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Abstract

Planaria continue to blossom as a model system for understanding all aspects of regeneration. They provide an opportunity
to understand how the replacement of missing tissues from preexisting adult tissue is orchestrated at the molecular level.
When amputated along any plane, planaria are capable of regenerating all missing tissue and rescaling all structures to the
new size of the animal. Recently, rapid progress has been made in understanding the developmental pathways that control
planarian regeneration. In particular Wnt/beta-catenin signaling is central in promoting posterior fates and inhibiting
anterior identity. Currently the mechanisms that actively promote anterior identity remain unknown. Here, Smed-prep,
encoding a TALE class homeodomain, is described as the first gene necessary for correct anterior fate and patterning during
planarian regeneration. Smed-prep is expressed at high levels in the anterior portion of whole animals, and Smed-prep(RNAi)
leads to loss of the whole brain during anterior regeneration, but not during lateral regeneration or homeostasis in intact
worms. Expression of markers of different anterior fated cells are greatly reduced or lost in Smed-prep(RNAi) animals. We find
that the ectopic anterior structures induced by abrogation of Wnt signaling also require Smed-prep to form. We use double
knockdown experiments with the S. mediterranea ortholog of nou-darake (that when knocked down induces ectopic brain
formation) to show that Smed-prep defines an anterior fated compartment within which stem cells are permitted to assume
brain fate, but is not required directly for this differentiation process. Smed-prep is the first gene clearly implicated as being
necessary for promoting anterior fate and the first homeobox gene implicated in establishing positional identity during
regeneration. Together our results suggest that Smed-prep is required in stem cell progeny as they form the anterior
regenerative blastema and is required for specifying anterior cell fates and correct patterning.
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Introduction

Planaria continue to blossom as a model system for understand-

ing all aspects of regeneration [1–3]. A sustained and passionate

effort by a number of scientists is pushing planaria to the forefront of

the regeneration field, both technically [4,5] and theoretically [6],

and they are finally starting to be directly informative of phenomena

in other systems [7]. They provide an opportunity to understand

how the replacement of missing tissues from preexisting adult tissue

is orchestrated at the molecular level. When amputated along any

plane planaria are capable of regenerating all missing tissue and

rescaling all structures to the new size of the animal [8].

Recent work has shown that conserved signaling pathways play a

role in axial patterning during both regeneration and homeostatic

tissue turnover [9–13]. In particular Wnt/beta-catenin signaling is

necessary for posterior fate during regeneration, with loss of beta-

catenin or Wnt signaling leading to all amputations regenerating

anterior structures and a gradual loss of posterior identity during

homeostasis [9,10,12]. Conversely, over activity of Wnt signaling

induced by abrogating the expression of negative regulators of the

pathways leads to ectopic posterior fate [9]. Further studies have

begun to describe the temporal nature of this posterior specification

circuit, as well the conserved nature of upstream regulation [14,15].

Previously elegantly executed manipulative work has uncov-

ered phenomena that suggest that anterior fated tissue can

inhibit the regeneration of anterior fate elsewhere [3]. In

addition some headway has been made in understanding the

potential signaling systems responsible for this [16,17]. In

particular the planarian nou-darake (ndk) gene, an FGF-like

receptor, has been shown to be necessary to restrict the

formation of anterior-dorsal brain ganglia/cephalic ganglia

(CG) to anterior regions [16]. Currently though nothing is

known about the instructive signals required to promote anterior

fate. We wished to uncover these signals that together must

promote anterior fate and correctly pattern the brain as it

reforms from stem cell progeny at anterior blastemas.

Given the involvement of conserved pathways already uncov-

ered we hypothesized that other genetic circuits employed to

specify positional domains in other animals would be responsible

for this process during planarian regeneration. One obvious group

of genes for this process would be planarian orthologs of the Hox

genes and Hox gene co-factors, These are required for anterior-

posterior axis specification in the metazoa [18,19]. Planarian Hox

orthologs have been previously studied, and in some cases are

expressed in distinct spatial domains, but have as yet no functions

are assigned to them in planaria.
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This has led us to consider TALE class homeodomain

containing genes, a subset of which act as Hox gene cofactors

[18]. Collectively, they are known to modulate the activity of Hox

proteins by regulating their localization within the cell and by

increasing their binding site specificity, but also have many hox

independent roles in development [20–23].

