number of the counts of the total (ie, 7.5/9 = 0.833 million each). In other words, the
counts in each angle at each state will have a fraction of counts acquired for that angle. In (4),
the summation over states b in the numerator would yield an overall sum of all counts in all
the states, but there would be an effective factor 9 in the denominator as well, from the addition
of the 9 sensitivity matrices. Thus the counts in the resultant reconstruction would be expected
to be scaled down by a factor of 9 (in general, by the no. of states). Similarly, since the counts
at each angle are a fraction of total acquired at the angle, the MGEM algorithms for the noisy
datasets for respiratory motion will also be driven to a net count of 1/9 of the total counts.
Hence, for the noise-added cases, the objects reconstructed with the motion correction
respiratory motion algorithms were scaled appropriately before bias-variance comparison to
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no motion case or the no correction case (where there was motion but no correction was
applied).

Note that for body motion the motion states are comprised of mutually exclusive angles and
each angle has the full acquired number of counts. Thus the reconstructed counts are preserved
to be the total counts in all the states.and this scale factor was not an issue to consider for body
motion.

As for the body-motion case, the bias was calculated from the noiseless reconstructions with
the NCAT phantom. The reference state was the middle one of the 9. Bias-variance plots were
created from analysis of the 50 noisy reconstructions for a region around the heart. Due to the
scale factor issue as explained above, we scaled each of the datasets by the ensemble means
averaged over the region considered, for a fair comparison between the algorithms. On
numerical comparison, the ratio of the scale factors for the no-motion case and the motion
correction cases was indeed found to be close to 9. This scale factor issue was taken into account
for the bias part for the bias-variance calculation, as well — the NCAT and the data were each
scaled by their respective averages over region of the heart before taking the absolute difference
between them.

C. Study of Respiratory Motion Correction Using Acquisitions of the Data Spectrum
Anthropomorphic Phantom

The Data Spectrum Anthropomorphic phantom with Tc-99m in the heart wall, liver, and
background was imaged with an IRIX SPECT system. List-mode data was acquired with the
phantom moved manually in a periodic fashion to simulate respiratory motion with an
amplitude of 2 cm. The motion was regular, in approximate synchrony with the breathing of
the person moving the phantom. Motion was monitored using a bellow attached to the phantom
and the imaging table [11]. A second study was acquired where the data was not moved for
purposes of comparison. For the motion-case the acquired list-mode data was binned into 9
different amplitude states. To estimate the motion, each of the states was then reconstructed
and the motion was estimated using an intensity-based registration method. The registration
uses sum-squared-error as the similarity measure to minimize and iteratively uses gradient
descent for the minimization [16]. The method allows for 1 to 12 degrees of freedom (DOF)
motion estimation. For the case in consideration here, even though experimentally there was
1-DOF motion, 2-DOF — Superior-Inferior (SI) and anterior-posterior (AP) — estimates were
performed as these are the primary directions of expected motion for the heart with respiration
[16], [17]. The motion estimates and the amplitude-binned projection states were used for the
reconstruction correction methods described herein. The motion corrected datasets were
compared to the case where there was no motion correction case as well as the no-motion case.
Again reconstruction included attenuation correction and modeling of distance-dependent
spatial resolution. The attenuation map was acquired at the no-motion case (without simulated
respiratory motion) and was used in correction of the studies which included respiratory
motion, by appropriately moving the map using the motion estimates.

D. Rigid-Body Motion Correction for a Patient Study

We have developed a stereo-imaging based motion-tracking system which estimates the motion
of the heart from the motion of retro-reflective markers on bands wrapped about the chest and
abdomen of patients [18]. With Institutional Review Board approval and informed consent
motion-tracking was performed in a series of patients undergoing two T1-201 cardiac-
perfusion SPECT rest-imaging acquisitions on our IRIX SPECT system. During the first
acquisition the patients remain as motionless as possible as standard during SPECT imaging.
During the second acquisition the patients performed one or more motions at our request. This
made available the initial rest-imaging study to provide a reference to compare the appearance
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of the second study with successful motion estimation and correction. For purpose of
illustration of our methods herein, we chose a patient who slid down the table about ~ 6 cm
axially. The translation of this patient was determined in the axial, lateral, and vertical
directions from the motion tracking-data. \We then used the estimated motion and the acquired
projections to reconstruct using the MC-MLEM and MGEM-1 methods described here. The
motion corrected datasets were compared with the first rest study. For the MGEM-1 the data
was divided into two motion angular subsets as there was a clear demarcation in our experiment.
Reconstruction included attenuation correction using transmission maps reconstructed by
transmission profiles acquired using the Beacon system between two rest-imaging studies.
Again, the map was moved using the motion estimates when used for attenuation correction
for the motion correction algorithms.

