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Abstract

The spatial organization of the genome in the nucleus plays a role in the regulation of gene expression. Whether co-
regulated genes are subject to coordinated repositioning to a shared nuclear space is a matter of considerable interest and
debate. We investigated the nuclear organization of estrogen receptor alpha (ERa) target genes in human breast epithelial
and cancer cell lines, before and after transcriptional activation induced with estradiol. We find that, contrary to another
report, the ERa target genes TFF1 and GREB1 are distributed in the nucleoplasm with no particular relationship to each
other. The nuclear separation between these genes, as well as between the ERa target genes PGR and CTSD, was unchanged
by hormone addition and transcriptional activation with no evidence for co-localization between alleles. Similarly, while the
volume occupied by the chromosomes increased, the relative nuclear position of the respective chromosome territories was
unaffected by hormone addition. Our results demonstrate that estradiol-induced ERa target genes are not required to co-
localize in the nucleus.
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Introduction

Chromatin organisation in the vertebrate nucleus is non

random: chromosomes adopt preferential positions with regard

to the centre or edge of the nucleus and genes adopt preferential

positions with regard to their own chromosome territory [1].

Moreover, preferential long-range associations have been found

between loci, mainly in cis [2,3] but also in trans [4–9]. Many of

these associations have been suggested to be of functional

significance for gene expression, either through the trans-

interaction of genes and regulatory elements [4,8], through the

trans-sensing of homologous alleles prior to X chromosome

inactivation [5,9] or by the co-localisation of genes at the same

transcription factory [7].

An instance of rapid and directed inter-chromosomal interac-

tions has recently been reported for estrogen receptor a (ERa)

target genes in primary human mammary epithelial cells (HMEC)

and in a breast cancer cell line (MCF-7) [10]. ERa is a nuclear

receptor that, in response to stimulation by 17b estradiol (E2),

regulates gene expression by binding both promoters and more

distal sites that may be long-range enhancers [2,11–15]. E2 bound

ERa accumulates in numerous nuclear foci [16,17] which raises

the possibility that there might be associations in the nucleus

between multiple ERa binding sites, in cis and in trans. Activation

of gene expression by ERa involves extensive chromatin

remodelling mediated by the recruitment of histone modifying

enzymes and nucleosome remodelling complexes [18]. Moreover,

molecular motors such as dynein light chain (DLC1) have been

reported to bind to ERa and to the promoters of ERa-responsive

genes to potentiate their transcription [19], a dynactin component

binds and modifies the function of ERa [20] and the microtubule

network has also been implicated in ERa action [21]. These

observations raise the possibility that directed long-range motion

in the nucleus might be involved in ERa function.

Indeed, the rapid (within 1 hour) and directed long range

movement of estrogen responsive genes reported after E2

exposure, was reported to be dependent on nuclear actin/myosin

[10]. In particular, inter-chromosomal interactions detected by

chromosome conformation capture (3C), and nuclear co-localisa-

tion revealed by fluorescence in situ hybridisation (FISH), were

described between alleles of some estrogen inducible genes. More

surprisingly, the movement was restricted to the gene loci

concerned and involved rapid repositioning of the genes’

chromosome territories within the nucleus. The estrogen-inducible

genes that apparently showed this inter-chromosomal ‘‘kissing’’

[22] were TFF1 (also known as pS2) on chromosome 21 and

GREB1 on human chromosome 2. Within 60 minutes of E2

addition to cells that had been grown in the absence of steroids,

these genes were activated in ERa–positive MCF-7 cells and

‘‘monoallelic’’ and ‘‘biallelic’’ heterologous associations between
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GREB1 and TFF1 and between chromosomes paints for

chromosomes 2 and 21 were reported, both in HMEC and

MCF-7 cells [10].

Importantly, ERa activates the expression of these genes

through de novo recruitment of RNA polymerase II (RNAPII),

rather than, as is apparently the case for most ERa-responsive

genes, through regulation of the phosphorylation state of RNAPII

pre-loaded at the promoter [23]. Hence, it is possible that the

reported nuclear co-localisation of these ERa-responsive genes

represents their recruitment to a shared nuclear compartment that

facilitates gene expression, such as transcription factories or

splicing factor-enriched nuclear speckles [24].

Whilst there are other reported instances of rapid gene and

locus motion within the nucleus [1], including an example where

nuclear actin/myosin is involved [25], the view of rapid and

extensive nuclear reorganisation induced by estrogen contrasts

with other studies of the dynamics of specific loci or of whole

chromosome territories. These have indicated that chromatin

generally has limited mobility in mammalian cells. With the

exception of the initial stages of G1 [26], chromatin motion

appears to occur by constrained diffusion and is limited to a range

of approximately 0.5 microns [27] over long periods (tens of

minutes through to many hours) of interphase [27,28]. Given this

potential discrepancy, we sought to re-examine the nuclear

organisation of TFF1 and GREB1 upon E2 stimulation in

normal-like MCF10A and cancerous MCF-7 breast cancer cell

lines and in primary HMECs. We found no evidence for nuclear

co-localisation of TFF1 and GREB1 upon E2 stimulation in either

situation and did not observe any directed, coordinated rear-

rangements of the chromosome 2 and 21 territories.

Results

Nuclear organisation of ERa–responsive genes in human
mammary epithelial cells

The rapid inter-chromosomal co-localisation of estrogen

responsive genes that are activated by addition of E2, and the

nuclear repositioning of their chromosome territories, was

reported in primary human mammary epithelial cells (HMECs)

[10]. To reproduce this data, we prepared probes corresponding

to the GREB1 and TFF1 loci and verified them, along with paints

for chromosomes 2 and 21, by FISH to metaphase chromosomes

from HT1080 and MCF10A cells, both of which have a near

normal karyotype [29,30]. The GREB1 and TFF1 probes mapped

only to the expected positions at 2p25.1 and 21q22.3, respectively

(Figure S1A and S1C), and each gave two distinct signals in the

interphase nuclei of diploid cells (Figure S1B and S1D).