Here, Smed-prep, encoding a TALE class homeodomain, is

described as the first gene that is necessary to instruct anterior fate

and patterning during planarian regeneration.

Results/Discussion

Smed-prep encodes a TALE class homeodomain protein
expressed in regeneration blastemas

The Smed-prep transcript was identified in an informatics screen

for homeodomain proteins in the Schmidtea mediterranea genome.

Searching the S. mediterranea genome identifies other TALE class

homeodomain proteins [18], but Smed-prep encodes the only PREP

ortholog (Figure 1A). The protein encoded by Smed-prep has high

homology to other PREP proteins and contains the conserved

features expected of this protein family (Figure S1). In vertebrates,

PREP proteins have been implicated in a number of key

developmental processes [23], including the correct patterning of

anterior structures [21]. The function of Hox and Hox co-factors

in planaria remains enigmatic. The fact that these two groups of

homeodomains act together to pattern tissues in other systems

makes them strong candidates for a role in providing positional

information in planarians. For this reason we performed a detailed

study of Smed-prep.

We performed in situ hybridization on whole and regenerating

asexual planaria [24,25]. We find that Smed-prep is expressed at

ubiquitously low levels throughout the parenchyma and at higher

levels in the head region. The posterior margin of anterior

expression coincides with the most posterior position of cephalic

ganglia (CG) (Figure 1C and 1D). We also detect low levels of

Smed-prep expression in the posterior midline, at higher levels than

the broad parenchymal expression, in approximately 50% (39/72)

of animals (Figure 1B). Smed-prep expression is not sensitive to

irradiation, indicating that Smed-prep is not expressed in, or

dependent on, the ‘neoblast’ stem cells (data not shown). During

regeneration induced by pre- and post-pharyngeal amputation

(Figure 1E) Smed-prep expression is first detected at 24 h and is

present in both anterior and posterior blastemas (Figure 1F). New

Smed-prep expression is not detected at 6, 12 or 18 hours of

regeneration. Expression in the anterior is bilateral up to 3 days

but has expanded across the whole blastema at 5 days (Figure 1G

and 1H). At 5 days Smed-prep is expressed throughout the anterior

compartment with the notable exception of the eye field. We also

detect feint expression in the posterior midline of approximately

50% of trunk fragments at 3 (18/41 fragments) and 5 days (23/40

fragments) of regeneration. We observe this in trunk fragments

only (Figure 1G and 1H). This expression is absent later and

presumably reappears after regeneration is complete and animals

reach a homeostatic state (see above). At 8 days of regeneration,

posterior blastema expression is reduced while expression in the

anterior continues to be high (Figure 1I). This expression pattern

led us to hypothesize a role for Smed-prep in patterning regenerating

tissue after amputation. In particular expression in whole worms

suggested that Smed-prep might have a role in pattering and/or

maintaining anterior structures.

Smed-prep(RNAi) results in loss of anterior structures
specifically during anterior regeneration

We performed RNAi [26,27] of Smed-prep to investigate its

function during regeneration (see Figure S2 for summary of

injection protocols). Smed-prep dsRNA injection before inducing

regeneration by amputation (Figure 1E) resulted in all worms

having either a cyclops phenotype (Figure 2A) or no eyes at all

(Figure 2B, Table 1). All animals had correct early blastema

formation, normal levels of neoblast proliferation (data not shown)

and no defects in posterior blastema formation (Figure 2A, 2B, 2D,

and 2E). A similar cyclops phenotype has been described for a S.

mediterranea slit ortholog [28]. Staining with an anti-arrestin VC-1

antibody specific for planarian photoreceptors and associated

neurons [29] we observed that the single eye phenotype appeared

to represent a fusion of two eyes (Figure S2D, S2E). We detected

no other midline defects in regenerating animals that were

described for Smed-slit, and Smed-slit expression itself was normal

(Figure S2F and S2G). This suggests, in agreement with the Smed-

prep expression pattern, that the cyclops phenotype is due to a

defect in anterior patterning and fate rather than any midline

defects. Control gfp(RNAi) animals had normal eye structure

(Figure S2E).