IV. Results
A. Study of Rigid-Body-Motion Correction Using NCAT Simulated Acquisitions

In Fig. 1 noise-free short-axis cardiac SPECT slices are shown before and after motion
correction. In all cases reconstruction included attenuation correction and correction for
distance-dependent spatial resolution. Scatter correction is not included as scatter was not
included in the projection sets. Fig. 1(a) shows the case where no motion correction was applied
when motion was simulated as being present. Standard MLEM reconstruction [13], [14] was
employed and 18th iteration is shown. Notice the significant degradation of image quality
caused by not correcting for motion. This degradation can be qualitatively appreciated by
comparison to Fig. 1(b) which shows the results of 18 iterations of MLEM reconstruction for
simulated projections form the phantom just in the reference state. Fig. 1(c) shows a motion
corrected case using MC-MLEM after 18 iterations, which qualitatively looks similar to the
reconstruction for the phantom just in the reference state. Fig. 1(d)—(e) show the reconstruction
of the projections included motion using MGEM-1 after 9 iterations and 18 iterations
respectively. Qualitative comparison seems to indicate that the resolution at iteration 9 of
MGEM-1 is close to that of iteration 18 of MC-MLEM, and 18 iterations of MGEM-1 shows
even more resolution recovery. This is as expected since there are two motion states, with
mutually exclusive angles, thus this is an OSEM reconstruction with 2 angular subsets. Fig. 1
(f) shows the results of 18 iterations of MGEM-2 reconstruction. It shows an unexpected
amount of smoothing. For example the 18th iteration of MGEM-2 shows more smoothing than
the 18th iteration of MC-MLEM in Fig. 1(c) even though MGEM-2 should also act like an
OSEM reconstruction with 2 subsets. To investigate the reason for this, we created another
NCAT dataset with motion exactly 4 pixel of motion (or 1.87 cm) in Y and Z as opposed to
the 2 cm motion in the previous simulations. This ensured that there would be no interpolation
error as the motion is an integer number of pixels. With this interpolation-error-free case, the
behavior of MGEM-2 was similar to MGEM-1, as shown in Fig. 1(g). These results Fig. 1(f)-
(9) indicates that (8) is prone to successive interpolation error and therefore the MGEM-2
method should be avoided.

Fig. 2 shows the normalized bias for the noise-free reconstructions with respect to the reference
NCAT phantom for 100 iterations. The MGEM-1 reconstruction was observed to be lowering
its bias with respect to the NCAT phantom at a faster rate than the MC-MLEM, as expected.
MGEM-1 being a subset-type algorithm is expected to reduce the number of iterations by a
factor of number of subsets (the number of motion bins in this case). The bias value for the
MGEM-1 case at iteration ~ 9 was close to that of the MLEM (tri-linear) case at iteration 17,
indicating an iteration reduction factor of 1.89 around this operating point, which is close to
the number of states (2). For MC-MLEM, the tri-linear interpolation seems to have a lower
bias than the Gaussian interpolation. The bias values of MGEM-2 (tri-linear) on the other hand
seem to flatten, qualitatively speaking. Bias of the MGEM-2 Gaussian actually increases before
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flattening. However when we consider the bias for the integer motion case (MGEM-2-int), the
behavior is close to MGEM-1, indicating that, indeed, the higher error was due to interpolation.
Another interesting point is that the no-motion case shows bias similar to as MC-MLEM for
the first 20 iterations and then gradually converges faster until it is more like an MGEM
algorithm.

Fig. 3 shows a bias-variance plot for the various reconstruction algorithms for 100 iterations
in each case. Again the MGEM-1 advanced along the bias-variance plot faster than MLEM.
Also, MGEM-2 with non-integer motion did not behave like an OSEM algorithm except with
integer motion (MGEM-2-int). In fact in presence of noise the MGEM-2-int (mation correction
without interpolation error) had initially similar performance as MGEM-1 but gradually
lowered the bias more with iterations. Note that the no-motion MLEM case lowered the bias
furthest.