These probes were then used on nuclei from two independent

cultures of HMECs grown either in charcoal-depleted stripped

media, i.e. in the absence of E2 (-E2), or after 60 mins of

stimulation by 100 nM E2 (+E2). Nuclear positions were analysed

by both 2D and 3D FISH. 2D FISH affords faster image analysis

and although it slightly exaggerates interphase distances com-

pared to 3D [31] it gave remarkably similar results on TFF1-

GREB1 distances compared to 3D analysis. Visual inspection of

3D FISH images revealed four distinct and separate hybridisation

signals (two per gene) and so did not indicate any obvious co-

localisation, either between homologous alleles of TFF1 or

GREB1, or between heterologous alleles of these genes

(Figure 1A). We measured the interphase distances between all

combinations of the hybridisation signals, and we also normalised

each inter-probe distance (d) by the radius (r) of a circle of equal

area to that of the nucleus to account for any changes in nuclear

size as a consequence of E2 addition (Figure 1B). In 3D analysis,

there was no significant difference in the normalised inter-probe

distances before and after addition of E2, either for homologous

alleles p$0.2, or for the heterologous TFF1-GREB1 probe pairs

(p$0.5). The mean separation between TFF1-GREB1 alleles after

E2 addition was 11 mm, with only 0.5% of measurements

#1 mm.

The closest distances in HMEC nuclei were, in fact, recorded

between the homologous TFF1 alleles in the absence of E2

(p$0.004). We considered this likely due to the fact that TFF1

is located on the small acrocentric chromosomes 21, which are

associated with the nucleolus and so constrained to a position

within the small central volume of the nucleus. In contrast,

chromosome 2, where GREB1 resides, has a more peripheral

nuclear location, affording the possibility of much larger

nuclear distances between the homologues [32]. Indeed,

analysis of the radial nuclear position of these two genes

confirmed the more central nuclear position of TFF1 alleles,

with .50% of signals found in the innermost zone 5 of the

nucleus (Figure 1C).

The absence of nuclear co-localisation of ERa-responsive genes

after E2 addition to cultures of HMECs cells is not that surprising,

since these cell types are generally considered to have low or

undetectable levels of ERa [33,34]. Indeed, immunohistochemical

staining revealed the absence of detectable ERa in the nucleus of

these cells (Figure 2B) and the absence of ERa in these cells was

confirmed by western blot (Figure 2A). Similarly, MCF10A cells,

which are spontaneously immortalized human breast epithelial

cells [35], and which have a normal diploid complement of TFF1

and GREB1 alleles (Figure S1C), also have no detectable ERa
protein levels (Figure 2A). As in HMECs, no co-localisation of

homologous or heterologous TFF1 and GREB1 alleles was seen in

these cells (Figure 1A). The mean inter-probe distances measured

after 3D FISH between heterologous alleles were ,7 mm, with no

changes after E2 addition (less than 1% at ,1 mm before and after

E2 stimulation) (Figure 1D). Similarly, the smallest inter-probe

distances were found in MCF10A cells between homologous TFF1

alleles, with ,3% at less than 1 mm, in both the absence of E2 or

after 1 h of E2 induction.

Author Summary

Whether co-regulated genes relocalize in a coordinated
fashion to a shared nuclear space is a matter of
considerable interest and debate. We investigated the
spatial organization of estrogen receptor alpha (ERa)
target genes in three human breast epithelial cell lines,
human epithelial cells (HMEC), the MCF10A normal-like
diploid cell line, and the MCF-7 aneuploid tumor cell line.
Nuclear positions of a subset of genes in the absence of
hormone and upon addition of estradiol were assessed
quantitatively using 2D and 3D in situ hybridization
techniques. In our two laboratories, we find that TFF1
and GREB1 are distributed in the nucleoplasm with no
particular relationship to each other. Distances between
homologous and heterologous alleles of these genes and
the relative nuclear position of their respective chromo-
some territories 2 and 21 was, contrary to a previous
report, unaffected by transcription activation and hormone
addition. Similar results were obtained with ERa target
genes PGR and CTSD on chromosomes 11. Even in the anti-
estrogen resistant LCC9 cell line, TFF1 and GREB1 and the
two TFF1 alleles remained separated after exposure to
estradiol. Our results thus demonstrate that estradiol-
induced genes are not required to co-localize or interact in
trans or in cis.

Nuclear Localization of Estrogen-Responsive Genes
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Chromosomal rearrangements of regions carrying
ERa–responsive genes in MCF-7 cells

We therefore tested the same TFF1 and GREB1 probes on

ERa–positive (Figure 2A) MCF-7 breast cancer cells, which have

also been reported to demonstrate rapid nuclear colocalisation of

TFF1 and GREB1 upon E2 addition [10]. In this cell line between

4–6 hybridisation signals were seen for each of the gene probes on

both metaphase and interphase MCF-7 preparations (Figure 2C).

Similarly, chromosome paints indicated extensive rearrangement

and gain of material from chromosomes 2 and 21 in independent

isolates of these cells. There appear to be two normal copies of

chromosome 2 that carry GREB1 and one GREB1-carrying copy

with additional material translocated onto the long arm of

chromosome 2. A fourth copy of GREB1 is on a small portion of

chromosome 2p translocated onto another chromosome. Similar-

ly, two copies of TFF1 are on normal-looking chromosomes 21,

with two or four additional copies translocated onto unidentified

large chromosomes. Variable karyotypes have been described, by

both cytogenetic and molecular methods, from MCF-7 cells grown

in different labs at different times, but in all of them the cell line is

highly aneuploid [36–41]. This genomic instability was recently

confirmed by deep-sequencing [42] and our analysis is compatible

with this.