We investigated the structure of the planarian ventral nerve

cords (VNCs) and CG using the anti-SYNORF1 (3C11) cross-

reactive monoclonal antibody [30]. We found that in all Smed-

prep(RNAi) animals the CG were greatly reduced, with almost no

brain at all discernible in the most severely affected RNAi worms

(Figure 2D and 2E). In these animals anti-SYNORF1 positive cells

do form from differentiating neoblast progeny in the anterior as

part of the VNCs. Significantly, anti-SYNORF1 positive cells are

present along the whole anteroposterior axis. This suggests, along

with correct pharynx and posterior regeneration that Smed-

prep(RNAi) does not affect the general ability of stem cells to

differentiate. All control gfp(RNAi) animals were normal (Figure 2C

and 2F). We confirmed the loss of CG by looking at the expression

of Smed-GluR (specific for CG (Figure 2I and 2M). This loss of

anterior structures suggests a role for Smed-prep in patterning

anterior structures and/or a requirement for Smed-prep in allowing

neoblasts to differentiate into CG cells. This phenotype is different

from that previously described for the S. mediterranea ortholog of

adenomatous polypolis coli (APC), a negative regulator of Wnt

Author Summary

Understanding the genetic basis of tissue regeneration
(remaking) from adult structures is an important long-term
goal for biomedical science. The widespread nature of
regenerative phenomena in different animals allows us to
study evolution’s answers to coordinating this process. We
use the relatively simple and experimentally tractable
planarian model to study this process. After almost any
amputation these animals unerringly replace all missing
tissues. This ability has two key components. Firstly,
planaria have a population of stem cells capable of rapidly
dividing and becoming all the cell types that are missing,
such as muscle, gut, and brain cells, after amputation.
Secondly, the genetic information in these stem cells and
the remaining tissue is able to coordinate the regeneration
process so that new structures are the correct size and in
the correct place. This allows the production of a fully
functional individual at the end of the regeneration
process. We are specifically interested in how structures
end up in the correct place in new tissue they form. Here
we discover and describe the role of a gene, called Smed-
prep, particularly central to this process. Smed-prep is
required to coordinate the regeneration of the planarian
brain, arguably the most exciting part of planarian
regeneration.

Control of Anterior Regeneration in Planaria
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signaling. Smed-APC-1(RNAi) results in ectopic posterior fate at

anterior blastemas [9].

To build a more exact picture of the requirements for Smed-prep

we also investigated its role during regeneration more directly. We

injected regenerating animals after amputation and then re-

amputated (Figure S2). This approach has previously been used as

a proxy to separate regeneration specific effects from homeostatic

effects [15]. Control gfp(RNAi) worms regenerated normally but

Smed-prep(RNAi) worms failed to make eyes and CG almost entirely

(Figure 2G and 2H, Table 1). All animals did regenerate normal

VNCs within regenerated anterior tissue. This confirms that new

Smed-prep expression during regeneration is required to properly

replace anterior structures.

To investigate whether Smed-prep was required specifically for

stem cell progeny to differentiate to CG or instead primarily for

global anterior fates we investigated the expression of cintillo [31]

and Smed-sFRP-1 [9,12]. These genes represent two different

anterior markers that are not expressed in CG cells. We find that

both cintillo and Smed-sFRP-1 expression are greatly reduced or

absent in Smed-prep(RNAi) animals at 12 days of regeneration

(Figure 2J and 2K). In the case of Smed-sFRP-1 expression we

observed a correlation between the strength of the Smed-prep(RNAi)

phenotype and whether any Smed-sFRP-1 expression was detect-

able. Those animals that maintained a single eye (and therefore

some CG) also had some remaining Smed-sFRP-1 expression.

Animals with stronger phenotypes (no eyes) had no detectable

anterior Smed-sFRP-1 expression. All gfp(RNAi) animals had

normal expression for both these markers (Figure 2N and 2O).

Together these data suggest that Smed-prep is required for correct

anterior blastema fate patterning during regeneration, rather than

solely for CG formation by differentiating neoblasts.