B. Study of Respiratory Motion Correction Using NCAT Simulated Acquisitions

Fig. 4(a) shows an NCAT short-axis slice for 18 iterations of MLEM reconstruction of noise-
free projections containing respiratory-motion without motion correction. The significant
degradation of the respiratory motion can be appreciated by comparing this slice to
reconstruction of projections from just the reference state (5th state) in Fig. 4(b). Notice the
increase apparent ventricular wall thickness, decrease in the size of the blood-pool region, and
increased blurring with the liver in the presence of respiratory motion. The motion correction
algorithms as shown in Fig. 4(c)—(e) clear up these degradations. Qualitative comparisons
between the slices of Fig. 4(c) and (d) seem to indicate that the resolution at iteration 2 of
MGEM-1 is close to that of iteration 18 of MC-MLEM, as expected here with 9 respiratory
states. In Fig. 4(f) we show MGEM-2. Again there is uncharacteristic smoothing assumed to
be due to interpolation error. Since 1 pixel integer motion corresponding to each bin will result
in a large motion, we did not test the interpolation-error-free case for this respiratory motion.

Fig. 5 shows the normalized bias plots for the noise-free reconstructions for up to 100 iterations
of the reconstruction algorithms, using the NCAT activity as a comparison. Again we observe
that the MGEM-1 seem to achieve closer values to the NCAT faster than the MLEM algorithms.
In particular, the bias value at iteration 2 of MGEM-1 is similar to the bias value at iteration
14 for MC-MLEM (with tri-linear interpolation), indicating a factor of 7 reduction in iterations
around this operating point for 9 subsets in MGEM-1. Again the no-motion case performs close
to MC-MLEM in the first ~ 35 iterations and then gradually lowers the bias faster. The
MGEM-2 with Gaussian (or Trilinear) interpolation seems to lower the bias for only a few
iterations and then levels it out.

Fig. 6(a) shows the bias-variance plot for 100 iterations, derived as explained in the methods
section. MGEM-1 (with 9 motion states used as subsets) advanced significantly faster along
the bias-variance curve than the MC-MLEM or the other MLEM algorithms (such as the no-
motion case or the no-motion-correction cases). This was as expected due to the OSEM nature
of MGEM-1, and high number of motion states. For better visualization we displayed a
zoomed-in view in Fig. 6(b), which shows that the MGEM-1 achieves the similar bias-variance
in first few iterations (~ 13) as the No-Motion case (MLEM algorithm) did after 100 iterations.

For a numerical comparison, after 100 iterations, the No-Motion case had bias variance of
(0.41,0.04); MC-MLEM (G) was at (0.49,0.03); while the MGEM-1 had those at (0.42,0.47).
Note the order of magnitude higher variance for the MGEM-1 (expected of a subset algorithm,
proceeding faster than the MLEM ones), However, a slight increasing trend of bias was
observed for later iterations of MC-MLEM (T or G) and MGEM-1. The performance of the
MGEM-2, (Gaussian or Trilinear) was similar to as observed for the noiseless case, in that was
slower than even the MLEM algorithms and quickly saturated.
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C. Study of Respiratory Motion Correction Using Acquisitions of the Data Spectrum
Anthropomorphic Phantom

The registration estimated motion across the 9 amplitude bins is —10.35, —6.92, —4.60, —1.75,
0, 3.33,5.30, 8.7, and 9.93 mm in the superior-inferior (SI) direction which matches well the
intended motion of +/— 10 mm in this direction, and 0.62, 0.36, 0.07, 0.04, 0, —0.01, 0.01, 0.07,
and 0.90 mm in anterior-posterior (AP) direction which matches the intended no motion in this
direction. Fig. 7 shows a mid-ventricular short-axis slice for reconstruction which in each case
included attenuation and resolution compensation. For the motion corrected cases, the
attenuation map obtained at the no-motion reference state was moved according to the
estimated motion for the different states. Fig. 7(a) shows the 26 MLEM iterations for the case
where the phantom was kept stationary on the table. This is the no-motion reference state. Fig.
7(b) shows 36 iterations of MLEM without motion correction for the case with motion (the
acquisition performed with respiratory-motion created by having a volunteer move the
phantom in approximate synchrony with their breathing). Notice the false cooling in the
superior-inferior walls. Fig. 7(c)—(d) shows motion correction with MC-MLEM (with Gaussian
interpolation) and MGEM-1, respectively. The no-motion was seen to advance faster than the
MC-MLEM, and we chose to compare iteration 26 of MLEM for the no motion to 36 of MC-
MLEM of the motion correction as they had similar wall thickness. MGEM-1 achieves similar
results in just 4 OSEM iterations. This is roughly 9 times faster than the MC-MLEM which is
expected with the 9 motion sub-sets.