Using quantitative RT-PCR (qRT-PCR) we confirmed that

TFF1 and GREB1 expression was activated upon addition of E2

to MCF-7 cells. Activation of E2-responsive genes has been

reported after addition of both 10nM [17,18] and 100 nM

[10,23,43] E2. Indeed, relative TFF1 and GREB1 mRNA levels

in our MCF-7 cells increased 3 and 8 fold, respectively, after

16 h exposure to 10 nM E2 and 4 and 3 fold, respectively, using

100 nM E2 (Figure 2D). Moreover, steady-state levels of GREB1

and TFF1 mRNA increased 2 fold within 1 hr of 100 nM E2

addition, the time period during which co-localisation of these

gene loci has been reported [10]. Several previous studies have

also used a pre-treatment with the RNA polymerase II inhibitor

a-amanitin before the addition of E2, in order to remove any

active ongoing transcription from genes before their induction

[10,18]. In our analysis, a-amanitin did not change the initial

response of cells to E2, but steady state levels of TFF1 and

GREB1 mRNAs after 16 hrs E2 exposure were higher in the a-

amanitin pre-treated cells, compared to untreated cells

(Figure 2D).

Figure 1. Nuclear organisation of TFF1 and GREB1 in diploid primary and tumor epithelial cells. (A) Interphase FISH with probes (red or
green) for TFF1 and GREB1 on nuclei from HMEC and MCF10A cells in the absence of estradiol (-E2), or after 60 mins of E2 addition (+E2). Nuclei
were stained with DAPI (blue). Scale bars, 10 mm and 5 mm. (B) Box plots showing; top: inter-probe distances (d in mm) and bottom: inter-probe
distances (d) normalized to nuclear radius (r) between homologous or heterologous TFF1 and GREB1 alleles, as measured either by 3D FISH in
HMEC nuclei grown in the absence (-E2) or after 1 hr of 100 nM E2 addition. Shaded boxes show the mean and 25–75 percentiles of the data.
Asterisks indicate data points beyond the 95th percentile. N = 50 cells. (C) Histograms showing the percentage of signals of the radial position of
TFF1 and GREB1 alleles, before and after E2 addition, across 5 erosion shells placed between the edge (shell 1) and the centre (shell 5) of the nuclei.
N = 50 cells. (D) Box plots showing inter-probe distances (mm) between homologous or heterologous TFF1 and GREB1 alleles, as measured by 3D
FISH in MCF10A nuclei grown in the absence (-E2) or after 1 hr of 10 nM E2 addition. Asterisks indicate data points beyond the 95th percentile.
N = 50 cells.
doi:10.1371/journal.pgen.1000922.g001

Nuclear Localization of Estrogen-Responsive Genes
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Figure 2. Expression and genomic arrangement of TFF1 and GREB1 in breast epithelial cells and MCF-7 breast cancer cells. (A)
Western blot to detect protein expression of ERa and GAPDH in total cell lysate prepared from HMEC, MCF10A and MCF-7 cells. (B)

Nuclear Localization of Estrogen-Responsive Genes
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Absence of nuclear co-localisation of ERa–responsive
genes in MCF-7 cells

We did not observe co-localisation of GREB1-TFF1 alleles in

untreated or E2 treated MCF-7 cells (Figure 3A). We analysed the

inter-probe distances (Figure 3B) and the normalised inter-probe

distances (Figure S2A) between all possible homologous or

heterologous pairs of gene signals in nuclei from MCF-7 cells

grown in steroid-free media in the absence of E2, and then 1 and

16 hrs after the addition of either 10 nM or 100 nM E2. We scored

.750 inter-probe distances of TFF1-GREB1 alleles and found on

average 5%,2 mm (2–11 measured distances per experiment with

or without E2) and 2.5%,1 mm (1–3 distances per experiment). We

never observed a single nucleus in which all possible TFF1-GREB1

distances were ,1 or 2 mm. Overall in ,10% of nuclei one or two

inter-probe distances ,2 mm were observed. This proportion was

highly variable (3–18%) from experiment to experiment since there

were so few small distances. Such close proximity between two genes

may thus be a transient and randomly occurring situation. In

addition we also analysed the nuclear organisation of these genes in

response to 100 nM E2 addition in cells which had been pre-treated

with a-amanitin, the experimental conditions under which nuclear

colocalisation of TFF1 and GREB1 has previously been reported

1 hr after E2 addition [10]. There was also no difference in the

TFF1-GREB1 distances before and after E2 addition (p.0.2). The

average inter-probe distance in 100 nM E2 treated cells was 6 mm,

and only 3% and 2% of distances between heterologous alleles were

#1 mm in untreated or a-amanitin pre-treated MCF-7 cells,

respectively. We did also not observe any changes in distances

between GREB1-GREB1 alleles (p.0.2) or TFF1-TFF1 alleles

(p.0.4) upon E2 stimulation.