This loss of anterior markers led us to consider whether Smed-

prep(RNAi) leads to a homeotic like posteriorisation of the planarian

body plan. We found no evidence for this by looking at the relative

Figure 1. Smed-Prep encodes a TALE Homeobox gene expressed in regenerating blastemas. (A) Phylogenetic reconstruction of S.
mediterranea TALE Class homeodomain proteins and representative orthologs, with most taxa removed for clarity (Hs: Homo sapien, Dm: Drosophila
melanogaster Hm: Hydra magnipapillata), produced using a neighbor joining method and 500 bootstrap replicates. (B) Smed-prep expression in whole
worms shows a distinct anterior domain of high expression. (C,D) demonstrate that the posterior margin of high Smed-prep expression coincides with
posterior end of the brain. DAPI staining (blue) to highlight the brain (C) combined with false coloring of Smed-prep (red) expression (D). (E) Standard
amputation protocol to assess expression during regeneration and regeneration phenotypes of RNAi experiments. Animals are cut pre- and post-
pharyngeal to generate regenerating head, trunk and tail fragments. Expression of Smed-prep in regeneration blastemas is present in anterior and
posterior blastemas in regenerating trunck pieces at 1 day (F), 3 days (G), 5 days (H), and 8 days (I) after amputation. Expression at 5 days clearly
shows an absence of expression in the eye field, posterior expression at 8 days is reduced. All scale bars are 1 mm. Asterix indicates the pharynx.
doi:10.1371/journal.pgen.1000915.g001

Control of Anterior Regeneration in Planaria
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position of the regenerating or fully formed pharynx, the

expression of a medial marker Smed-Tcen49 [32], or by looking

at the expression of posterior markers such as Smed-HoxD [10].

Thus we infer that Smed-prep(RNAi) leads to a reduction in the

formation of anterior structures, but neither a change to posterior

fate at anterior blastemas nor an expansion in posterior or medial

fates in existing tissues (Figure S2J, S2K, S2L, and S2M). We also

found that early Smed-sFRP-1 expression at anterior blastemas at

24 hours of regeneration is absent in Smed-prep(RNAi) animals.

This suggests Smed-prep acts to provide anterior fate and pattern the

anterior blastema, after polarity is set (Figure S2H and S2I).

The planarian brain and the planarian head have distinct A/P

polarity, as is the case in other animals [17]. Smed-prep expression is

higher in the anterior and lateral margins of the planarian head

(Figure 1B). We wished to know whether this was a reflection of

Smed-prep having a role in defining different A/P fates within the

anterior blastema itself. In this case any remaining brain fated

tissues observed in Smed-prep(RNAi) animals (Table 1) would be

expected to have posterior brain fate. By investigating the

expression of Smed-WntA, a marker of the posterior brain [17]

we found that Smed-prep(RNAi) animals that regenerated one eye

and some CG also maintained antero-posterior identity within

their much reduced anterior structures (Figure 2L and 2P). In

these animals Smed-WntA still labels a posterior domain of the

remaining CG. This suggests that Smed-prep is required to specify

an anterior field of cells in which further A/P patterning occurs.

Smed-prep is required for anterior patterning but not for
brain maintenance or regeneration during homeostasis
or lateral regeneration

We performed long term Smed-prep(RNAi) in whole worms, to

assess its role during normal homeostasis and tissue turnover.

Long-term knockdown did not result in loss or proportional

reduction of anterior structures or CG/Brain (Figure 2R, Table 1).

However, Smed-prep(RNAi) worms developed a new pair of

Figure 2. Smed-prep(RNAi) leads to the loss of anterior fate during regeneration. Smed-prep(RNAi) using a standard injecting and cutting
protocol (Figure S2A) leads to animals with either one (A) or no eyes (B). Control gfp(RNAi) animals were all normal (C). Staining with the 3C11
monoclonal antibody to synapsin in Smed-prep(RNAi) with one eye (D), animals with no eyes (E), and gfp(RNAi) (F). Smed-prep(RNAi) animals (Figure
S2B) (G) and gfp(RNAi) injected during regeneration. Staining with a probe to a glutamate receptor specific to CG/brain, branches, Smed-GluR,
confirms reduction of CG structure to the most anterior tip (I). Smed-sFRP-1, a marker of anterior fate, is mostly absent or else confined to the very
anterior tip (J). Staining with cintillo (K) shows that the number of these anterior cells is also reduced and restricted to the anterior tips of animals.
Staining with the posterior brain marker Smed-WntA (red) shows that in animals where CG/brain is present A/P polarity of the brain (DAPI stained in
blue) is maintained (L,P). gfp(RNAi) were normal for all these stains (M–P). Prolonged Smed-prep(RNAi) during homeostasis (Figure S2C) leads to the
formation of two new eyes anterior to the original pair (Q) but not to any visible reduction or incorrect patterning of the CG/brain, as shown by Smed-
GluR expression (R). The most anterior margin expression of Smed-sFRP-1 is lost in Smed-prep(RNAi) homeostasis worms (S). Smed-prep(RNAi) worms
amputated laterally (Figure S2A) are able to regenerate CG, as shown by Smed-GluR expression (T), but the regeneration is not patterned correctly as
branches are fused (see arrow in T) compared to gfp(RNAi) animals (U). All panels depict 12 day regenerating trunks except: (G,H) 12 day regenerating
tails, (Q,R,S) 28 days homeostasis after first injection, (T,U) 15 days regeneration after lateral regeneration. All scale bars 1 mm.
doi:10.1371/journal.pgen.1000915.g002