D. Rigid-Body Motion Correction for a Patient Study

The three translation estimates for the patient with angle of acquisition are shown in Fig. 8.
Fig. 9 shows short-axis slices for the reconstructions which in each case included attenuation
and resolution compensation. For the motion corrected cases, the attenuation map obtained at
the initial rest reference state was moved according to the estimated motion for the different
states. Fig. 9(a) shows the initial rest where the patient was instructed not to move. Fig. 9(b)
shows the reconstructed second rest without motion compensation during which the patient
was requested to perform an “axial-slide” after a time interval. Fig. 9(c)—(d) shows the results
for MC-MLEM (Gaussian interpolation) and MGEM-1 with motion correction. The first rest
was again seen to converge slightly faster in terms of wall thickness than MC-MLEM, hence
we compared iterations 30 of MLEM to 40 with MC-MLEM. Again MGEM-1 achieves similar
results in 20 iterations, as expected for 2-subset mation correction.

V. Discussion

The primary aim of this work was to derive a theoretical framework for motion-correction
within an MLEM iterative algorithm, (MC-MLEM) with all the approximations mentioned
explicitly. The two essential theoretical findings were that the intensity transformations
involved in the motion have to be linear and invertible. Also couple of fast methods of motion
compensation (MGEM-1 and MGEM-2) were also derived and compared. We used the NCAT
phantom as well as physical phantom and patient acquisitions to study the motion correction
methods. We compared the performance of the MLEM and two MGEM (“motion-gated”
OSEM, where the motion states serve as subsets) for body motion and respiratory motion. One
MGEM-1 moved back the measurement counts for each motion state to the reference state
position, and then the estimate at the reference state location was updated. We found expectedly
that this MGEM algorithm converged faster towards the true NCAT object by a factor close
to the number of states, compared to the MLEM correction method. In MGEM-2 we
successively moved from one motion state to the next and then finally back to reference. While
this algorithm seemed good in theory, it had successive interpolation artifacts which resulted
in significant smoothing and was therefore not useful.
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OSEM reconstruction is typically applied with each subset containing an equal number of
projections [19]. In the past Feng, et al. [8] showed that one could include motion into OSEM
by keeping the same subset structure as one would normally use by using 3D Gaussian
interpolation to account for motion at any angle where needed. Herein we expanded use of
motion correction by considering subsets formed by respiratory binning or guided by body
motion. For respiratory motion considered here, each subset contained a portion of the counts
acquired at all projection angles. For body-motion subsets were formed as being acquired at
the same (body) motion state so that there may not in general be the same number of angles in
each subset. Kyme, [20] have also previously formed body-motion subsets with an unequal
number of projection angles in the subsets. For the patient-study we considered the results of
use of an unequal number of angles was encouraging; however, as the number of angles in one
or more subsets becomes very different from the others it may be that using the rescaled-block-
iterative (RBI) algorithm [21] may be needed to avoid artifacts. Also as explained in the
methods section, in the case where the motion correction algorithms were applied to the
amplitude-binned respiratory motion with the motion-states made up of projections containing
only a portion of the counts acquired at each angle, it is important to include a scale factor
before comparing to no-motion case.
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(b) (c) (d) (e) (H)

Fig. 1.

NCAT Body-Motion Correction of noiseless datasets. (2) Mid-ventricular short-axis slice from
simulation which did include motion with no motion correction included in 18 iterations of
MLEM. This slice illustrates the significant degradation uncorrected motion causes. (b) Short-
axis slice from projections simulated with the phantom solely in the reference (first) motion-
state after 18 iterations of MLEM reconstruction. This slice serves as the standard for
comparison of the following mation corrections against. (c) Short-axis slice from simulation
which did include motion reconstructed with 18 iterations of MC-MLEM motion correction.
Notice the similarity to the case reconstructed in the absence of motion. (d) Short-axis slice
from simulation which did include motion reconstructed by 9 iterations of MGEM-1. Note the
similarity to 18 iterations of MC-MLEM as expected with use of 2 subsets. (e) Short-axis slice
from simulation which did include motion reconstructed by 18 iterations of MGEM-1. Note
the further recovery of resolution due to the inclusion of modeling spatial-resolution in
reconstruction. (f) Short-axis slice from simulation which did include motion reconstructed by
18 iterations of MGEM-2. Notice the considerable smoothing compared to 18 iterations of
MGEM-1. (g) Short-axis slice from simulation which did include motion but motion was an
integer multiple of the voxel dimension such that interpolation was not required reconstructed
by 18 iterations of MGEM-2. Notice that in this case without interpolation error performance
of MGEM-2 is close to that of MGEM-1.
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Fig. 2.