Immunohistochemical staining of HMEC and MCF-7 cells with antibody that detects ERa (brown). (C) FISH with probes for TFF1 and GREB1, and paints
for chromosomes 2 and 21, on metaphase chromosomes prepared from MCF-7 cells. Bars, 10 mm. (D) Real-time qPCR analysis to detect the relative
expression levels of GREB1, TFF1 and a RPLP0 control prepared from MCF-7 cells grown without E2 (-E2) and during 16 hr time courses in the presence
of either 10 nM or 100 nM E2. Cells with (+) and without (2) pre-treatment with 2.5 nM a–amanitin were also examined.
doi:10.1371/journal.pgen.1000922.g002

Figure 3. TFF1 and GREB1 nuclear organisation in ERa–positive MCF-7 breast cancer cells. (A) 3D Interphase FISH with probes for TFF1 (red)
and GREB1(green) on nuclei of MCF-7 cells grown either in the absence of estrogen (-E2), or 1 and 16 hrs after the addition of 10 nM (top row) or
100 nM (middle row) E2 (+E2). Bottom row: 1 h and 16 hrs of 100 nM E2 addition following pre-treament with 2.5 nM a-amanitin. Nuclei were
stained with DAPI (blue). Scale bars = 5 mm. (B) Box plots show inter-probe distances (mm) between homologous or heterologous TFF1 and GREB1
alleles, as measured either by 3D FISH in nuclei of MCF-7 cells grown in the absence of E2 (-E2) or 1 and 16 hr after the addition of 10 nM (top) or
100 nM (middle) E2. Bottom row: 1 h and 16 hrs of 100 nM E2 addition following pre-treament with 2.5 nM a–amanitin. Asterisks indicate data points
beyond the 95th percentile. N = 40 cells.
doi:10.1371/journal.pgen.1000922.g003

Nuclear Localization of Estrogen-Responsive Genes
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To determine whether the absence of nuclear colocalisation

between TFF1 and GREB1 was an exception or a more general

feature of estrogen induced transcription, we analysed the

positioning of the progesterone receptor (PGR) and Cathepsin-D

(CTSD) genes, both located on different regions of chromosome

11. Metaphase FISH indicated that both alleles of these genes

reside on normal-looking chromosomes 11 in MCF-7 cells

(Figure 4A). There are four additional translocation fragments

that contain material from the centromere of chromosome 11 as

reported by Bautista et al. [44], but these contain no additional

copies of our genes of interest. Using qRT-PCR, we confirmed

that PGR and CTSD expression was activated upon addition of E2

to MCF-7 cells (Figure 4B) with relative mRNA levels increasing 3

and 8 fold, respectively, after 16 h exposure to 10 nM E2.

As for the GREB1-TFF1 alleles, we did not observe any change

in nuclear separation for the PGR-CTSD alleles in untreated versus

E2 treated MCF-7 cells (Figure 4C). Indeed, there was no

difference in intra-chromosomal PGR-CTSD, or inter-chromosom-

al PGR-PGR or CTSD-CTSD distances before and after E2 (10 nM,

3 hrs) addition (p.0.5) (Figure 4D). As expected from the

existence of chromosome territories, the average intra-chromo-

somal inter-probe distances were less than the inter-chromosomal

ones, both before and after E2 addition (PGR-CTSD, 2.5 mm;

PGR-PGR, 6.8 mm; CTSD-CTSD, 6.6 mm). Less than 1% of the

inter-chromosomal and 10% of the intra-chromosomal probe

distances were #1 mm. We did not observe any nuclei in which

probe signals overlapped (,250 nm separation).

Absence of nuclear co-localisation of ERa–responsive
genes in cells with elevated TFF1

In addition, we investigated the position of GREB1 and TFF1

genes in LCC1 and LCC9 cells which are clonal derivatives of the

MCF-7 cell line [45,46]. LCC1 is hormone independent for

growth but still responsive to estrogen and anti-estrogens. LCC9

cells are resistant to anti-estrogens, fulvestrant and tamoxifen.

Compared to MCF-7 cells ESR1 mRNA levels are tripled in

Figure 4. Localisation, expression, and nuclear organisation of PGR and CTSD in MCF-7 cells. (A) FISH with probes for CTSD (blue) and PGR
(green) and paint for chromosome 11 (red) on metaphase chromosome spreads of MCF-7 cells. Scale bars = 10 mm. (B) Real-time qPCR analysis to
detect the relative expression levels of PGR, CTSD and a RPLP0 control prepared from MCF-7 cells grown without E2 (-E2) and during 16 hr time
courses in the presence of 10 nM E2. (C) 3D Interphase FISH with probes for CTSD(red), PGR(green) and the centromere of chromosome 11 CEP11
(blue) on nuclei of MCF-7 cells grown in the absence of estrogen (-E2) and 3 hrs after the addition of 10 nM E2 (+E2). Nuclei were counterstained with
DAPI (blue). Scale bars = 5 mm. (D) Box plots show inter- and intra-chromosomal distances (mm) between PGR and CTSD alleles, as measured by 3D
FISH in nuclei of MCF-7 cells grown in the absence of E2 (-E2) and 3 hrs after the addition of 10 nM E2. Asterisks indicate data points beyond the 95th

percentile. N = 50 cells.
doi:10.1371/journal.pgen.1000922.g004

Nuclear Localization of Estrogen-Responsive Genes
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LCC1 cells and reduced to about 30% in LCC9 cells, yet both cell

lines express very high baseline levels of TFF1 (Figure 5A).

As for the parental MCF-7 cells, we found no evidence for

nuclear co-localisation of TFF1 and GREB1 before or after E2

addition in either LCC1 or LCC9 cell lines (Figure 5B and Figure

S2B). These results suggest that increased transcription rates of the

TFF1 gene do not promote interaction with another ERa-

regulated gene.