Control of Anterior Regeneration in Planaria
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photoreceptors anterior to the original pair (Figure 2Q). This

result suggests that Smed-prep expression in the anterior of whole

worms is required for correct positioning of the photoreceptors

during homeostasis but not for CG maintenance. Smed-sFRP-1

expression was also affected in these animals, with loss of anterior

margin and lateral expression, but maintenance of weaker ventral

antero-medial expression (Figure 2S). This provides more evidence

to suggest that Smed-sFRP-1 expression is dependent on Smed-prep

expression. These data show that Smed-prep has different roles in

establishing anterior structures and their subsequent maintenance.

The finding that the CG were not reduced in homeostasis led us

to consider whether Smed-prep(RNAi) would affect the lateral

regeneration of anterior structures. We reasoned that if Smed-prep

was not required for CG maintenance during homeostasis, then

alternative anterior maintenance mechanisms must be active

during homeostasis. These alternate mechanisms could also be

sufficient to orchestrate lateral regeneration, a scenario where

existing anterior structures are left partially intact. We cut Smed-

prep(RNAi) worms longitudinally (Figure S2A) and observed

regeneration. We found that Smed-prep(RNAi) worms were able to

laterally regenerate all structures, with correct scaling, and

subsequent normal behavior. While some worms did not

regenerate a second eye correctly, all animals regenerated lateral

CG. However, on looking at the pattern of the CG structure in

more detail we noticed that the bilateral CG fused at the anterior

tip (Figure 2T and 2U). In this regenerative scenario Smed-

prep(RNAi) animals can regenerate antero-laterally but CG

structures are not patterned correctly. This indicates that while

Smed-prep is specifically required for the replacement of missing

anterior structures when they are absent, it is not required to

generate missing anterior fated structures during antero-lateral

regeneration, i.e. when one side of the brain is still present.

Instead, it is only required for the formation of correct pattern

during this regenerative scenario. It seems likely that the

remaining anterior tissue contains cues, generated downstream

of Smed-prep during normal anterior regeneration, that are

sufficient to direct neoblast progeny to CG fate.

Double Smed-prep/nou-darake(RNAi) shows that Smed-
prep is required for anterior patterning but not for brain
differentiation

Our experiments thus far suggest that Smed-prep is required for

anterior patterning and fate. To formally rule out the possibility

that Smed-prep is also directly required during anterior regeneration

for stem cell differentiation into CG we utilized the previously

described nou-darake (ndk) RNAi phenotype [16]. RNAi of this

FGF-like receptor gene leads to ectopic posterior expansion of CG

during homeostasis and regeneration. We predicted that if Smed-

prep was required for anterior patterning but not for neoblast

differentiation then double Smed-prep/ndk(RNAi) worms would

display expanded CG differentiation, but with aberrant anterior

patterning and loss of anterior marker expression. Smed-prep/

gfp(RNAi) and Smed-ndk/gfp(RNAi) animals regenerated with

reduced and expanded CG respectively compared to gfp(RNAi)

worms (Figure 3B and 3C). Smed-prep/ndk(RNAi) animals had

expanded CG but this expansion was patterned incorrectly

(Figure 3D). The CG of Smed-prep/Smed-ndk(RNAi) animals are

fused at the anterior tip, similar to Smed-prep(RNAi) laterally

regenerated animals (Figure 3D). Both gfp(RNAi) and smed-ndk/

gfp(RNAi) animals have normally patterned bilateral CG (Figure 3A

and 3C). To test if this mispatterning was concomitant with the

loss of anterior fate we also looked at Smed-sFRP-1 expression.

Table 1. Summary of phenotypes for Smed-prep(RNAi) experiments.