NCAT Body-Motion Correction: Normalized Bias as a function of iteration for various
reconstruction methods for noiseless NCAT projection sets. Note that (G) signifies the use of
3D Gaussian interpolation, (T) signifies the use of trilinear interpolation, and int indicates
application to projections created when motion was an exact integer multiple of the voxel size.
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NCAT Body-Motion Correction: Normalized-Bias vs. Variance of Ensemble Mean of 50 noisy
reconstructions for various reconstruction methods for noiseless NCAT projection sets. Note
that (G) signifies the use of 3D Gaussian interpolation, (T) signifies the use of tri-linear
interpolation, and int indicates application to projections created when motion was an exact

integer multiple of the voxel size.
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Fig. 4.

NCAT Respiratory motion correction of noiseless datasets. (2) Mid-ventricular short-axis slice
from simulation which did include respiratory motion with no motion correction included in
18 iterations of MLEM. (b) Short-axis slice from projections simulated with the phantom solely
in the reference (middle) motion-state after 18 iterations of MLEM reconstruction. Notice the
thinner ventricular wall, larger blood pool region, and better separation from the liver compared
to the with motion slice. (c) Short-axis slice from simulation which did include motion
reconstructed with 18 iterations of MC-MLEM maotion correction. Notice the similarity to the
case reconstructed in the absence of motion. (d) Short-axis slice from simulation which did
include motion reconstructed by 2 iterations of MGEM-1. Note the similarity to 18 iterations
of MC-MLEM as expected with use of 9 subsets. (e) Short-axis slice from simulation which
did include motion reconstructed by 18 iterations of MGEM-1. Note the further significant
recovery of resolution due to the inclusion of modeling spatial-resolution in reconstruction. (f)
Short-axis slice from simulation which did include motion reconstructed by 18 iterations of
MGEM-2. Notice the considerable smoothing compared to 2 iterations of MGEM-1.
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NCAT Respiratory motion Correction: Normalized Bias as a function of iteration for various
reconstruction methods for noiseless NCAT projection sets. Note that (G) signifies the use of
3D Gaussian interpolation and (T) signifies the use of trilinear interpolation.
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Fig. 6.

(a) NCAT Respiratory Motion Correction: Normalized-Bias vs. Variance of Ensemble Mean
of 50 noisy reconstructions for various reconstruction methods for noiseless NCAT projection
sets, shown for 100 iterations points. Note that (G) signifies the use of 3D Gaussian
interpolation and (T) signifies the use of trilinear interpolation. (b) A zoomed-in view for better
visualization.
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(a) (b) (© (d)
Fig. 7.

Data Spectrum Anthropomorphic Phantom: (a) Mid-ventricular short-axis slice after 26
iterations of MLEM for acquisition during which the phantom was not moved. (b) Short-axis
slice after 36 iterations of MLEM without motion correction for acquisition during which
phantom was moved to simulate 2 cm amplitude respiratory motion. Notice the false cooling
effects in the superior and inferior walls. (c) Short-axis slice after 36 iterations of MC-MLEM
with motion correction for acquisition during which phantom was moved to simulate
respiratory motion. Ntice similarity to slice reconstructed for stationary phantom. (d) Short-
axis slice after 4 iterations of MGEM-1 using 9 subsets (respiratory motion bins) with motion
correction for acquisition during which phantom was moved to simulate respiratory motion.
Notice similarity to 36 iterations of MC-MLEM. In all cases attenuation correction and
resolution-compensation was included.

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 April 22.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Dey and King

Motion Estimates for Patient Data

6 T

Translation in cm

TQ”*W*N“WT

TW’;MNW

~~~~ R-L motion
—— AP motion
—*— Sl motion

0 fesonis ""ijg‘-?ﬁ.mglv,»,‘ TR EET T A mmme - {fi&tml"’"“ ------- -
\ {
\ ] \\
4 L Seesepctoosooos — i ettt
40 50 60 70 80 920 100
Acquisition Angle (2 heads)

Fig. 8.

110

Page 23

Estimated translational motion of the patient as a function of acquisition angle for acquisition
by two camera-heads at 102 degrees.
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Fig. 9.

Patient Body Motion Correction: (a) Mid-ventricular short-axis slice from initial-rest study
acquired without intentional patient motion and reconstructed with 30 iterations of MLEM. (b)
Short-axis slice from second-rest study acquired with intentional patient motion and
reconstructed with 30 iterations of MLEM. Notice translated location of heart and significant
artifact. (c) Short-axis slice from second-rest study acquired with intentional patient motion
and reconstructed with 40 iterations of MC-MLEM. (d) Short-axis slice from second-rest study
acquired with intentional patient motion and reconstructed with 20 iterations of MC-MLEM.
We applied clinical-levels of 3D post-reconstruction smoothing.
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