Absence of nuclear re-organisation of chromosome
territories

Finally, we examined the relative nuclear position of the

territories of chromosomes 2 and 21 by 3D FISH. In MCF10A

cells, the two territories of chromosome 2 (Chr2) are frequently

near the nuclear periphery, while, as expected, Chr21 localised

near the nucleoli in a more central nuclear position (Figure 6A)

[32]. In 40–50% of the untreated cells, Chr2 and Chr21 are

adjacent to each other yet without significant overlap. Upon 1 h

exposure to 10 nM E2, the relative positions of Chr2 and Chr21

and their general localisation in the nucleus did not vary from that

observed in untreated cells. Notably, we did not observe an

increase in cells in which Chr2 and Chr21 co-localised. We

analysed the radial nuclear position of Chr2 and Chr21 and we

confirmed more than 40% of Chr21 in the central nuclear space

(shell 5) compare to the edge (shell 1) of the nuclei (Figure 6B).

These observations are in good correlation with the results for

TFF1 genes (Figure 1C) that are located on Chr21.

We also examined the position of Chr2 and Chr21 in MCF-7

cells, where inter-chromosomal associations between the territories

of these two heterologous chromosomes have been reported to be

induced by E2 [10]. We did not observe any obvious significant

overlap between Chr2 and Chr21 (Figure 6C, representative

pictures are shown) upon E2 stimulation. However, the highly

aneuploid and highly rearranged nature of these chromosomes in

this breast cancer cell line (Figure 2C) makes it impossible to

unequivocally differentiate the large number of chromosome

territories and to objectively quantify their spatial relationships.

Interestingly, we observed that after estradiol treatment both

chromosome territories expanded. We examined the volume of

chromosome territories and we detected ,1.5 fold increase after

E2 stimulation in MCF-7 cells (Figure 6D). We note that Chr2 and

Chr21 are frequently neighboring each other, but this relative

position did not change upon E2 addition and did not lead to

colocalisation of TFF1 and/or GREB1 genes (Figure 3A).

Discussion

The regulation of gene expression by elements located in cis,

even when .1 Mb from the gene, is well accepted and

increasingly well understood. In one case, this has been shown

to be accompanied by co-localisation in the nucleus between the

distant enhancer and the gene [47]. Because there is a degree of

intermingling between chromosome territories [48] and because

individual loci can loop out of their own chromosome territory

[49], it is conceivable that a regulatory element could interact with

a gene locus located on another chromosome. Such an interaction

might be between homologous chromosomes when there is a need

to establish differential expression states on these chromosome

pairs, such as in X-chromosome inactivation (XCI) or imprinting.

Whereas the transient pairing between X chromosomes during the

establishment of XCI has been confirmed by two independent

groups [5,9], nuclear co-localisation between imprinted regions of

autosomes has not been substantiated [50–52].

In vertebrate cells, even if reports of nuclear co-localisation

between genes and regulatory elements in trans were to be verified

[4,8,10], their functional significance remains unclear in the

absence of direct genetic evidence for specific regulation in trans

between heterologous chromosomes [53]. Such a deterministic

view of nuclear organisation is also at odds with the non-heritable

relative position of heterologous chromosomes. Although the

disposition of chromosome territories in the nucleus is non-

random, with a gene-density related radial organisation well

described, it is also probabilistic in that the precise neighbour-

hoods of any particular chromosome change from one cell cycle to

the next [28,54]. This seems too loose an arrangement of

chromosomes to ensure the dependable spatial juxtaposition of

genes and regulatory elements in trans.

A less rigid spatial arrangement of genes in trans may come

about through the sharing of multiple, but limited, nuclear

compartments by genes that are active or inducible in a particular

cell type. Such compartments might be rather general, for

example transcription factories, or splicing factor enriched speckles

[24,55,56], indeed it is suggested that the co-localised alleles of

TFF1 and GREB1 in E2-treated breast epithelial cells are

associated with the latter nuclear compartment [10]. Alternatively,

such compartments may be specific to a particular pathway of

regulated gene expression [57]. Nuclear hormone receptors have

been reported to concentrate in discrete foci in the nucleus. In the

case of the progesterone receptor, these foci do appear to

Figure 5. TFF1 and GREB1 nuclear organisation in LCC1 and
LCC9 cells. (A) Real-time qPCR analysis to detect the relative
expression levels of ERa (ESR1) and TFF1 prepared from MCF-7, MCF10A,
LCC1 and LCC9 cells grown in phenol red containing DMEM. (B) Box
plots showing inter-probe distances (d) between heterologous TFF1
and GREB1 alleles, as measured by 2D FISH in nuclei of LCC1 or LCC9
cells grown in the absence of E2 (-E2) or after 1 hr in the presence of
100 nM E2. Asterisks indicate data points beyond the 95th percentile.
N = 50 cells.
doi:10.1371/journal.pgen.1000922.g005

Nuclear Localization of Estrogen-Responsive Genes
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correspond to sites of RNA synthesis, raising the possibility that

they represent the specific nuclear sites of transcription of genes

regulated by this hormone receptor [58], however, foci of the

glucocorticoid receptor do not seem to correspond to sites where

genes are expressed [59]. For ERa, the presence of the agonist

ligand E2 results in rapid redistribution of the protein to discrete

nuclear foci [16,17]. Although these foci do correspond to a less

mobile form of ERa - indicating binding, and they are the sites of

recruitment of co-activators such as SRC-1, they do not

significantly overlap with sites of transcription, calling into

question whether they are the actual nuclear compartments for

the activation of ERa-induced genes. Nor do these foci overlap

with splicing factor enriched nuclear speckles [17], which are the

nuclear structures where ERa-induced gene loci have been

reported to co-localise [10].