Experiment Nr. Exp. Eye phenotypes
Smed-sFRP-1
Expression

Brain/CG presence
(3C11, Smed-GluR)

Smed-prep(RNAi) trunks, 12dR 11 0%, 2 eyes
92%, 1 eye (389/424)
18%, no eye (35/424)

32% (8/25)*1 3c11 84% (27/32)*1

GluR 89% (33/37)*1

Smed-prep(RNAi) tails 12dR 11 0%, 2 eyes
58%, 1 eye (241/417)
42%, no eye (176/417)

0% (22/22) 3c11 47% (15/32)*1

GluR 51% (18/35)*1

Smed-prep(RNAi) in regenerating
tails, 12dR

2 0%, 2 eyes
19%, 1 eye (4/26)
81%, no eye (21/26)

0% (9/9)

Smed-prep(RNAi), lateral
regeneration, 15dR

2 36%, 2 eyes (9/25)
56%, 1 eye (14/25)
8%, no eye (2/25)

3c11 100% (9/9)
GluR 100% (11/11)

gfp(RNAi) summary, 12dR, 15dR 15 100%, 2 eyes (350/351)
0%, 1 eye
0%, no eye (1/351)

100% (32/32) 3c11 100% (35/35)
GluR 100% (42/42)

Smed-prep(RNAi) intact animals,
28d+ homeostasis

3 86%, 4 eyes (24/28)
14%, 2 eyes (4/28)

100% (6/6)*2 3c11 100% (8/8)
GluR 100% (9/9)

Smed-prep/gfp(RNAi), 12dR 3 17% (1/6)*1 GluR 75% (9/12)

Smed-ndk/gfp(RNAi), 12dR 3 Ectopic eyes present 100% (16/16) GluR 100% (14/14)*3

Smed-ndk/prep(RNAi), 12dR 3 Ectopic eyes present 10% (2/20)*1 GluR 100% (15/15)*3

Smed-gfp(RNAi), 12dR 3 100% (15/15) GluR 100% (15/15)

*1 Strongly reduced expression.
*2 All retain some very weak expression in the longitudinal double row of cells; the normally far stronger expression along the anterior head margin is completely
absent.
*3 Posteriorly expanded expression.
doi:10.1371/journal.pgen.1000915.t001
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Whereas Smed-sFRP-1 expression was normal in Smed-ndk(RNAi)

animals after regeneration it was absent or greatly reduced in

Smed-prep/ndk(RNAi) animals (Figure 3E–3G). This suggests that

Smed-prep specifies an anterior domain during regeneration and

that stem cell progeny normally differentiate to form CG only

within this domain. This restriction requires activity of Smed-ndk,

which is also expressed in an anterior domain. In double Smed-

prep/ndk(RNAi) animals the loss of Smed-ndk removes this restriction

on neoblast progeny, allowing them to adopt CG fate without the

presence of Smed-prep expression, but does not rescue the defects in

anterior patterning.

Smed-prep is required for formation of ectopic anterior
structures in Smed-beta-catenin-1(RNAi) animals

Wnt signaling is central in patterning the antero-posterior axis

of planarians by promoting posterior fate [9,10,12,15]. Given the

finding that Smed-prep is not required for CG maintenance or

formation during homeostasis and lateral regeneration respective-

ly, it remained unclear whether Smed-prep would be required for

the ectopic anterior structures observed when Wnt signaling is

attenuated. We found that when Smed-beta-catenin-1(RNAi) results

in head regeneration at both anterior and posterior blastemas

[3–5], ectopic and prolonged expression of Smed-prep in these new

heads is observed (Figure 3H). In addition Smed-prep/beta-catenin-

1(RNAi) reduced anterior structures at both ends (Figure 3K). As

Smed-prep expression is initially present at both posterior and

anterior blastemas our data suggest that active Wnt signaling in

the posterior blastema suppresses Smed-prep action at posterior

blastemas post-transcriptionally.

Smed-prep is the first gene clearly implicated as being necessary

for promoting anterior fate during regeneration in S. mediterranea.

We propose that after initial polarity determination, involving Wnt

signals and other as yet unknown mechanisms, Smed-prep

expression in neoblast progeny determines an anterior field of

cells in which anterior structures differentiate and are patterned.

At posterior blastemas Smed-prep activity is inhibited post-

transcriptionally by Wnt activity. This now provides the

opportunity to discover downstream genes that are required for

further fine patterning during anterior regeneration, as some of

these are likely transcriptional targets of Smed-prep activity.