E2-induced nuclear foci are numerous – there appear to be

many 100 s or 1000 s of them [17] and their number is not

dissimilar to the estimated range of E2-upregulated genes (,100–

700) or ERa binding sites (,1000–3500) in the genome of MCF-7

cells [12,14]. Therefore, it is not clear why up to 60% [10] of any

two particular heterologous E2-induced genes (e.g. TFF1-GREB1)

should co-localise at just one nuclear site, rather than each gene

localizing at any of the many other ERa sites or splicing factor

enriched speckles, perhaps with any of the other 100 s of E2-

induced alleles. If this were a reflection of a pre-existing spatial

proximity of the two genes in the nucleus, then one might rather

expect to see preferential co-localisation of the two homologous

alleles of TFF1, since we have shown (Figure 1B) that these alleles

have a closer spatial proximity to each other, than to the GREB1

alleles. We suggest that this reflects the location of TFF1 on the

small acrocentric chromosomes 21 that are constrained, through

their nucleolar association, to the small central volume of the

nucleus (Figure 1C). Indeed, a recent re-evaluation of reported

pairing between imprinted alleles on human chromosomes 15,

suggested that this was a secondary effect due to the convergence

of the acrocentric chromosome 15 s at the nucleolus [52].

In normal and cancer breast epithelial cells, we can find no

evidence for E2-induced nuclear co-localisation between the

heterologous or homologous alleles of TFF1 and GREB1

(Figure 1, Figure 2, Figure 3, and Figure 5) or indeed for any

allele combination of another pair of ERa-regulated genes, PGR

and CTSD located in cis on the same chromosome as each other

Figure 6. Chromosome territory organisation in MCF10A and MCF-7 cells. (A) 3D interphase FISH with chromosome paint to chromosome
territory 2 (red) and 21 (green) on nuclei from MCF10A cells imaged in the absence of estrogen (-E2), or after 60 mins of 10 nM E2 addition (+E2).
Nuclei were stained with DAPI (blue). Scale bars = 5 mm. (B) Histograms showing the percentage of chromosome paint hybridization signal
normalized to the percentage of DAPI signal, before and after E2 addition, across 5 erosion shells placed between the edge (shell 1) and the centre
(shell 5) of the nuclei. N = 25230 cells. (C) 3D interphase FISH with chromosome paint to chromosome territory 2 (red) and 21 (green) on nuclei from
MCF-7 cells imaged in the absence of estrogen (-E2), or after 60 mins of 100 nM E2 addition (+E2). Nuclei were stained with DAPI (blue). Scale bars
= 5 mm. (D) Box plots show the percentage of chromosome paint hybridization signal (CT2 and CT21) normalized to the percentage of DAPI signal,
before and after E2 addition. Asterisks indicate data points beyond the 95th percentile. N = 30 cells.
doi:10.1371/journal.pgen.1000922.g006
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(Figure 4). Given the existence of chromosome territories as a

major principle of nuclear organisation, this might have afforded

increased opportunity for gene co-localisation in cis, albeit at long

range. We cannot exclude that ‘‘chromosome kissing’’ between

these genes is very transient and that we have just missed a critical

time-window in our analysis, either before 1 hour of induction or

between 1 and 16 hours, or that the increased steady state levels

after the addition of E2 is the result of transcription from a very

small proportion of alleles at any one moment in time [60].

However, TFF1-GREB1 co-localisation has been reported as soon

as 15 minutes after E2 addition and until 60 minutes after

hormone addition, and precedes gene activation itself [10].

Similarly, ERa and its co-activators are bound to promoters of

responsive genes within 30 minutes of E2 addition and are still

there at 60 minutes [18,43,61]. Even at very long time periods

(16 hours) after E2 addition, when we see maximal expression of

PGR, CTSD, TFF1 and GREB1 in MCF-7 cells (Figure 2D and

Figure 4B), we find no evidence for nuclear co-localisation of these

genes (Figure 3B, Figure 4C). Moreover, our demonstration that

HMECs do not express ERa (Figure 2A and 2B) and that MCF-7

cells are karyotypically abnormal and aneuploid for GREB1/Chr 2

and TFF1/Chr21 (Figure 2C, Figure 3A, and Figure 6C)

precludes these cellular systems as having being appropriate

models in which to record bi-allelic ‘‘kissing’’ of these loci and

chromosomes in response to stimulation by estrogen.

In agreement with the notion that chromosome order

established at the exit of mitosis remains stable throughout

interphase [28], the relative nuclear position of the analysed

chromosome territories was also unaffected by hormone addition

in normal and cancerous cells. We noticed, however, that upon E2

treatment the nuclear volume occupied by the chromosomes

increased about 1.5 fold. The association of agonist bound ERa
with ,100 s of target genes at numerous intranuclear sites causes

decondensation [62] of chromatin simultaneously at all sites of

activated transcription. This general chromatin decompaction thus

supports our view that hormone stimulated gene activation occurs

at multiple sites throughout the nucleoplasm.

Consistent with our findings, a recent genome-wide analysis,

using a new CHIA-PET method, of long-range ERa-bound

chromatin interactions in E2 stimulated MCF-7 cells [63] detected

689 intra-chromosomal interactions, but no validated inter-

chromosomal interactions were found. Even if there were

limitations in the coverage or interpretation of this data set, this

experiment indicates that any specific ERa-mediated interactions

between TFF1-GREB1 [10], or indeed between any other

functionally relevant combination of ERa targets on different

chromosomes, occurs at a low frequency compared with intra-

chromosomal interactions. Moreover, the intra-chromosomal

interactions detected were mostly within a 100 kb size range,

including those for TFF1, GREB1, PGR and CTSD, ,1%

encompassed distances of .1 Mb [63]. We therefore conclude

that ERa does not generally mediate rapid interactions between

distant target genes, either located .1 MB in cis (PGR-CTSD) or in

trans (TFF1-GREB1), but that changes in chromatin and nuclear

structure mediated by ERa are relatively local (generally within a

100 kb size range).

Materials and Methods

Cell culture and cell lines
Primary HMEC cells of luminal origin were isolated from

normal breast tissue as previously described [64] and were

maintained in CnT22 medium (CellnTEC) supplemented with

10% heat-inactivated fetal calf serum (FCS). The normal-like

diploid human breast epithelial cell line MCF10A (ATCC

purchase at July 2008 as a passage No. 97 and we used up to

10th passages of MCF10A in all experiments) was maintained in

Dulbecco’s modified Eagle’s medium F-12 (DMEM F-12) with

Glutamax containing Mammary Epithelial Growth Supplement

(MEGS), 10 ng/ml hEGF and 100 ng/ml cholera toxin.

Experiments on the human ERa–positive breast cancer cell line

MCF-7 were conducted independently in both Toulouse and

Edinburgh. In Toulouse, the cells were from ATCC, purchased at

February 2008 as a passage No. 146 and used up to 10th passages,

maintained in DMEM F-12 with Glutamax containing 50 mg/ml

gentamicin, 1 mM sodium pyruvate and 10% FCS. In Edinburgh

MCF-7, as well as LCC1 and LCC9 cells were a gift of Bob Clarke

(Georgetown University School of Medicine, Washington DC).

These cells were maintained in DMEM without phenol red and

supplemented with 5% L-Glutamine, 5% Penicillin/Streptomycin

and 10% FCS. All cells were grown at 37uC in a humidified

atmosphere containing 5% CO2.

To study the effects of 17b estradiol (E2) on ERa-target gene

dynamics, cells were grown for 3 days in medium containing

phenol red-free media supplemented with 5–10% charcoal-

stripped FCS (-E2) and subsequently treated with 10 nM or

100 nM E2 (Sigma) for the indicated times. The cells synchronized

by a-amanitin were pre-treated for 2 h with 2.5 nM a-amanitin,

followed by washing and recovering for 1 h in normal steroid and

phenol-red free media and then stimulated with 100 nM E2 for

1 h and 16 h.

IHC
HMECs and MCF-7 cells were harvested by cell scraping and

the cell pellets were mixed in 2% agarose/PBS. The pellet mix was

left to cool and then paraffin-embedded using a Leica ASP300S

automatic processor. Standard immunohistochemistry protocol

was performed on 3 micron sections using the REAL EnVision

mouse/rabbit kit (Dako), according to manufacturer’s instructions.

Antigen retrieval for ERa was performed using sodium citrate

buffer (18 mM Citric Acid, 82 mM sodium citrate, pH 6.0). Anti-

human ERa antibody (Vector Labs, VP-E613) was used at a

dilution of 1:50 for 1 h in room temperature.

FISH
2D FISH on metaphase and interphase cells was as previously

described [65]. In Toulouse, 3D FISH experiments were adapted

from a previously protocol [66]. Cells were grown for 3 days on

coverslips in DMEM without phenol red, containing 5% charcoal-

stripped FCS, before addition of 10 nM or 100 nM E2 for the

indicated times. Coverslips were washed twice with PBS, fixed in

4% paraformaldehyde (pFA)/PBS for 10 mins at room temper-

ature and during the last minute 200 ml of 0.5% Triton X-100/

PBS were added into 500 ml of 4% pFA. After fixation, the cells

were washed three-times for 3 mins in 0.01% Triton X-100/PBS,

incubated in 0.5% Triton X-100/PBS for 10 mins at room

temperature and then incubated with 0.1 mg/ml RNase in 2xSSC

for 1 hour at 37uC. After 3610 mins washes in PBS, cells were

incubated in 0.1 M HCl for 5 mins at room temperature, twice in

2xSSC for 3 mins and then equilibrated overnight in 50%

formamide/2xSSC (pH = 7.2). MCF10A cells, with a large

cytoplasm, underwent optional treatment with pepsin. In brief,

equilibrated slides (kept in 50% formamide/2xSSC) were

incubated in 2xSSC for 2 mins at room temperature, equilibrated

in PBS for 3 mins at room temperature, incubated in 0.005%

pepsin/0.01 M HCl pre-warmed to 37uC for 5 mins, incubated

twice in 50 mM MgCl2 for 5 mins at room temperature, post-

fixed in 1% pFA/PBS for 10 mins at room temperature, washed
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in PBS for 5 mins at room temperature, washed twice in 2xSSC

for 5 mins and then returned into 50% formamide/2xSSC

(pH = 7.2) for at least 1 hour before hybridization. Denaturation

of the probes and target DNA is performed simultaneously at 85uC
for 2 minutes.

In Edinburgh, cells were grown on Superfrost slides in the

appropriate media, washed 3x in PBS before fixation in 4%pFa/

PBS for 10 mins. After 3 further washes in PBS the cells were

permeabilised in 0.5% Triton X-100/PBS for 10 mins and then

washed 3x in PBS again. The slides were then incubated in

0.1 mg/ml RNase in 2xSSC for 1 hour at 37uC, washed again

and then put through an ethanol series (70%, 90%, 100%) for 2

minutes each. The slides were warmed to 70uC in an oven for 5

minutes prior to denaturation in 70% deionised formamide,

2xSSC, pH 7.0 for 15 minutes at 80uC.

DNA from BAC clones (Toulouse) which include TFF1

(RPCIB753I15619Q), GREB1 (RZPDB737C102019D), PGR

(RP11-788M5) or CTSD (RZPDB737F022085D) were directly

labeled using nick translation (BioPrime DNA Labeling System,

Invitrogen) by incorporation of fluorochrome-conjugated nucleo-

tides Atto647N-dUTP-NT (Jena Bioscience) or ChromaTide

AlexaFluor 488-5-dUTP (Molecular Probes). DNA from fosmid

clones (Edinburgh) which encompass TFF1 (G248P89501F6) or

GREB1 (G248P80076843) were nick-translated with biotin-16-

dUTP or digoxigenin-11-dUTP. Chromosome paints were

obtained from Genetix Ltd., UK (Toulouse) or from Cambio

(Edinburgh). We used 100 ng labeled DNA probe or 100 ng

chromosome paint together with 7 mg Cot-1 DNA and 5 mg

sonicated salmon sperm DNA per slide. CEP11 (chromosome 11

alpha-satellite probe D11Z1) was obtained from MP Biomedicals.