In other animals the function of PREP TALE class homeodo-

mains remains rather poorly defined compared to those of other

TALE class family genes. In the both major invertebrate genetics

models, C. elegans and D. melanogaster, a direct ortholog of PREP

TALE class homeodomains is absent [18]. Interestingly both

worms and flies contain MEIS orthologs (unc-62 and homothorax

respectively) that have broad roles in specifying fate during

development [33,34] and other members of the nematode and

arthropod phyla do have PREP orthologs [18]. The finding that

PREP is involved in zebra fish brain development may suggest that

PREP has an evolutionary conserved role in anterior fates.

Broader phylogenetic study of its function is required to test this

[21]. Here, we show that Smed-prep expression and function

delineates the whole anterior domain, including all regions of the

brain. Previous studies of Hox and Hox co-factor function have

not implicated these two groups of genes in defining the most

anterior structures of other vertebrates [35] or arthropods [36].

Significantly, the requirement for Smed-prep is observably

different during homeostasis and different regenerative scenarios.

This illustrates that the genetic networks available to solve different

regenerative scenarios may be diverse and are likely to depend on

the informational/signaling capacity of the differentiated portion

of starting tissue. In addition it is the first time that homeobox

transcription factors have been directly implicated in A/P

patterning in planaria. We suspect that other conserved homeo-

domain proteins will also play core roles in specifying positional

information during regeneration.

Materials and Methods

Animals
All experiments were performed with a clonal line originally

generated from a single animal of the asexual strain of the

planarian S. mediterranea collected in Montjuı̈c (provided by

Professor Emili Saló i Boix) maintained at 20uC in tap water

treated with activated charcoal and buffered with 0.5 ml/L 1 M

NaHCO3. Planarians were fed veal liver and starved for at least

one week prior to experiments.

Isolation of Smed-prep
To identify planarian homologues of TALE transcription

factors we searched a local database of Version 3.1 of the S.

mediterranea Genome Project for orthologs of mammalian TALE

genes (http://genome.wustl.edu/genomes). The contigs 018898

Figure 3. Double Smed-prep/Smed-ndk(RNAi) and double Smed-prep/Smed-beta-catenin-1(RNAi) phenotypes further define the role of
Smed-prep. Smed-GluR expression in gfp(RNAi) (A), Smed-prep/gfp(RNAi) (B), Smed-ndk/gfp(RNAi) (C), and Smed-prep/ndk(RNAi) (D) animals. Smed-
prep/ndk(RNAi) (D) animals have ectopic CG cells and have fused bilateral CG branches (arrow). Smed-prep/ndk(RNAi) (G) animals also fail to correctly
express the anterior marker Smed-sFRP-1, which is expressed in gfp(RNAi) (E) and Smed-ndk/gfp(RNAi) (F) animals. Smed-beta-catenin-1(RNAi) animals
(H) ectopically express Smed-prep at the ‘‘new’’ anterior end and Smed-beta-catenin-1/gfp(RNAi) animals regenerate heads at both blastemas of
regenerating fragments (J). The regeneration of anterior structures is greatly reduced or entirely absent in posterior blastemas in Smed- prep/beta-
catenin-1(RNAi) (K) and regneration is normal control (I) gfp(RNAi) animals, whereas the regenerated head in Smed-prep/beta-catenin-1(RNAi) shows
the expected head reduction of Smed- prep(RNAi). All panels are trunk pieces accept (H) which is a head. All pieces are 15 day regenerants. All scales
bars are 1 mm except (E–G) which are 500 mm.
doi:10.1371/journal.pgen.1000915.g003
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and 020093 containing Smed-prep were analyzed using Vector NTI

(Invitrogen) and sequence data supplemented by using RACE

(Ambion RLM Race Kit). The primers Sm-Prep-Forward with

sequence ATTGCTACTAGAGCAATGTGAACAAGC and

Sm-Prep-Reverse with sequence ATTCTGCGTCGGGCATT-

GAT amplify a 810 bp fragment which was used for whole mount

ISH hybridization and RNAi knockdown. PREP and TALE

proteins sequences were taken from Mukherjee at al [18] and

alignments checked with the CLUSTAL [37]. Phylogenetic

reconstruction was conducted using MEGA version 4 using the

bootstrapped neighbour-joining method [38]. The Smed-prep

sequence has been submitted to GenBank with accession number

GU290186.