Microscopy and quantification
In Toulouse cells were examined by fluorescence microscopy

using an Olympus IX-81 microscope, equipped with a Cool-

SNAPHQ camera (Roper Scientific) and imaged through an

Olympus oil-immersion objective 100x PLANAPO NA1.4.

Subnuclear position was captured on 21-image (200 nm step size)

stacks and analysis of inter-probe distances between the centroid of

each signal was performed using Metamorph software (Universal

Imaging). Images were processed using Adobe Photoshop 9.0.2.

In Edinburgh, 2D specimens were examined with a Zeiss

Axioplan II microscope fitted with Plan-neofluar oil-immersion

objectives, a 100 W Hg source and Chroma #8300 triple band

pass filter set. Image capture and analysis of nuclear size and

distance between the centroids of the hybridization signals was

performed with scripts written for IPLab Spectrum (Scanalytics

Copr, Fairfax, VA) as previously described [67]. Three-dimen-

sional images were captured at 200 nm intervals in the z axis,

using an objective fitted with a Pifoc motor.

Images from 30–50 nuclei were analysed in each experiment

and the significance of any difference in the data distributions was

assessed using the non-parametric Mann-Whitney U test. A

p-value #0.05 was considered statistically significant.

Western blotting
The cells were washed with ice-cold PBS and total cell lysates

were prepared by resuspending the cells in lysis buffer. The

samples were boiled for 20 min at 95uC and cleared by

centrifugation at 12 0006g for 10 mins. Next, the samples were

subjected to SDS-PAGE and the proteins transferred onto

nitrocellulose membrane. Western blot analysis was performed

using ERa (HC-20, Santa Cruz Biotechnology, Inc.) and GAPDH

(MAB374, Chemicon International) antibodies and processed

using the MultiGauge Software from FUJI.

qRT–PCR
Total RNAs were extracted using TRIzol Reagent (Invitrogen). 1–

5 mg of total RNA was reverse transcribed in a final volume of 20 ml

using SuperScriptr III Reverse Transcriptase. cDNA was stored at

280uC. All target transcripts were detected using quantitative RT-

PCR (SYBRGreen) assays on a Mastercycler Realplex device using

RPLP0 as endogenous control for normalization of the data. The

following primer pairs were used for amplification:

RPLP0: (Fwd) 59-TGGCAGCATCTACAACCCTGAA -39

(Rev) 59-ACACTGGCAACATTGCGGACA -39

GREB1: (Fwd) 59-GTGGTAGCCGAGTGGACAAT-39

(Rev) 59-AAACCCGTCTGTGGTACAGC-39

TFF1: (Fwd) 59-CCCCTGGTGCTTCTATCCTAAT-39

(Rev) 59-CAGATCCCTGCAGAAGTGTCTA-39

PGR: (Fwd) 59-CTTAATCAACTAGGCGAGAG-39

(Rev) 59-AAGCTCATCCAAGAATACTG-39

CTSD: (Fwd) 59-GCGAGTACATGATCCCCTGT-39

(Rev) 59-CTCTGGGGACAGCTTGTAGC-39

The thermal cycling condition comprised 2 mins at 50uC and

2 mins at 95uC followed by 40 PCR cycles (95uC for 15 sec, 58uC
for 30 sec, 72uC for 20 sec). Melting curves were recorded from

60uC to 95uC and all PCR products revealed single bands. The

results were analyzed using Mastercycler Realplex and qBASE

software.

Supporting Information

Figure S1 Localisation of signals for TFF1 and GREB1 on

metaphase chromosomes and in nuclei from HT1080 and

MCF10A cells. (A) FISH with probes for TFF1 (red) and GREB1

(red) and paints for chromosomes 2 and 21 respectively (green) on

metaphase chromosome spreads of HT1080 cells. (B) Interphase

FISH with probes for TFF1 (green) and GREB1 (red) on nuclei

from HT1080 cells. (C) FISH with probes for TFF1 (red) and

GREB1 (green) and paints for chromosomes 2 (red) and 21 (green)

respectively on metaphase chromosome spreads of MCF10A cells.

(D) Interphase FISH with probes for TFF1 (red) and GREB1

(green) on nuclei from MCF10A cells.

Found at: doi:10.1371/journal.pgen.1000922.s001 (5.60 MB TIF)

Figure S2 Nuclear organisation of TFF1 and GREB1 in MCF-7

cells and their derivatives. (A) Box plots show inter-probe distances (d)

normalized to nuclear radius (r) between homologous or heterologous

alleles, as measured either by 3D FISH in nuclei of MCF-7 cells grown

in the absence of E2 (-E2) or 1 and 16 hr after the addition of 100 nM

E2. Asterisks indicate data points beyond the 95th percentile. N = 50

cells. (B) Box plots showing inter-probe distances (d) normalized to

nuclear radius (r) between heterologous TFF1 and GREB1 alleles, as

measured by 2D FISH in nuclei of LCC1 or LCC9 cells grown in the

absence of E2 (-E2) or after 1 hr in the presence of 100 nM E2. Shaded

boxes show the mean and 25–75 percentile of the data. Asterisks

indicate data points beyond the 95th percentile. N = 50 cells.

Found at: doi:10.1371/journal.pgen.1000922.s002 (1.16 MB TIF)
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