RNAi
DsRNAs were synthesized as described previously [39]. Control

animals were injected with dsRNA of GFP that has no homology

in the planarian genome. DsRNA microinjection was performed

as described elsewhere [27]. For injection schedules please refer to

Figure S2. For double RNAi experiments concentrations for each

gene were maintained at 1 mg/ml after mixing and for GFP

controls 2 mg/ml was injected.

Whole-mount ISH hybridization, immuno-staining, and
imaging

Whole mount ISH hybridization was carried out as described

previously [25] with modifications described in [40] and [24]. The

paraformaldehyde solution for the fixation step was prepared fresh

and adjusted to pH 9.5 using NaOH.

For immuno-staining animals were killed in 2% HCl for 5 min

on ice and then fixed in Carnoy’s solution for 2 h at 4uC. After

fixation, samples were processed as described elsewhere [41,42].

The following primary antibodies were used: anti-SYNORF1, a

mouse monoclonal antibody specific for synapsin (Developmental

Studies HybridomaBank, dilution of 1:25) and anti-arrestin VC-1,

a mouse monoclonal antibody specific for planarian photosensitive

cells (kindly provided by Hidefumi Orii, used at a dilution of

1:15,000). Goat anti-mouse secondary antibody conjugated to

Alexa 488 or Alexa 546 (Molecular Probes) was used at a 1:400

dilution.

Brightfield pictures were taken on a Zeiss Discovery V8 from

CarlZeiss using an AxioCam MRC from CarlZeiss. Fluorescent

pictures were taken on a Leica MZ16F fluorescence stereomicro-

scope using a Leica DFC 300Fx camera (Leica Lasertechnik,

Heidelberg). Confocal laser scanning microscopy was performed

with a LeicaSP2 confocal laser scanning microscope (CLSM)

(Leica Lasertechnik, Heidelberg).

Supporting Information

Figure S1 Alignment of Smed-prep translation to other animal

PREP proteins. Alignment of Smed-Prep across the conserved

MEIS and Homeodomain regions of this TALE class protein with

other animals. The Smed-Prep translation is underlined in red.

Found at: doi:10.1371/journal.pgen.1000915.s001 (0.03 MB PDF)

Figure S2 RNAi protocols and characterization of Smed-prep

function. Explanation of RNAi injection schemes and further

analysis of Smed-prep function. Figurative explanation of RNAi

injection and amputation protocols used for assaying Smed-prep

function. In the standard protocol animals receive 3632 nl

injections of dsRNA at 1 mg/ml for three consecutive days before

pre- and post- pharyngeal or longitudinal amputations are

performed (A). To assay the effect of Smed-prep(RNAi) specifically

during regeneration animals tails are amputated and injected 3

times with 3632 nl injections of dsRNA at 1 mg/ml as depicted.

The animals are then re-amputated (B). Homeostasis experiments

were conducted for 28 days or longer. Initially animals were

injected as in (A) but instead of being amputated they were left

intact, fed and injected with a single set of 3632 nl injections of

dsRNA at 1 mg/ml for the subsequent weeks. Staining with the

anti-arrestin VC-1 monoclonal antibody against the photoreceptor

neurons shows that Smed-prep(RNAi) animals have only one

photoreceptor, which appears to be a fusion of two normal eyes

(D). gfp(RNAi) animals always regenerate a normal visual system

(E). The midline of Smed-prep(RNAi) animals (G) seems normal and

Smed-slit expression that labels cells in the midline of gfp(RNAi)

animals (F) is unaffected. The expression of Smed-sFRP-1 appears

early during anterior regeneration. At 24 hours of regeneration it

can already be seen in the blastema in gfp(RNAi) animals (H). In

Smed-prep(RNAi) animals expression is not detected in tail pieces

even when the sample is left to develop until background is very

high (I). The expression of HoxD is detected in the tail parenchyma

up to the mouth of the pharynx, in the mouth itself and in a few

scattered cells just anterior to the pharynx in gfp(RNAi) animals (J).

There is no ectopic expression detected in the head of Smed-

prep(RNAi) animals (K). The normal expression domain of Smed-

Tcen49 in scattered cell clusters in the trunk region of the planaria

(L) is not expanded anteriorly in Smed-prep(RNAi) animals (M).

Found at: doi:10.1371/journal.pgen.1000915.s002 (0.52 MB PDF)
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